
EPISTEMIC DYNAMICS AND PROTOCOL INFORMATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PHILOSOPHY

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Tomohiro Hoshi

June 2009

c© Copyright by Tomohiro Hoshi 2009

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Johan van Benthem) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Alexandru Baltag)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Solomon Feferman)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Krista Lawlor)

Approved for the University Committee on Graduate Studies.

iii

For Kazuko and Kazumi Hoshi

iv

Acknowledgements

v

Contents

Acknowledgements v

Introduction 1

I Formal Framework 17

1 Merging Frameworks 18

1.1 Epistemic Logic . 19

1.2 Dynamic Epistemic Logic . 22

1.2.1 Public Announcement Logic 23

1.2.2 Event Models and Product Update 25

1.2.3 Protocol Information in DEL? 31

1.3 Epistemic Temporal Logic . 32

1.3.1 Branching-Time Tree Structure 33

1.3.2 Epistemic Dynamics in ETL? 36

1.4 Merging DEL and ETL . 36

1.4.1 Protocols . 37

1.4.2 DEL-Generated ETL Models 38

1.5 Comparing DEL and ETL . 46

1.5.1 Reinterpreting DEL-Operators as ETL-Operators 46

vi

1.5.2 Representation Theorem . 47

1.6 Conclusion and Discussion . 54

2 Logics 56

2.1 Temporal Public Announcement Logic 58

2.2 Semantic Results . 60

2.2.1 PAL and TPAL . 60

2.2.2 Simple Observations . 62

2.2.3 Model Normalization . 65

2.3 Complete Axiomatization . 69

2.3.1 Axiomatic System . 70

2.3.2 Completeness Proof . 72

2.3.3 Decidability via Finite Completeness Proof 77

2.3.4 Common Knowledge . 81

2.4 Other Results in TPAL . 85

2.4.1 Uniform Protocols . 86

2.4.2 Embedding PAL into TPAL 88

2.5 Temporal Dynamic Epistemic Logic 91

2.5.1 Axiomatization of TDEL . 91

2.5.2 Completeness Proof . 93

2.5.3 TDEL Restricted to Subclasses of Protocols 96

2.5.4 Decidability . 97

2.5.5 Other Epistemic Operators? 98

2.6 Generalization of Other Results in TDEL 99

2.6.1 Normalization . 99

2.6.2 Uniform Protocols . 100

2.6.3 Embedding DEL into TDEL 102

vii

2.7 Conclusion and Discussion . 103

3 Extensions 105

3.1 Quantifying over Public Announcements 106

3.1.1 Temporal Arbitrary Public Announcement Logic 107

3.1.2 Semantic Results . 110

3.1.3 Axiomatization . 113

3.1.4 Soundness . 115

3.1.5 Completeness . 120

3.2 Describing Past . 124

3.2.1 TPAL with Labelled Past Operators 125

3.2.2 Semantic Results . 126

3.2.3 Axiomatization . 128

3.2.4 Soundness Proof . 129

3.2.5 Completeness Proof . 133

3.3 Announcements about Announcements 134

3.3.1 Higher-Order Public Announcements 135

3.3.2 Generalization of PAL-Generated ETL Models 137

3.3.3 Representation Theorem . 141

3.3.4 Axiomatization . 142

3.4 Discussions: Extensions in TDEL . 143

3.4.1 Extending TDEL with Generalized Event Operators 143

3.4.2 Extending TDEL with Labelled Past Operators 148

3.4.3 Events with Future Preconditions 150

3.5 Conclusion and Discussion . 153

3.6 Appendix 1: Soundness of TAPAL . 154

3.6.1 Grafting . 154

viii

3.6.2 Soundness of R(�) . 156

3.6.3 The Soundness of R(�∗) . 158

3.7 Appendix 2: Completeness of TPAL over F(PAL+) 163

II Applications 166

4 Knowability Paradox 167

4.1 The Paradoxes of Knowability and Previous Solutions 171

4.1.1 Paradoxes . 171

4.1.2 Logical Revision . 173

4.1.3 Semantic Reformulation . 174

4.1.4 Syntactic Restriction . 174

4.1.5 Dynamic Epistemic Logic . 175

4.2 Verificationism without the Knowability Thesis 176

4.2.1 Proposal . 177

4.2.2 Hand’s Verificationist Account 180

4.3 TAPAL: Verificationistic Interpretation 181

4.3.1 Interpreting TAPAL . 182

4.3.2 Intended Semantics . 183

4.3.3 Deductive System . 186

4.4 Logical Analysis of the Knowability Thesis 187

4.4.1 New Knowability Thesis . 187

4.4.2 Fitch’s Paradox and the Idealism Problem 189

4.4.3 Comparison with Alternatives 190

4.5 Objections and Discussions . 192

4.5.1 The axiom R3: perfect recall and no miracle 193

4.5.2 In Some Sense Knowable . 194

ix

4.5.3 Logical Omniscience on Knowledge 195

4.5.4 Why Do We Have to Buy the Semantics? 195

4.6 Conclusion . 196

5 Logical Omniscience and Deductive Inference 198

