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Abstract We look at two fundamental logical processes, often intertwined in
planning and problem solving: inference and update. Inference is an internal process
with which we uncover what is implicit in the information we already have. Update,
on the other hand, is produced by external communication, usually in the form of
announcements and in general in the form of observations, giving us information that
might not have been available (even implicitly) before. Both processes have received
attention from the logic community, usually separately. In this work, we develop a
logical language that allows us to describe them together. We present syntax, seman-
tics and a complete axiom system; we discuss similarities and differences with other
approaches and mention how the work can be extended.

Keywords Inference · Update · Epistemic logic · Dynamic epistemic logic

1 Introduction

Consider the following situation, from van Benthem (2008a):

You are in a restaurant with your parents, and you have ordered fish, meat, and
vegetarian, for you, your father and your mother, respectively. A new waiter
comes with the three dishes. What can he do to know which dish corresponds to
which person?

F. R. Velázquez-Quesada (B)
Institute for Logic, Language and Computation, Universiteit van Amsterdam, Plantage Muidergracht
24, 1018 TV, Amsterdam, The Netherlands
e-mail: F.R.VelazquezQuesada@uva.nl

123



Synthese

The waiter can ask “Who has the fish?”; then he can ask “Who has the meat?”.
Now he does not have to ask anymore: “two questions plus one inference are all that
is needed” (van Benthem 2008a).

The present work looks at these two fundamental logical processes, often inter-
twined in real-life activities. Inference is an internal process: the agent revises her
own information in search of what can be derived from it. Update, on the other hand,
is produced by external communication: the agent gets new information via obser-
vations. Both are logical processes, both describe dynamics of information, both are
used in every day situations and still, they have been studied separately.

Inference has been the main subject of study of logic, allowing us to extract new
information from what we already have. Among the most important branches, we can
mention Hilbert-style proof systems, natural deduction and tableaux. Recent works,
like Jago (2006b,a), have incorporated modal logics to the field, representing inference
as a non-deterministic step-by-step process.

Update has been the main subject of Dynamic Epistemic Logic (DEL) (van Dit-
marsch et al. 2007). Works like Plaza (1989) and Gerbrandy (1999) turned attention to
the effect public announcements have on the knowledge of an agent. Many works have
followed them, including the study of more complex actions (Baltag et al. 1999, van
Ditmarsch 2000) and the effect of announcements on diverse concepts of information
(the soft/hard facts of van Benthem (2007); the knowledge/belief/safe belief of Baltag
and Smets (2008)).

In van Benthem (2008c), the author shows how these two phenomena fall within
the scope of modern logic: “asking a question and giving an answer is just as ’logi-
cal’ as drawing a conclusion!”. Here, we propose a merging of the two traditions. We
consider that both processes are important, but so is their interaction. In this work, we
develop a logical language that allows us to express inference and update together.

We start in Sect. 2 by providing a general framework for representing implicit
and explicit information; then, by asking for the adequate properties, we focus on
the case where information is true, i.e., we deal with knowledge. Section 3 provides
a representation of truth-preserving inference; moreover, we show how dynamics of
the inference process itself can be represented. Section 4 introduces the other logical
process: update. Then, we compare our proposal with other approaches (Sect. 5) and
present a summary and further work (Sect. 6). We focus in the single-agent case,
leaving group-information concepts for future work.

2 Implicit and explicit information

The Epistemic Logic (EL) framework with Kripke models (Hintikka 1962) is one of the
most widely used for representing and reasoning about an agent’s information. Never-
theless, it is not fine enough to represent the restaurant example above. Agents whose
information is represented with this framework suffer from what Hintikka called the
logical omniscience problem:1 they are informed of all validities and their information
is closed under truth-preserving inference.

1 See Sim (1997) for a survey about the logical omniscience problem.
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This feature, useful in some applications, is too much in some others. More
importantly for us, it hides the inference process: when representing our example,
the answer to the second question tells the waiter not only that your father will get the
meat but also that your mother will get the vegetarian dish. In this case, the inference
is short and very simple, but in general this is not the case: proving a theorem, for
example, consists on successive applications of deductive inference steps to show that
the conclusion indeed follows from the premises. Some theorems may be straightfor-
ward, but some are not, and the distinction does not correspond to immediate notions
like the length of the proof.

As argued in van Benthem (2006), we can give the modal operator another inter-
pretation, reading the formula �ϕ as “the agent is implicitly informed about ϕ”. We
follow that idea, and we extend EL to also represent explicit information; moreover,
we also provide a mechanism with which the agent can increase it. The work of this
section resembles previous literature; a comparison appears in Sect. 5.

2.1 Formulas, rules and the explicit/implicit information framework

In our framework, the agent’s explicit information is given by a set of formulas, and
it can be increased by the use of syntactic rules. We start by defining the language to
represent explicit information and by indicating what a rule in that language is.

Definition 2.1 (Formulas and rules). Let P be a set of atomic propositions. The inter-
nal language I is given by the propositional language over P. A rule based on I is
a pair (�, γ ) (also represented as � ⇒ γ ) where � is a finite set of formulas and γ
is a formula, all of them in I. Given a rule ρ = (�, γ ), we call � the set of premises
of ρ(prem(ρ)) and γ the conclusion of ρ(conc(ρ)). We denote by R the set of rules
based on formulas of I.

Our internal language allows the agent to have explicit information about facts but
not about her own information. This is indeed a limitation, but it allows us to define
one of the two processes we are interested in: update (Sect. 4). In Sect. 6 we briefly
discuss the reasons for this limitation, leaving a deep analysis for further work. Note
also that we have defined the premises of a rule as a set, and not as a more general
notion like an ordered sequence or a multi-set.2 This makes it closer to the classical
notion of truth-preserving inference, which we explore in Sect. 3.