5.1 Stalnaker on the Problem of Logical Omniscience 201

5.2 Explicit Knowledge and Deductive Inference 206

5.3 Formalizing Explicit Knowledge . 209

5.3.1 Reinterpretation of TPAL . 209

5.3.2 Dynamic Characterization of Explicit Knowledge 212

5.3.3 Epistemic Information and Protocol Information 214

5.3.4 Avoiding the Problem of Logical Omniscience 216

5.4 Formalizing Deductive Inference . 219

5.5 Logical Omniscience vs Epistemic Closure 220

5.5.1 Formalizing the Epistemic Closure Principle 222

5.5.2 Independence . 225

5.6 Concluding Discussions . 228

5.6.1 Comparison with Other Systems 229

5.6.2 Extension to Multi-agent with TDEL 231

Conclusion 233

Bibliography 236

x

List of Tables

xi

List of Figures

1 DEL . 8

2 ETL . 9

1.1 Epistemic Model . 21

1.2 Public Announcement . 24

1.3 Event Models . 26

1.4 Product Update . 28

1.5 ETL Models . 34

1.6 ETL Models Generated from Uniform Protocols 41

1.7 DEL-Generated ETL Models . 45

2.1 Model Normalization . 67

3.1 TAPAL-Model 1 . 110

3.2 TAPAL-Model 2 . 112

3.3 TAPAL-Model 3 . 113

3.4 Grafting Subtrees . 117

3.5 Expressivity of TPAL+P . 127

3.6 Lifting Histories by !>. 130

3.7 Generalizing PAL-Generated ETL Models 140

3.8 Extending TDEL 1 . 153

xii

4.1 TAPAL with Verificationist Interpretations 185

4.2 Counterexample against ` [!ϕ]ϕ . 189

4.3 Counterexample to LKT and WKT 192

5.1 Dynamic characterization of explicit knowledge 213

5.2 Counterexample . 216

5.3 Making a deductive inference . 220

5.4 Counterexample to EC . 223

5.5 Independence of MT and AMT from LI and VF 227

xiii

xiv

Introduction

Knowledge and beliefs play a crucial role in human endeavor. They represent the

world in certain ways and, as such, constitute an important basis for decisions about

our actions. For this reason, these concepts have been of great importance in philo-

sophical investigations and many disciplines of social sciences.

As various formal methods have been developed in the literature, the mathematical

representation of knowledge and beliefs has become a topic of increasing interest. An

individual knows or believes certain things based on the information she has. What

type of mathematical models can we use for precise representations of her information,

knowledge or beliefs? Also, when her environment involves other individuals, she may

know what others know and such a part of knowledge depends on knowledge that

others have. How can we represent the relations between her knowledge and others?

Moreover, she may obtain new information during the course of her activities by e.g.

observing certain facts in nature, interacting with other individuals, making inferences

from what she previously knows, etc. How can we capture those informational changes

in her knowledge?

Investigations on these questions have been addressed by the umbrella term, ‘in-

telligent interaction’, and have been studied in various fields of studies, including

philosophy, computer science, artificial intelligence, and theoretical economics. This

dissertation takes the formal tradition in the investigation of knowledge and beliefs

and develops a logical framework that describes intelligent interaction.

1

2

Reasoning about Knowledge

To illustrate the kind of phenomena that are described by systems of intelligent

interaction, let us start by the following example.

You and I come back from lunch to our office and see a deck of cards on

our desk with a card put face-down right next to the deck. Since it was

not there before we left for lunch, we become curious about what the card

is...

Now do you know what the card is? Of course, you don’t, since the card was

already put face-down when we came back. For the same reason, I do not know what

the card is. Moreover, having lunch outside and coming back together with you, I

know that you do not know what the card is. For the same reason, you do not know

that I know what the card is. By a similar reasoning, we can give more complex

descriptions about our states of knowledge: You know I know you do not know what

the card is, I know you do not know I know what the card is, etc.

This illustrates that highly complex knowledge attributions can be made even

in the simplest scenarios, let alone in more complex situations that the real world

often presents. Therefore, we may seek a precise method to analyze reasoning about

knowledge, which represents states of agents’ information in such a way that the

examination of statements about agents’ knowledge can be systematically carried

out.

Epistemic Dynamics

However this is not the end of the story. Intelligent interaction is a dynamic process

in which agents’ information changes over various sorts of informational events. For

instance, consider what could happen in our example above. Seeing the card being

3

placed on my desk, we may simply turn the card over. In that case, both you and I

will come to know what the card is. Or I may try to trick you and peep into the card

without showing it to you. In that case, I will come to know what the card is, while

you won’t. In general, various kinds of informational events can happen in the course

of intelligent interaction and agents’ informational states may change consequently.

In addition, the way that informational events change agents’ information can be

quite subtle. For illustration, consider another scenario in our example. Seeing the

card on the desk, I try to trick you, but, this time, I hide my curiosity and peep into

the card without making you realize that I do. In this case, I come to know what the

card is, but you do not. Thus at the level of our knowledge about what the card is,

we have the same result as the previous peeping scenario in the previous paragraph.

What distinguishes the current scenario from the previous one is whether you will

know that I know what the card is. In the current scenario, you will not know I

know what the card is (since I secretly peeped); on the other hand, in the previous

scenario, you will know I know what the card is (since you saw me peeping).

There are two kinds of subtleties that the examples illustrate. First, in both

scenarios, I obtained the same information, that is, the information about what the

card is. However we have different consequences in the two scenarios. This shows

that the ways in which I obtained the information can make difference, even when

the same information is obtained. Second, the difference of the two scenarios can be

exhibited only at a higher-level of our knowledge. Indeed, our knowledge about the

card is the same in both scenarios: I know the card in one scenario; but you do not

in the other. It is only by our knowledge about what we know that the situations in

the two scenarios can be differentiated (You know I know in one scenario but you do

not know I know in the other).

Still another kind of subtlety can be highlighted by the following scenario. Suppose

that what I tell you is always true and you are aware of it. After I peeped into the

4

card on the desk, I could just tell you what the card was. Let us say the card was

the ace of Diamonds. If that happens, you will come to know that the card is the ace

of Diamonds. Inferring from this, one may expect, whatever I tell you, you will come

to know it, since I tell you only true things. However this expectation turns out to

be betrayed. Suppose, after you come into my office, I tell you “You do not know,

but the card on the desk is the ace of Diamonds”. What I just said is true. However,

you will not come to know it, simply because the statement becomes false once you

come to know what the card is. This example demonstrates a fact about subtlety in

intelligent interaction: even when you obtain true information, you may not come to

know it.

As these considerations suggest, in order to describe intelligent interaction in a

precise manner, we need to get a good grasp on the mechanism about how informa-

tional events change agents’ informational states. We call such a mechanism epis-

temic dynamics. To represent epistemic dynamics in intelligent interaction, we seek a

method to represent informational events and the ways in which they change agents’

information.

Protocol Information

Another important element in describing intelligent interaction is the information

about what informational events can take place in the course of interaction. For

instance, in our example, if I put the card into the deck next to it after I peep into

it, you cannot any more obtain the information about what the card was by turning

the card over. You will have to obtain the information in other ways, e.g. by asking

me about it, etc. In general, various kinds of communicational and observational

constraints are present in many situations of intelligent interaction. We call the kind

of information in intelligent interaction protocol information.

5

The kind of information becomes particularly important when we ask whether

agents can reach informational states of interest. In our example, can you know what

the card is when you come into my office? Or can you know it without making me

realize you do? Answers to these questions depend on how we fill in further details

in our example. Suppose, as in the last paragraph, I put the card into the deck after

I peeping into it. Mischievous as I am, I leave the office without telling you what the

card is. If both of us have cell phones, you may ask me what the card was over the

phone. In that case, the answer to the first question may be positive and the answer to

the latter, negative. Or we may introduce other communicational and observational

constraints into our story so as to make the answers to the questions as we like. Thus

when we consider reachability questions of certain informational states, we need to

specify protocol information involved in given situations of intelligent interaction.

The importance of protocol information in the light of reachability questions can

be glimpsed in many famous puzzles. Here are two examples:

The Muddy Children Puzzle (See e.g. [21])

Several children are playing outside. After playing they come inside and

their father says “At least one of you has mud on your forehead.” Each

child can only see other children’s forehead but not his/her own. Their

father repeats the following question “Do you know whether or not you

have mud on your forehead?” The children are very intelligent and honest,

and answer father’s question at the same time. Can everybody know, over

rounds of father’s question, whether they have mud on their foreheads? If

they can, how many question rounds are needed?