Our language extends that of EL by adding two kinds of formulas: one for express-
ing the agent’s explicit information (I γ ) and another expressing the rules she can
apply (L ρ).

Definition 2.2 (Explicit/implicit information language EI). Let P be a set of atomic
propositions. Formulas of the explicit/implicit information language EI are given by

2 As a referee pointed out, with such a generalized definition, one can also analyze inference in “resource-
conscious” sub-structural logics in which order and multiplicity matters, like Linear Logic or Categorial
Grammar (see Moortgat 1997). This interesting extension fits well with the idea of our awareness analysis,
but we must leave it to further work.
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ϕ ::= � | p | I γ | L ρ | ¬ϕ | ϕ ∨ ψ | ♦ϕ

with p ∈ P, γ ∈ I and ρ ∈ R. Formulas of the form ♦ϕ are read as implicitly, the
agent considers ϕ possible. Other boolean connectives (∧,→ and ↔) as well as the
modal operator � are defined as usual.

The semantic model extends a Kripke model by assigning two new sets to each
possible world: one indicating the formulas the agent is explicitly informed about, and
other indicating the rules she can apply.

Definition 2.3 (Explicit/implicit information model) Let P be a set of atomic propo-
sitions. An explicit/implicit information model is a tuple M = 〈W, R, V,Y, Z〉 where
〈W, R, V 〉 is a standard Kripke model (W the non-empty set of worlds, R ⊆ W × W
the accessibility relation, V : W → ℘(P) the atomic valuation function) and

– Y : W → ℘(I) is the information set function, satisfying coherence for formulas
(if γ ∈ Y (w) and Rwu, then γ ∈ Y (u)).

– Z : W → ℘(R) is the rule set function satisfying coherence for rules (ifρ ∈ Z(w)
and Rwu, then ρ ∈ Z(u)).

We denote by EI the class of all explicit/implicit information models. Note how, just
as in the definition of the premises of a rule, the agent’s information about formulas
and rules is also given by a set.

Our restrictions reflect the following idea. The sets Y (w) and Z(w) represent the
formulas and rules the agent is explicitly informed about; if while staying in w the
agent considers u possible, it is natural to ask for u to preserve the agent’s explicit
information at w.

Definition 2.4 (Semantics for EI) Given a model M = 〈W, R, V,Y, Z〉 in EI and a
world w ∈ W , the semantics for � and disjunctions is as usual. For the rest,

(M, w) � p iff p ∈ V (w) (M, w) � I γ iff γ ∈ Y (w)
(M, w) � ¬ϕ iff (M, w) �� ϕ (M, w) � L ρ iff ρ ∈ Z(w)
(M, w) � ♦ϕ iff ∃u s.t.Rwu & (M, u) � ϕ

Note how the operators I and L just look into the correspondent sets.

We provide a syntactic characterization of formulas of EI that are valid in the class
of models EI.

Theorem 1 (Sound and complete logic for EI w.r.t. EI). The logic EI (Table 1) is
sound and strongly complete for the language EI with respect to models in EI.

Proof Soundness follows from axioms being valid and rules being validity-preserv-
ing. Completeness follows by a standard modal canonical model construction with
information set and rule set functions given by Y EI(w) := {γ ∈ I|I γ ∈ w} and
ZEI(w) := {ρ ∈ R|L ρ ∈ w}. It is easy to show that these satisfy the crucial coher-
ence properties. �
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Table 1 Axioms and inference rules for the logic EI

(P) All propositional tautologies (CohI ) � I γ → �I γ
(K) � �(ϕ → ψ) → (�ϕ → �φ) (CohR) � L ρ → �L ρ
(Dual) � ♦ϕ ↔ ¬�¬ϕ
(MP) From � ϕ and � ϕ → ψ infer � ψ (Gen) From � ϕ infer � �ϕ

Axioms of Table 1 say, in particular, that the agent’s implicit information is closed
under modus ponens (axiom K), and that her explicit information satisfy both coher-
ence properties (CohI and CohR). Note how the agent’s explicit information does
not suffer from the logical omniscience problem: the validity of γ does not imply the
validity of I γ , and I (γ → δ) → (I γ → I δ) is not valid.

2.2 When information is true

Models in the class EI can represent information that is not true: the actual world does
not have to be in those considered possible by the agent, and formulas (rules) in infor-
mation (rule) sets do not have to be true (truth-preserving) at the corresponding world.
By asking for the adequate properties, we can represent diverse kinds of information
concepts, like safe belief, belief or knowledge. Here, we will focus on the case of true
information, i.e., knowledge.3

Among models in EI, we distinguish those where implicit and explicit information
are true and the rules are truth-preserving. For implicit information, we consider equiv-
alence accessibility relations, as it is usually done in EL.4 For explicit information,
we ask for every formula in an information set to be true in the corresponding world,
and for rules we define a translation TR that maps each rule to an implication of the
form TR(ρ) := ∧

prem(ρ) → conc(ρ), and we ask for this translation to be true in
the correspondent world.

Definition 2.5 (The class EIK ) We denote by EIK the class of models in EI satisfying
equivalence (R is an equivalence relation), truth for formulas (for every world w, if
γ ∈ Y (w), then (M, w) � γ ) and truth for rules (for every world w, if ρ ∈ Z(w),
then (M, w) � TR(ρ)).

From now on, we will use the term “information” for the general case of informa-
tion (that is, models in EI) and we will use the term “knowledge” for true information
(that is, models in EIK ).

Theorem 2 (Sound and complete logic for EI w.r.t. EIK ). The logic EIK , extending
EI with axioms of Table2, is sound and strongly complete for the language EI with
respect to models in EIK .