The Russian cards Problem (See e.g. [72].)

There are seven known cards. The first two players draw three cards each

and the third player gets the remaining card. Can the first and second

6

players publicly inform each other about their cards without the third

player learning their cards?

What makes these questions interesting are the constraints given in the communica-

tion scenarios. For instance, if children were allowed to say “You are dirty” or the first

and second players secretly communicate, the answers to the reachability questions

would be trivial (clearly positive).

Therefore protocol information is an important elements in describing intelligent

interaction, together with epistemic dynamics. In order to fully describe intelligent

interaction, we need not only a method to represent informational events and their

effect on agent’s information, but also a method to represent what informational event

can take place in the course of intelligent interaction. The aim of this dissertation

is to develop a formal framework that provides both kinds of methods to represent

epistemic dynamics and protocol information together in one system.

Major Frameworks in Epistemic Logic

The aim of the dissertation is motivated by the fact that systems developed in the

literature on intelligent interaction are oriented toward only one of the two aspects,

but not toward both. Let us illustrate the point by looking at two major frameworks

in the literature, Dynamic Epistemic Logic (DEL, e.g. [6, 26, 74]) and Epistemic

Temporal Logic (ETL, e.g. [51]).

Both DEL and ETL appeal to the framework of Epistemic Logic (EL). EL is

an application of modal logic and represents the informational states of agents by a

set of epistemically possible states interconnected by some relations. Each relation

corresponds to an agent and it represents the agent’s indistinguishability between

possible states. Roughly, when two states are connected, an agent cannot distinguish

7

the states. In this setting, knowledge is usually interpreted as truth in all indistin-

guishable states (and other epistemic modalities, including beliefs, are interpreted

in certain ways by appealing to the model). This is the interpretation of Kripke

models in EL, and we call Kripke models epistemic models in the context of EL.

Epistemic models have been widely applied in analyzing reasoning about knowledge,

since Hintikka [37].

DEL: Event Models and Product Update

Although DEL and ETL share this basic representation, the systems represent tempo-

ral evolution of agents’ informational states in different ways. First, DEL captures the

temporal aspect of intelligent interaction by event models and product update. Event

models are a certain kind of Kripke-models that represent informational events. Prod-

uct update provides an algorithm by which to compute a new epistemic model from a

given epistemic model and an event model. The new epistemic model obtained by the

product update algorithm represents the new informational state of agents after the

informational event captured by the event model happens. In abstract terms, DEL

describes temporal evolution of agents’ informational states by model transformations

induced from event models via product update.

Therefore, DEL is well-suited for describing epistemic dynamics. Event models

capture informational events and product update determines their informational ef-

fects by computing new epistemic models from them. Successive applications of event

models to a given epistemic model represent how agents’ informational states evolve

in the course of intelligent interaction.

However, DEL does not provide a way of representing protocol information. In

DEL, any event model can be applied to any epistemic model. In this sense, DEL

assumes what we may call universal protocol, that is, any informational event can

happen at any moment. To model protocol information, we must bring in some

8

2

1

p ¬p 2p ¬p

1 sees p

Figure 1: This figure visualizes how DEL represents temporal evolution of infor-
mational states. On the left, we have a simple epistemic model consisting of two
indistinguishable points. It represents the situation in which two agents, 1 and 2,
cannot tell whether p or ¬p. Suppose p is true and thus we are at the black world.
The model on the right is obtained through product update based on the event model
corresponding to “1 sees p”. Consequently the dashed line corresponding to the agent
1 is eliminated. By seeing p, the agent 1 can now distinguish the current situation
from the possible situation where p is not true.

additional structures, which are external to the basic framework of DEL.

ETL: Branching-Time Tree Structure

ETL provides an alternative representation. It represents temporal evolutions of

agents’ epistemic states by branching-time tree structures. Models of ETL consist

of sequences of events, which are called histories . Each history represents tempo-

ral development of a given state and each node of a history represents a temporal

moment of the development of the corresponding state. Nodes of tree structures

are interconnected by indistinguishability relations to describe agents’ informational

states.

This way, ETL represents temporal evolutions of agents’ informational states quite

differently from the way DEL does. On the one hand, DEL represents moments of

agents’ informational states by distinct epistemic models. A new epistemic model is

computed via product update every time an event model is applied. On the other

hand, ETL represent the whole temporal evolution in single time-branching models.

9

...... ...
1

...e3
f3f2

2

e2e1
f1

1

e0 f0

Figure 2: This figure visualizes how ETL models represent temporal evolution of an
agent’s informational states. Nodes represent moments of histories. Arrows represent
temporal transitions from a given node to the next. The arrows are labeled by
the names of the corresponding events. Dashed lines represents indistinguishable
relations.

10

The time-branching structure makes ETL well-suited for describing protocol in-

formation. Intuitively, branches coming out of a given node represent what sequence

of events can take place after the moment represented by the node. (In Figure,

events, e1 and e2, can happen at the node after e0, etc.) In this manner, ETL can

straightforwardly capture relevant communicational constraints in various situations.

However, ETL does not provide a systematic method to represent informational

events and their informational effects. In ETL models, events are considered to be

unanalyzable elements. In order to represent an intended effect of an informational

event, say, e, we must impose an appropriate structure for time-branching trees and

agents’ indistinguishability relations with respect to the event e. However ETL does

not provide us with a procedure by which to figure out what the ‘appropriate struc-

ture’ is. For this reason, we need to come up with desired structures by considerations

external to the framework of ETL. This is unlike DEL, since it gives a way to sys-

tematically represent informational events and produce new models that represent

informational states after the events. In this sense, ETL is not suitable for analyzing

epistemic dynamics, especially when compared to DEL.

Similar points can be made about other systems, such as Interpreted System (IS,

[21]) and STIT ([9, 15, 13]). In abstraction, models in those systems can be thought

of as consisting of points with temporal orders, which are also interconnected by

indistinguishability relations for agents. Even though the models are constructed

based on different primitives (local states for agents in IS and histories in STIT),

we have to come up with appropriate constraints on those primitives by ourselves

in order to represent informational events of our interest and their effects. Thus IS

and STIT are well-suited for describing protocol information but less so for analyzing

epistemic dynamics.

11

Merging the Frameworks

Given the situation in the literature on systems describing intelligent interaction, the

first goal of the dissertation is to develop a formal framework that captures both

epistemic dynamics and protocol information. To achieve this goal, we will make use

of representational devices provided by the two major frameworks, DEL and ETL.

In particular, we will take the ideas of event models and product update from DEL,

and the time-branching structure from ETL. We will merge these mechanisms in

one system and construct models that suitably represent the two crucial aspects in

intelligent interaction.

The key idea of our framework is that successive applications of product update to

epistemic models generate time-branching structures. Given an epistemic model, we

assign to each state a set of sequences of event models, which we call a protocol . The

protocol assigned to a given state is interpreted as the set of sequences of events that

can take place at the state. Then, by applying the product update mechanism succes-

sively to the epistemic model based on the assigned protocols, we generate ETL tree

structures. The generated tree structures represent all possible temporal evolutions

of agents’ initial informational states that accord with protocol information.

There are three perspectives from which we can view the models in our framework.

First, our models are ETL models armed with powerful representational device for

describing epistemic dynamics. Histories in ETL structures of our models consist

of event models. In DEL, they are mathematical structures with interpretations as

informational events and give rise to new epistemic models via product update to

represent their intended informational effects. In our method sketched above, ETL

tree structures are generated based on event models as such and this guarantees

that the generated tree structures properly represent intended temporal evolutions

of agents’ informational states. This is exactly how event models are built into our

12

ETL tree structures. This feature and ETL structures of our models allows us to

describe epistemic dynamics and protocol information at the same time. Thus, on

this perspective, our framework can be thought of as a powerful tool to analyze the

situations of intelligent interaction.

Second, our models generalize models in DEL. As mentioned above, DEL assumes

universal protocol in the sense that any event can happen at any moment. By in-

troducing protocols, our framework can have a freedom in constraining what event

can happen in the course of intelligent interaction. This feature allows us to lift the

assumption of universal protocol and to generalize the framework of DEL. Based on

the perspective, we may now consider reinterpreting systems of DEL over the class of

generalized models. This opens up investigation on new logical systems of DEL over

the models in our framework.

Third, the idea of generating ETL tree structures by the mechanisms of DEL

suggests the possibility of bridging the two distinct frameworks. In several places e.g.

[26, 69, 70, 73], the question of how to best compare DEL and ETL has been inves-

tigated. In producing ETL models from models in ETL, our framework ‘connects’

models in DEL and models in ETL. This consideration leads us to investigate the

relationship between DEL and ETL within our framework.