Proof Soundness is again simple. Completeness is proved by showing that the canoni-
cal model for EIK satisfies equivalence (from axioms T, 4, 5), truth for formulas (from
TthI ) and truth for rules (from TthR). �

3 For literature about information that can be true or false, we refer to Dretske (1981) and Floridi (2005).
4 Given our understanding of knowledge, we actually just need for the relation to be reflexive. This is
enough to make the information true.
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Table 2 Extra axioms for the
logic EIK

(T ) � �ϕ → ϕ (TthI ) � I γ → γ

(4) � �ϕ → ��ϕ (TthR) � L ρ → TR(ρ)
(5) � ¬�ϕ → �¬�ϕ

Axioms T, 4 and 5 express properties of implicit knowledge: it is true (T ) and it has
the positive and negative introspection properties (4 and 5); axioms TthI and TthR
indicate that the agent’s explicit knowledge about formulas and rules is also true. Note
that from CohI(I γ → �I γ ) and TthI(I γ → γ ) we get I γ → �γ : whatever is
part of the agent’s explicit knowledge belongs to her implicit knowledge too.

Now we turn our attention to dynamics of explicit and implicit information. In the
following sections, we extend the framework to describe inference and update.

3 Inference

The agent can extend her explicit information by using rules. Intuitively, a rule (�, γ )
indicates that if every δ ∈ � is true, so is γ . However, so far, we have not stated
any restriction on how the agent can use a rule. She can use it to get the conclusion
without having all the premises, or even deriving the premises whenever she has the
conclusion. In the previous section we focused on true-information models; in the
same spirit, this section deals with truth-preserving inference.

3.1 A particular case: truth-preserving inference

The inference process adds formulas to the information set. In order to preserve truth,
we restrict the way in which the rule can be applied.

Definition 3.1 (Deduction operation). Let M = 〈W, R, V,Y, Z〉 be a model in EI,
and let σ be a rule in R. The model Mσ = 〈W, R, V,Y ′, Z〉 differs from M just in
the information set function, which is given by

Y ′(w) :=
{

Y (w) ∪ {conc(σ )} if prem(σ ) ⊆ Y (w) and σ ∈ Z(w)
Y (w) otherwise

The conclusion of the rule is added to a world just when all the premises and the rule
are already present. This allows us to prove that, in particular, the deduction operation
preserves models in EIK .

Proposition 1 Let σ be a rule. If M is a model in EIK , so is Mσ .

Proof Equivalence and both properties of rules are immediate since neither the acces-
sibility relation nor the rule set function are modified. The properties of formulas can
be verified easily. �

The language EID extends EI by closing it under deduction modalities 〈Dσ 〉 for
σ a rule: if ϕ is a formula in EID, so is 〈Dσ 〉ϕ. These new formulas are read as
there is a deductive inference with σ after which ϕ is the case. Define the abbreviation
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Preσ ≡ I prem(σ ) ∧ L σ where, given � a finite set of formulas in I, we write I �
for

∧
γ∈� I γ . The semantics for deduction formulas is given as follows.

Definition 3.2 Let M be a model in EI, and take a world w in it.

(M, w) � 〈Dσ 〉ϕ iff (M, w) � Preσ and (Mσ , w) � ϕ

that is, 〈Dσ 〉ϕ holds atw iff atw the agent explicitly has σ and its premises, and after
applying the rule σ , the formula ϕ holds. The formula [Dσ ]ϕ is given by [Dσ ]ϕ ↔
¬〈Dσ 〉 ¬ϕ, as usual.

For an axiom system, Proposition 1 tells us that the operation preserves models
in EIK , so we can rely on the logic EIK . We provide reduction axioms, expressing
how deduction operations affect the truth-value of formulas of the language. This is
a standard DEL technique, and we refer to van Benthem and Kooi (2004) for a deep
explanation.

Theorem 3 (Sound and complete logic for EID w.r.t. EIK ). The logic EIK D, extend-
ing EIK with axioms and rules of Table3, is sound and strongly complete for the
language EID with respect to models in EIK .

Proof Soundness is just as before. Strong completeness comes from the fact that, by
a repetitive application of the new axioms, any deduction formula can be reduced to
a formula in EI, for which EIK is strongly complete with respect to EIK . �

The novel axioms of Table 3 are those expressing how information and rule sets are
affected by deduction. From them, we can derive formulas like (1) 〈Dσ 〉� → Preσ ,
(2) I γ → [Dσ ] I γ , (3) [Dσ ] I conc(σ ) and (4) 〈Dσ 〉 I γ → I γ (for γ �= conc(σ )),
indicating that in order to apply a rule we need the premises and the rule (1), that
after applying a rule we preserve previous explicit knowledge (2) and that explicit
knowledge is increased only by the rule’s conclusion (3) and (4).

3.2 Dynamics of deduction

Just as the agent’s explicit knowledge changes, her inferential abilities can also change.
This may be because she is informed about a new rule (as with the updates of Sect. 4),
but it may be also because she builds new rules from the ones she already has. For
example, from the rules {p} ⇒ q and {q} ⇒ r , we can derive the rule {p} ⇒ r . It
takes one step to derive it, but it will save intermediate steps later.

Table 3 Axioms and rules for deduction operation formulas

� 〈Dσ 〉� ↔ Preσ � 〈Dσ 〉 p ↔ (Preσ ∧ p)
� 〈Dσ 〉 ¬ϕ ↔ (Preσ ∧ ¬〈Dσ 〉ϕ) � 〈Dσ 〉 (ϕ ∨ ψ) ↔ (〈Dσ 〉ϕ ∨ 〈Dσ 〉ψ)
� 〈Dσ 〉♦ϕ ↔ (Preσ ∧ ♦〈Dσ 〉ϕ)
� 〈Dσ 〉 I conc(σ ) ↔ Preσ � 〈Dσ 〉 L ρ ↔ (Preσ ∧ L ρ)
� 〈Dσ 〉 I γ ↔ (Preσ ∧ I γ ) for γ �= conc(σ )
From � ϕ, infer � [Dσ ]ϕ
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In fact the example, a kind of transitivity, represents the application of Cut over
the mentioned rules. In general, inference relations can be characterized by structural
rules, indicating how to derive new rules from the ones already present. In the case of
deduction, we have