Philosophical Applications

Thus this dissertation will take on the three directions that the above perspectives

point to: (1) applications, (2) logics, and (3) comparison between DEL and ETL.

The projects given by (2) and (3) are of a formal character by nature. Our approach

to (1) will be based on the following considerations.

As mentioned at the start, various approaches have been developed to investigate

the concepts of knowledge and beliefs. However it has been noted (e.g. [36]) that

13

philosophical and formal investigations have grown rather independently in the recent

literature. The variety in approaches can be an advantage, since different approaches

can reveal different aspects of the concepts. On the other hand, it can be an obstacle,

when the different approaches are left without interaction.

This motivates the approach we will take for applications of our framework. We

will see philosophical issues where epistemic concepts involve the aspects of epistemic

dynamics and protocol information. By disentangling those aspects, we will try to

provide clear visions on relevant philosophical problems. In giving philosophical ap-

plications of our framework, we hope not only that those examples illustrate that

our framework provides a powerful tool for conceptual analysis, but also that our

attempts will contribute to the interaction between philosophical investigation and

formal approaches in epistemology.

Connections to Other Topics

Beyond philosophical applications, our framework can contribute to other formal

investigations. First our approach is squarely within the logical tradition in epistemic

logic and, as such, it can provide further modeling tools for investigations in computer

science and theoretical economics, in which the framework of epistemic logic has been

applied. Artificial intelligence and game theory are prime examples of the kind of

disciplines. Furthermore some investigation has been made based on the framework

of epistemic logic in such fields as cryptography ([72]), learning theory, etc.

Second, our framework can also provide a new approach in the study of epistemic

logic itself. Various formal systems have been developed based on epistemic logic,

and some of the general methodologies adopted in this dissertation can be applied to

those systems. For instance, [67] demonstrates that our model construction based on

protocols can be applied in Dynamic Doxastic Logic. In addition, our models build in

14

syntactic structures by protocols and this feature may be exploited to bridge Dynamic

Epistemic Logic and other systems of epistemic logics equipped with similar syntactic

flavors. Examples include Justification Logic ([1, 3, 2, 24]), Logic of Awareness ([21,

22]), etc.

Outline of the Dissertation

Finally the structure of the dissertation is as follows. Part I develops our formal

framework. In Chapter 1, we will start by reviewing DEL and ETL to introduce the

formal machinery required for our framework, such as event models, product update,

branching-time structures, etc. Having the formal systems, we will then provide

the basic definitions of our framework. We represent protocol information by a set

of sequences of event models, and call such a set DEL-protocols. Given an epistemic

model, we assign a DEL-protocol to each state in the model, and generate ETL models

that represent the temporal evolution of the original epistemic models. We call the

ETL models DEL-generated ETL models. Based on the class of DEL-generated ETL

models, we will reinterpret systems of DEL. This will set up a perspective that allows

systematic comparisons between DEL and ETL. The main result in our study of the

relationship between DEL and ETL will be the representation theorem, which states

that the class of DEL-generated ETL models can be characterized as a special class

of ETL models with some suitable properties.

In Chapter 2, we will study logics on the semantic framework developed in Chapter

1. The main goal of this chapter is to axiomatize the class of DEL-generated ETL

models. We will develop our method of axiomatization by starting with the subclass of

DEL-generated ETL models that consist only of public announcements (event models

that induce model relativizations). We will call the system corresponding to the class

of models, TPAL, (the name is an acronym for “Temporal Public Announcement

15

Logic”). Then we will generalize the method to the full class of DEL-generated ETL

models. We will call the system TDEL (the name is an acronym for “Temporal

Dynamic Epistemic Logic”).

In Chapter 3, we will extend the systems developed in the previous chapter for

wider applications. One kind of extensions are given by introducing new operators

to TPAL and TDEL. The operators we will consider includes ♦ (“Some event can

happen after which...”), ♦∗ (“Some sequence of events can happen after which...”),

and Pε (“ε has happened before which...”). These operators are useful to analyze

various epistemic concepts. Another extension is given by generalizing the model

construction introduced in Chapter 1. The notion of protocols introduced in Chapter

1 has a technical restriction on the kind of event models that constitute protocols.

We will consider a way to lift the restriction and allow the full class of event models

to be in protocols.