Reflexivity:
ϕ ⇒ ϕ

Contraction:
ψ, χ, ξ, χ, φ ⇒ ϕ

ψ, χ, ξ, φ ⇒ ϕ

Permutation:
ψ, χ, ξ, φ ⇒ ϕ

ψ, ξ, χ, φ ⇒ ϕ
Monotonicity:

ψ, φ ⇒ ϕ

ψ, χ, φ ⇒ ϕ

Cut:
χ ⇒ ξ ψ, ξ, φ ⇒ ϕ

ψ, χ, φ ⇒ ϕ

Each time a structural rule is applied, we get a rule that can be added to the rule
set. Note that the application of Contraction or Permutation does not yield a new rule,
since we are already considering the premises of a rule as a set.5 On the other hand,
Reflexivity, Monotonicity and Cut can produce rules that were not present before.

Definition 3.3 (Structural operations). Let M = 〈W, R, V,Y, Z〉 be a model in EI.
The structural operations (·)Ref(δ), (·)Mon(δ,ς) and (·)Cut(ς1,ς2), return a model that
differs from M just in the rule set function.

Reflexivity Let δ be a formula in I and consider the rule ςδ = ({δ}, δ). The new rule
set function is given by Z ′(w) := Z(w) ∪ {ςδ}.
Monotonicity Let δ be a formula in I and let ς be a rule over I. Consider the rule
ς ′ = (prem(ς)∪{δ}, conc(ς)), extending ς by adding δ to its premises. The new rule
set function is given by

Z ′(w) :=
{

Z(w) ∪ {ς ′} if ς ∈ Z(w)
Z(w) otherwise

Cut Let ς1, ς2 be rules over I such that the conclusion of ς1 is contained in the
premises of ς2. Consider the rule ς ′ with (prem(ς2) − {conc(ς1)}) ∪ prem(ς1) as
premises and conc(ς2) as conclusion. The new rule set function is given by

Z ′(w) :=
{

Z(w) ∪ {ς ′} if {ς1, ς2} ⊆ Z(w)
Z(w) otherwise

The three structural operations preserve models in EIK .

Proposition 2 If M is a model in EIK , then MRef(δ),MMon(δ,ς) and MCut(ς1,ς2) are
also in EIK .

5 This is not to say that order or multiplicity of inference steps are not relevant; given our dynamic approach,
they definitely matter, as changes in order or number of inference steps can yield different results. We just
mean that order and multiplicity of premises are irrelevant because we represent them as a set, and therefore
the two mentioned operations do not yield new rules.
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Proof Equivalence and both properties of formulas are immediate. Coherence for
rules follows from the definitions and coherence for rules of M . For truth for rules,
see Sect. A.1. �

The language EID∗ extends EID by closing it under modalities for structural oper-
ations: if ϕ is in EID∗, so are 〈Ref δ〉ϕ, 〈Monδ,ς 〉ϕ and 〈Cutς1,ς2〉ϕ. The formulas
are read as “there is a way of applying the structural operation after which ϕ is the
case”. By expressing the precondition of each operation with PreMon(δ,ς) ≡ L ς and
PreCut(ς1,ς2) ≡ L ς1 ∧ L ς2 ∧ (I prem(ς2) → I conc(ς1)) (reflexivity can be applied
in any situation), the semantics of the new formulas is given as follows.

Definition 3.4 Let M be a model in EI, and take a world w in it.

(M, w) � 〈Ref δ〉ϕ iff (MRef(δ), w) � ϕ

(M, w) � 〈Monδ,ς 〉ϕ iff (M, w) � PreMon(δ,ς) and (MMon(δ,ς), w) � ϕ

(M, w) � 〈Cutς1,ς2〉ϕ iff (M, w) � PreCut(ς1,ς2) and (MCut(ς1,ς2), w) � ϕ

Just as before, the boxed versions of the structural operation formulas are defined as
the dual of their correspondent diamond versions.

To provide axioms for the new formulas, Proposition 2 allows us to rely on the logic
EIK once again.

Theorem 4 (Sound and complete logic for EID∗ w.r.t. EIK ). For uniformity, define
the precondition of the reflexivity operation as PreRef(δ) ≡ �. The logic EIK DS,
extending EIK D with axioms and rule of Table 4 (where STR stands for either Ref,
Mon or Cut and ς ′ is the correspondent new rule), is sound and strongly complete for
the language EID∗ with respect to models in EIK .

The relevant axioms of Table 4 are those expressing how rule sets are affected by
structural operations, and from them we can derive validities analogous to those given
at the end of Sect. 3.1 for the case of information sets and deduction.

In Table 5 we provide validities expressing how structural operations affect deduc-
tion at models of EIK . For each structural operation, the first formula indicates that
the operation does not affect deduction with a rule different from the new one, and the
second formula indicates how deduction with the new rule changes. For this last case,
the formula covers two possibilities: the new rule was already in the original rule set
(hence just deduction is needed) or it was not (hence we ask for some requisites). As
an example, the second formula for Mon indicates that a sequence of monotonicity
and then deduction with the new rule ς ′ is equivalent to a single deduction with ς ′

Table 4 Axioms and rules for reflexivity, monotonicity and cut formulas

� 〈STR〉 � ↔ PreSTR � 〈STR〉 p ↔ (PreSTR ∧ p)
� 〈STR〉 ¬ϕ ↔ (PreSTR ∧ ¬〈STR〉ϕ) � 〈STR〉 (ϕ ∨ ψ) ↔ (〈STR〉ϕ ∨ 〈STR〉ψ)
� 〈STR〉 ♦ϕ ↔ (PreSTR ∧ ♦〈STR〉ϕ)
� 〈STR〉 L ς ′ ↔ PreSTR � 〈STR〉 I γ ↔ (PreSTR ∧ I γ )
� 〈STR〉 L ρ ↔ (PreSTR ∧ L ρ) for ρ �= ς ′
From � ϕ, infer � [STR]ϕ
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Table 5 Formulas relating structural operations and deduction