Part II of the dissertation develops philosophical applications of the formal frame-

work developed in Part I. In Chapter 4, we will give a logical analysis on Fitch’s

paradox and its variant, the idealism problem. We undertake two tasks. The first

task is to provide a philosophical framework for verificationism that does not imply

the formulation of the knowability thesis, every truth is knowable, from which Fitch’s

paradox and the idealism problem are derived. The second task is to formalize the

proposed framework by suitably interpreting a logical system in dynamic epistemic

logic. Not only will this make explicit our theoretical commitments, but also it will

allow us (i) to present a new formulation of the verificationist knowability thesis as

a provable statement and (ii) to give a fine-grained logical analysis of alternative

formulations of verificationist commitments to knowability.

In Chapter 5, we will deal with the epistemic closure principle knowledge is closed

under logical implication. In epistemic logic, the principle, formulated as if ϕ is known

16

and ϕ logically implies ψ, then ψ is known, is a problem, since it only applies to log-

ically omniscient agents. This is called the problem of logical omniscience. Stalnaker

argues that it seems infeasible to characterize the notion of knowledge that avoids the

problem in the framework of epistemic logic. The first objective of the chapter is to

challenge this claim and give a formalization of the desired notion of knowledge in our

framework. In addition, the formalization of the notion of knowledge makes it possible

to consider the representation of agents’ making deductive inferences. Thus, the sec-

ond objective of the chapter is to model the situations where agents make deductive

inferences. We will use the formal representation to describe another perspective on

the epistemic closure principle discussed in epistemology, knowledge can be extended

by deductive inference. This will allow us to compare the two different perspectives on

epistemic closure, one in epistemic logic and the other in epistemology, in our formal

framework.

Sources of the Chapters

The main ideas and results in Chapter 1 and 2 builds on the joint works, [68] with

Johan van Benthem, Jelle Gerbrandy, and Eric Pacuit, and [42] with Audrey Yap.

Chapter 3 is an extension of [41]. Chapter 4 and 5 are based on [39, 40].

Part I

Formal Framework

17

Chapter 1

Merging Frameworks

As discussed in Introduction, there are two important aspects in describing intelli-

gent interaction. One is the mechanism about how agents’ informational states change

over informational events. Since informational events of the simplest kind could affect

agents’ knowledge in a very delicate manner, it is crucial to get a good grasp on infor-

mational events and their epistemic effects. We call this aspect epistemic dynamics .

The other is what informational events can take place in the course of agents’ inter-

action. Various kinds of communication constraints are present in many situations of

agents’ intelligent interaction, and the information about such constraints is crucial

to deal with reachability questions . We call this aspect protocol information.

Although various kinds of multi-agent intelligent systems have been developed so

far, each system seems suitable for only one of the two aspects but less so for the other.

For instance, Dynamic Epistemic Logic (DEL) describe epistemic dynamics well by

event models and product update; however, DEL does not provide a machinery to

describe protocol information. On the other hand, Epistemic Temporal Logic (ETL)

describes protocol information well by its time-branching tree structures; however,

ETL does not provide a machinery to systematically represent informational events

and their informational effects.

18

1.1. EPISTEMIC LOGIC 19

The main purpose of this chapter is to develop a formal framework that describes

both epistemic dynamics and protocol information together. We achieve this goal

by merging DEL and ETL. Our key idea to put them together is that repeatedly

applying product update with sequences of event models generates an ETL model.

In this chapter, we will show how this idea can be made precise.

Furthermore, generating ETL models from DEL-models, our framework can pro-

vide a formal ground on which DEL and ETL can be compared in a precise manner.

The main result of this chapter is the representation theorem, which characterizes the

largest class of ETL models corresponding to DEL protocols in terms of notions of

Perfect Recall, No Miracles, and Bisimulation Invariance.

We will proceed as follows. We start by introducing DEL and ETL and discussing

how they represent intelligent interaction (Section 1.1- 1.3). Then we go on to merge

the two systems and obtain the framework that we propose (Section 1.5). Having the

framework, we will compare DEL and ETL (Section1.5) and prove the representation

theorem.

1.1 Epistemic Logic

We start by introducing DEL and ETL to develop our framework. Both systems

build on Epistemic Logic (EL) to represent informational states of agents. EL is

an application of Modal Logic, which has been developed since the seminal work by

Hintikka ([37]). Fix a finite set of agents A and a countable set of propositional letter

At.

Definition 1.1.1 (Epistemic Models) An epistemic model is a triple (W,∼, V),

where (i) W is a nonempty set, (ii) ∼, a function from A to ℘(W ×W) and (iii) V ,

a valuation function on At, i.e V : At→ ℘(W). /

20 CHAPTER 1. MERGING FRAMEWORKS

W is interpreted as a set of epistemically possible situations. We call the elements

in W in various ways, including worlds, states, points , etc. The relation ∼ assigns a

binary relation on W for an agent in A. By convention, we will write ∼i for ∼ (i)

and w ∼i v for (w, v) ∈∼ (i). The intended interpretation of w ∼i v is “at w, i

considers v possible.” The valuation function V assigns to p ∈ At a subset of W .