Reflexivity with ςδ the rule ({δ}, δ)
• 〈Ref δ〉 〈Dσ 〉ϕ ↔ 〈Dσ 〉 〈Ref δ〉ϕ for σ �= ςδ
• 〈Ref δ〉 〈Dςδ 〉ϕ ↔ (〈Dςδ 〉ϕ ∨ (I δ ∧ 〈Ref δ〉ϕ))
Monotonicity with ς ′ the rule (prem(ς) ∪ {δ}, conc(ς))
• 〈Monδ,ς 〉 〈Dσ 〉ϕ ↔ 〈Dσ 〉 〈Monδ,ς 〉ϕ for σ �= ς ′
• 〈Monδ,ς 〉 〈Dς ′ 〉ϕ ↔ (〈Dς ′ 〉ϕ ∨ (I δ ∧ L ς ∧ 〈Dς 〉 〈Monδ,ς 〉ϕ))
Cut with ς ′ the rule ( (prem(ς2)− {conc(ς1)}) ∪ prem(ς1), conc(ς2) )

• 〈Cutς1,ς2 〉 〈Dσ 〉ϕ ↔ 〈Dσ 〉 〈Cutς1,ς2 〉ϕ for σ �= ς ′
• 〈Cutς1,ς2 〉 〈Dς ′ 〉ϕ ↔
(〈Dς ′ 〉ϕ ∨ (I prem(ς1) ∧ L ς1 ∧ (I conc(ς1) → 〈Dς2 〉 〈Cutς1,ς2 〉ϕ)))

(if ς ′ was already present) or to a sequence of deduction with ς and then monotonicity
with the agent having explicitly knowledge about the added premise δ and the original
rule ς . See Sect. A.2 for comments about the proofs.

4 Update

So far, our language can express just internal dynamics. We can express how deductive
steps modify explicit knowledge, and even how structural operations extends the rules
the agent can apply, but we cannot express how knowledge is affected by external
interaction. Here, we add the other fundamental source of information; in this section,
we extend the language to express updates.

Updates are the result of the agent’s social nature. We get new information because
of interaction with our environment; information that does not necessarily follow from
what we explicitly have. In Public Announcement Logic (PAL), an announcement is
interpreted as an operation, removing worlds where the announcement does not hold.
In our case, we distinguish different kinds of knowledge: implicit knowledge (given
by the accessibility relation) and explicit knowledge (the information sets). We can
define operations affecting explicit and implicit knowledge in different forms, and
therefore expressing different ways the agent processes external information. Here,
we present one of the possible definitions, what we call explicit observations.

4.1 True explicit observations

The previously defined operations just add formulas or rules to the corresponding
sets, but do not modify the accessibility relation and therefore do not affect implicit
knowledge. True explicit observations, on the other hand, do modify the accessibility
relation by removing worlds where the observation does not hold. With respect to
explicit knowledge, they always add the observation (a formula or a rule).

Definition 4.1 (Explicit observation operation). Take a model M = 〈W, R, V,Y, Z〉
in EI, and letχ be a formula of (a rule based on) I. The model Mχ !=〈W ′, R′,V ′,Y ′,Z ′〉
is given by
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• W ′ := {w ∈ W |(M, w) � χ } (W ′ := {w ∈ W |(M, w) � TR(χ) }),
• R′ := R ∩ (W ′ × W ′) • V ′(w) := V (w) for every w ∈ W ′

• Y ′(w) := Y (w) ∪ {χ} (Y ′(w) := Y (w)) for every w ∈ W ′,
• Z ′(w) := Z(w) (Z ′(w) := Z(w) ∪ {χ}) for every w ∈ W ′.

Proposition 3 Let M be a model in EIK and let χ be a formula (a rule). If M is in
EIK , so is Mχ !.

Proof Equivalence is immediate as well as the properties for rules (formulas), since
Z(Y ) is not affected in the remaining worlds. Coherence for formulas (rules) holds
because χ is added uniformly, and truth for formulas (rules) holds because of the
definition of W ′. �

The language EID∗! closes EID∗ under modalities 〈χ !〉 for explicit observations.
The new formulas are read as “there is a way of explicitly observing χ after which ϕ
is the case”. In case χ is a formula, define its precondition as Preχ ! ≡ χ ; in case χ is
a rule, define its precondition as Preχ ! ≡ TR(χ). The semantics for the new formulas
is given as follows.

Definition 4.2 Let M be a model in EI, and take a world w in it.

(M, w) � 〈χ !〉ϕ iff (M, w) � Preχ ! and (Mχ !, w) � ϕ

The formula [χ !]ϕ is defined as the dual of 〈χ !〉ϕ, as usual.

Theorem 5 (Sound and complete logic for EID∗! w.r.t. EIK ). The logic EIK DSO,
extending EIK DS with axioms and rule of Table6, is sound and strongly complete for
EID∗! with respect to models in EIK .

The relevant axioms are those indicating how explicit knowledge about formulas
and rules is affected: the agent always knows the observation explicitly after observing
it, and any other explicit knowledge was already present before the observation. The
axioms look similar to those for deduction and structural operations, but there is an
important difference: the precondition. While in the case of deduction and structural
operations the agent needs to have enough explicit knowledge to extract the new piece,

Table 6 Axioms and rules for explicit observation formulas

� 〈χ !〉 � ↔ Preχ ! � 〈χ !〉 p ↔ (Preχ ! ∧ p)
� 〈χ !〉 ¬ϕ ↔ (Preχ ! ∧ ¬〈χ !〉ϕ) � 〈χ !〉 (ϕ ∨ ψ) ↔ (〈χ !〉ϕ ∨ 〈χ !〉ψ)
� 〈χ !〉♦ϕ ↔ (Preχ ! ∧ ♦〈χ !〉ϕ)
If χ is a formula:
� 〈χ !〉 I χ ↔ Preχ ! � 〈χ !〉 L ρ ↔ (Preχ ! ∧ L ρ)
� 〈χ !〉 I γ ↔ (Preχ ! ∧ I γ ) for γ �= χ

If χ is a rule:
� 〈χ !〉 L χ ↔ Preχ ! � 〈χ !〉 I γ ↔ (Preχ ! ∧ I γ )
� 〈χ !〉 L ρ ↔ (Preχ ! ∧ L ρ) for ρ �= χ

From � ϕ, infer � [χ !]ϕ
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Table 7 Formulas relating explicit observations and deduction

If χ is a formula
• 〈χ !〉 〈Dσ 〉ϕ ↔ 〈Dσ 〉 〈χ !〉ϕ if χ /∈ prem(σ )
• 〈χ !〉 〈Dσ 〉ϕ ↔ (〈Dσ 〉 〈χ !〉ϕ ∨ (I χ → 〈Dσ 〉 〈χ !〉ϕ)) if χ ∈ prem(σ )
If χ is a rule
• 〈χ !〉 〈Dσ 〉ϕ ↔ 〈Dσ 〉 〈χ !〉ϕ if χ �= σ

• 〈χ !〉 〈Dχ 〉ϕ ↔ (〈Dχ 〉 〈χ !〉ϕ ∨ (L χ → 〈Dχ 〉 〈χ !〉ϕ)) if χ = σ

observation is a more radical informational process: it just need for the observation to
be true (truth-preserving).

To finish this section, Table 7 presents formulas indicating how the two informa-
tional processes considered in this paper, inference and update, interact with each
other.6 Together with Table 5, it provides principles about how external and internal
dynamics intertwine when we process information, as it will be shown when revising
the restaurant example in Sect. 6.

5 Comparison with other works

The present work develops a representation of explicit/implicit information in order to
describe the way different processes affect them. Other works have proposed similar
frameworks; this section provides a brief comparison between some of them and our
proposal.

5.1 Fagin–Halpern’s logics of awareness

Fagin and Halpern presented in 1988 a logic of general awareness (LA). The language
is a set of atomic propositions P closed under negation, conjunction and the operators
Ai (Aiϕ is read as “the agent i is aware of ϕ”) and Li (Liϕ is read as “the agent i
implicitly believes that ϕ”).

The semantic model is a tuple M = (W,Ai ,Li , V ) with (W,Li , V ) a Kripke
model (Li a serial, Transitive and Euclidean relation) and Ai a function assigning a
set of formulas of LA to each agent i in each world (her awareness set). Semantics
for atomic propositions, negations, conjunctions and Li (a box modal operator) are
standard; for formulas of the form Ai ϕ we look into the awareness set.

The main difference between LA and our approach is the dynamics. First, our
semantic model has a rule set function, indicating the processes the agent can use to
increase her explicit information. It is not that she knows that after a rule application
her information set will change; it is that she knows the process that leads the change.
Second, LA does not express changes in awareness sets (though later the authors add a
relation over W to represent steps in time). Our approach uses inference as the process
that extends explicit information, and represents it as a model operation modifying
information sets. Third, the language of our information sets is less expressive than the

6 The formulas cover two cases: deduction not using the new knowledge and deduction using it. See
Sect. A.3 for comments about the proofs.
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one of the awareness sets, but it allows us to define updates for representing external
dynamics, a process not considered in LA.

5.2 Duc’s dynamic epistemic logic

Duc proposed in 1997, 2001 a dynamic epistemic logic to reason about agents that are
neither logically omniscient nor logically ignorant. He defined the language LB DE ,
based on formulas of the form Kγ (“γ is known”) for γ a propositional formula, and
closed under negation, conjunction and the diamond modal operator 〈F〉 (“ϕ is true
after some course of thought ”). Note how we cannot talk about the real world.

The models are tuples (W, R,Y ) with R a relation over W and Y a function assign-
ing a set of propositional formulas to each world. The definition asks for properties
guaranteeing that a world where the agent is logically omniscient will be eventually
reached via R-transitions. Semantics for negation, conjunctions and are standard; for
Kγ formulas we look into the sets of formulas of the corresponding world and the
operator 〈F〉 is interpreted as a diamond with R.

The framework does not represents implicit information and, while it does express
changes in explicit information, it does it with a relation between worlds, different
from our model operation approach. Also, the framework does not represent external
dynamics, like our explicit observations.

5.3 Jago’s logic for resource-bounded agents

In 2006a, 2006b, Jago presented a logic for resource-bounded agents. His semantic
model extends Kripke models with a set of formulas and a set of rules in each possi-
ble world. He also considered rule-based inference as the mechanism for increasing
explicit information.

There are two main differences in the approaches. First, Jago represents inference
as a relation between worlds. Extending what we said before, our model-operation
representation gives us a functional treatment of inference, while the relational rep-
resentation forces us to ask for properties of the relation to get this behaviour. Some
properties may need a more powerful language to be expressed (e.g., the uniqueness
of the result of a rule application) and some others may be not preserved after updates
(e.g., the existence of a world resulting from an available rule application). The second
one is our external dynamics, not considered in Jago’s work.

5.4 van Benthem’s acts of realization

In van Benthem (2008b), the author considers a language similar to our EI but with-
out formulas about rules. The semantic model is of the form (W,W acc,∼, V ) where
(W,∼, V ) is a Kripke model and W acc is a set of access worlds: pairs (w, X) with
w ∈ W and X a set of factual formulas (the access set). Formulas are interpreted at
access worlds in the usual way, with Iγ true at (w, X) iff γ ∈ X .
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The author defines two model operations: implicit observation (removing worlds as
an announcement in PAL) and explicit observation (removing worlds and also adding
the formula to the access sets of the remaining ones, like our explicit information
operation). Then, he notices that the two operations overlap in their effects on the
model, and proposes two more “orthogonal” operations: one simply removing worlds
(“bare observation”) and another one simply adding true formulas to access sets (an
“act of realization”). This act of realization is more general than our deduction: any
formula belonging to the implicit information can be added to the access set; in partic-
ular, validities, can be added at any point. Our framework allows us to add a formula
only if it is the conclusion of an applicable rule.

6 Final remarks and further work

Let us represent the restaurant example with our framework. The initial setting can be
given by a model M with six possible worlds, each one of them indicating a possible
distribution of the dishes, and all of them indistinguishable from each other.

For explicit knowledge, consider atomic propositions of the form pd where p stands
for a person (father, mother or you) and d stands for some dish (meat, fish or vege-
tarian). The waiter explicitly knows each person will get only one dish, so we can
put the rules ρ1 : {yf} ⇒ ¬yv, ρ2 : {fm} ⇒ ¬fv and similar ones in each world.
Moreover, he explicitly knows that each dish corresponds to one person, so the rule
σ : {¬yv,¬fv} ⇒ mv can be also added, among many others. Letw be the real world,
where yf, fm and mv are true. The formula ¬I mv ∧ ¬�mv, indicating that the waiter
does not know (neither explicitly nor implicitly) that your mother has the vegetarian,
is true at w.

While approaching the table, the waiter can increase the rules he knows. This does
not give him new explicit facts, but it will allow him to infer faster later. From Cut over
ρ1 and σ , he gets ς1 : {yf,¬fv} ⇒ mv. Then, 〈Cutρ1,σ 〉 ¬I mv and 〈Cutρ1,σ 〉 L ς1
are also true at w. Moreover, he can apply Cut again, this time with ρ2 and ς1,
obtaining the rule ς2 : {yf, fm} ⇒ mv and making 〈Cutρ1,σ 〉 〈Cutρ2,ς1〉 ¬I mv and
〈Cutρ1,σ 〉 〈Cutρ2,ς1〉 L ς2 true at w.

After the answer to the question “Who has the fish?”, the waiter explicitly knows
that you have the fish. Four possible worlds are removed, but he still does not know that
your mother has the vegetarian. (We have 〈Cutρ1,σ 〉 〈Cutρ2,ς1〉 〈yf!〉 (¬I mv ∧ ¬�mv)

true at w).
Then he asks “Who has the meat?”, and the answer removes one of the remaining

worlds. Now he knows implicitly that your mother has the vegetarian dish and, more-
over, he is able to infer it and add it to his explicit knowledge:

(M, w) � 〈Cutρ1,σ 〉 〈Cutρ2,ς1〉 〈yf!〉 〈fm!〉 (�mv ∧ 〈Dς2〉 I mv)

Two structural operations, two explicit observations and one inference are all that
the waiter needs.

The proposal can be extended in several ways. The first one is by extending the
internal language beyond the propositional one. As we mentioned, we chose it because
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it makes the definition of updates with true information (Sect. 4) possible. In general,
a true observation in the full explicit/implicit information language cannot be simply
added to an information set, since it may become false after being observed (witness
Moore sentences, like p ∧ ¬�p). A first attempt would be to keep in the new infor-
mation set those formulas that are true in the new model, but the definition would face
circularity: the new information set should contains just the formulas that are still true,
but in order to decide whether an explicit information formula I γ is true or not, we
need this new information set. A further analysis providing a solution to this limitation
will greatly increase the expressivity of the framework.

We have analyzed the case in which the information is true, but this is not the general
situation. By removing such restriction we can talk about beliefs (information no nec-
essarily true). This would allow us to explore dynamics of these different notions (van
Benthem 2007 provides an account for belief revision and Velázquez-Quesada 2009
provides dynamics for different notions of information). Moreover, besides truth-pre-
serving inference, there are other inferences, like default reasoning or abduction. We
can also represent them in order to study how all of them work together.

For the external dynamics, our finer representation of knowledge allows us to define
different kinds of observations. Besides our explicit observations, we can also define
implicit ones. A more expressive internal language would allow us to represent more
kinds of observations, all of them differing in how introspective is the agent about the
observation.

In the context of agent diversity (Liu 2008), our framework allows us to repre-
sent agents having different rules and therefore different reasoning abilities. The idea
works also for external dynamics: agents may have different observational powers. It
will be interesting to explore how agents with different reasoning and observational
abilities interact.
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Appendix

A Technical appendix

A.1 Closure of structural operations

We will prove the truth for rules property for the three operations. Note that in the
three cases it is enough to show that the rules are truth-preserving in M because the
truth-value of the translation depends just on the valuation, which is preserved by
the operations.
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Reflexivity Recall that ςδ = ({δ}, δ) and pick any ρ ∈ Z ′(w). If ρ is already in Z(w),
we have (M, w) � TR(ρ) since M is in EIK . Otherwise, ρ is ςδ , but we obviously
have (M, w) � δ → δ.
Monotonicity Recall that ς ′ = (prem(ς) ∪ {δ}, conc(ς)) and pick any ρ ∈ Z ′(w).
If ρ is already in Z(w), we have (M, w) � TR(ρ). Otherwise, ρ is ς ′ and we should
have ς ∈ Z(w); therefore, we have (M, w) �

∧
prem(ς) → conc(ς) and hence

(M, w) � (
∧

prem(ς) ∧ δ) → conc(ς).
Cut Recall that ς ′ = ((prem(ς2)− {conc(ς1)})∪ prem(ς1) , conc(ς2)) and pick any
ρ ∈ Z ′(w). If ρ ∈ Z(w), we have (M, w) � TR(ρ) since M is in EIK . Otherwise, ρ
is ς ′ and we have {ς1, ς2} ⊆ Z(w).
Let

∧
prem(ς ′) be true at w in M; then, every premise of ς ′ is true at w in M. This

includes every premise of ς1 and every premise of ς2 except conc(ς1). But since every
premise of ς1 is true at w in M and ς1 is in Z(w), truth for rules of M tells us that
conc(ς1) is true at w in M and hence every premise of ς2 is true at w in M . Now,
since ς2 is in Z(w), truth for rules of M tell us that conc(ς2), that is, conc(ς ′), is true
at w in M . Then we have (M, w) � TR(ς ′).

A.2 Structural operations and deduction

The validity of the formulas follows from the bisimilarities between models stated
below. In our case, the bisimulation concept extends the standard one by asking for
related worlds to have the same information and rule set: given two models M1 =
〈W1, R1, V1,Y1, Z1〉 and M2 = 〈W2, R2, V2,Y2, Z2〉, a non empty relation B ⊆
(W1 × W2) is a bisimulation if and only if it is a standard bisimulation between
〈W1, R1, V1〉 and 〈W2, R2, V2〉 and, if Bw1w2, then Y1(w1) = Y2(w2) and Z1(w1) =
Z2(w2).

Let M = 〈W, R, V,Y, Z〉 be a model in EIK , and take w ∈ W . Models of the
form MSTRσ are the result of applying first the structural operation STR and then the
deduction operation with rule σ , and analogously for models of the form Mσ STR. In
all cases, the bisimulation is the identity relation over worlds reachable from w.

Reflexivity. Let ςδ be the rule ({δ}, δ):
• If σ �= ςδ , then (MRef(δ)σ , w) � (MσRef(δ), w).
• If ςδ ∈ Z(w), then (MRef(δ)ςδ

, w) � (Mςδ , w).
• If δ ∈ Y (w), then (MRef(δ)ςδ

, w) � (MςδRef(δ), w).
Monotonicity. Let ς ′ be the rule (prem(ς) ∪ {δ}, conc(ς)):
• If σ �= ς ′, then (MMon(δ,ς)σ , w) � (MσMon(δ,ς), w).
• If ς ′ ∈ Z(w), then (MMon(δ,ς)ς ′ , w) � (Mς ′ , w).
• If δ ∈ Y (w) and ς ∈ Z(w), then (MMon(δ,ς)ς ′ , w) � (MςMon(δ,ς), w).
Cut. Let ς ′ be the rule ( (prem(ς2)− {conc(ς1)}) ∪ prem(ς1), conc(ς2) ):
• If σ �= ς ′, then (MCut(ς1,ς2)σ , w) � (MσCut(ς1,ς2), w).• If ς ′ ∈ Z(w), then (MCut(ς1,ς2)ς ′ , w) � (Mς ′ , w).
• If (prem(ς1) ∪ {conc(ς1)}) ∈ Y (w) and ς1 ∈ Z(w), then

(MCut(ς1,ς2)ς ′ , w) � (Mς2 Cut(ς1,ς2)
, w).
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The involved operations (structural ones and deduction) preserve worlds, accessi-
bility relations and valuations. To show that the identity relation over worlds reachable
from w is a bisimulation, we just need to show that they have the same information
and rule set in both models.

Consider as an example the third bisimilarity for monotonicity. For information
sets, take any γ in the information set of w at MMon(δ,ς)ς ′ ; by definition, either it was
already in that of w at MMon(δ,ς) or else it was added by the deduction operation. In
the first case, it is in w at M (structural operations do not modify information sets);
then it is also in w at Mς and hence it is in w at MςMon(δ,ς). In the second case, γ
should be conc(ς ′), but then we have the premises of ς ′ (and hence those of ς ) in w
at MMon(δ,ς). Then, they are already in w at M and, by hypothesis, we have ς in w at
M , so conc(ς) = conc(ς ′) is in w at Mς and hence it is in w at MςMon(δ,ς).

For the other direction, take γ in w at MςMon(δ,ς). Then it is in w at Mς and there-
fore either it was already inw at M or else it was added by the deduction operation. In
the first case, γ is preserved through the monotonicity and the deduction operations,
and therefore it is in w at MMon(δ,ς)ς ′ . In the second case, γ should be conc(ς), and
then we should have prem(ς) and ς in the correspondent sets ofw at M . By hypothesis
we have δ in w at M , so we have all the premises of ς ′ in w at M and therefore they
are also in w at MMon(δ,ς). Since we have ς in w at M , we have ς ′ in w at MMon(δ,ς)
too. Hence, we have conc(ς ′) = conc(ς) in w at MMon(δ,ς)ς ′ . The case for rules is
similar.

Now suppose a world u is reachable from w through the accessibility relation at
MMon(δ,ς)ς ′ . Since neither the relations nor the worlds are modified by the operations,
u is reachable from w at M and therefore u is reachable from w at MςMon(δ,ς), too.
Now we use the coherence properties: since δ ∈ Y (w) and ς ∈ Z(w), we have δ and
ς in the corresponding sets of u, and then we can apply the argument used for w to
show that u has the same information and rule set on both models.

A.3 Explicit observation and deduction

Just as the case of structural operations and deduction, the validity of the formulas
follows from the bisimilarities stated below.

If χ is a formula: • If χ /∈ prem(σ ), then (Mχ !σ , w) � (Mσ χ !, w).
• If χ ∈ prem(σ ) and χ ∈ Y (w), then (Mχ !σ , w) � (Mσ χ !, w)

If χ is a rule: • If χ �= σ , then (Mχ !σ , w) � (Mσ χ !, w).
• If χ = σ and χ ∈ Z(w), then (Mχ !σ , w) � (Mσ χ !, w).

The proof is similar to the case of structural operations and deduction, keeping in
mind that observations remove worlds.
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