V (p) represents the set of worlds where p is true. Therefore, V represents truth of

propositional letters at worlds in W .

When ∼ assigns an equivalence relation on W to an agent i, an equivalence class

induced by ∼i represents a set of worlds that an agent i cannot distinguish. For this

reason, we often call ∼i an indistinguishability relation for an agent i. Although we

do not assume ∼ assigns equivalence relations, we will often read w ∼i v as “w and

v are indistinguishable for i”. Also most of our examples below give models in which

∼ assigns equivalence relations.

Finally, given an epistemic model M, we denote its domain, indistinguishability

relation and valuation function also by Dom(M), ∼M, and VM respectively.

Example 1.1.2 (Office-Card Example: Epistemic Models) Figure 1.1 visual-

izes an example of epistemic models. The model consists of two worlds, w and v,

represented by the two circles. The indistinguishability relations for the agent, 1 and

2, are equivalence relations visualized by dashed lines labelled with 1 and 2 respec-

tively. The letters below the two circles represent the truth of propositional letters,

p and q: p is true only at the black world; q is true at both worlds.

The model can be thought of as capturing the office-card example discussed in

Introduction. You and I come in to our office and find a card being placed face-down

on the desk. Suppose that the card is the ace of Diamonds. Let p be “The card on

the desk is the ace of Diamonds.” and Let q be “We are in the office.” Given those

assumptions, the black world in the model represents the situation, since p and q are

1.1. EPISTEMIC LOGIC 21

w v

2

1

p, q ¬p, q

M

Figure 1.1: Epistemic Model

true there. However, you and I, 1 and 2 in the model cannot tell whether p or ¬p.

/

Epistemic models represent informational states of agents by a set of worlds with

a valuation for each propositional letter and indistinguishable relations assigned for

agents. EL describes informational states represented by epistemic models by the

following language.

Definition 1.1.3 (Language of EL) The language of EL consists of that of propo-

sitional logic (PL). Formulas of EL is inductively defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ

where p ∈ At and i ∈ A. The dual 〈i〉 of [i] and the other boolean operators are

defined in the standard way. We denote the set of formulas in EL by Lel. We call

formulas in Lel epistemic formulas. /

Definition 1.1.4 (Truth in EL) Let M = (W,∼, V) be an epistemic model. The

truth of a formula ϕ ∈ Lel at w in M, denoted by M, w |= ϕ, is inductively defined

22 CHAPTER 1. MERGING FRAMEWORKS

as follows:

M, w |= p iff w ∈ V (p) (with p ∈ At)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= [i]ϕ iff ∀v ∈ W : w ∼i v and M, v |= ϕ

/

Thus [i]ϕ is true at w iff ϕ is true at all worlds that i considers possible at w.

We give different interpretations to the modal operator [i] depending on our purpose

of applications. Among them are “i knows ϕ,” “To the best of i’s information, ϕ.”

etc.1 Given the former interpretation as standard, we will often call the modality the

knowledge modality or knowledge operator. The dual operator 〈i〉ϕ can be also read

in various ways, such as “i considers ϕ possible”, etc.

Example 1.1.5 (Office-Card Example: Truth in EL) Consider the model in Fig-

ure 1.1 again. At w, [1]q and [2]q are true, since q is true at both w and v. Therefore

you know q and I know q. However, [1]p and [2]p are false since p is false at v, which

we cannot distinguish from w. Therefore you do not know p and I do not know p.

Similarly we can consider more complex formulas in the model and confirm that they

provide right results. Readers are invited to verify the truth of [1]¬[2]p, [2]¬[1]p,

[1][2]¬[1]p, etc. at w (“You know I do not know p”, “I know you do not know p”,

“You know I know you do not know p”, etc.) /

1.2 Dynamic Epistemic Logic

Epistemic models, as defined in the previous section, are to describe static states

of agents’ information. Dynamic Epistemic Logic (DEL) introduces certain model

1The former reading is standard in epistemic logic. The latter reading is suggested by e.g. [66]

1.2. DYNAMIC EPISTEMIC LOGIC 23

transformations to EL and represents dynamics of agents’ informational states over

informational events. To introduce the framework of DEL, we start with Public

Announcement Logic (PAL, e.g. [53, 62]), since this simplest system of DEL exhibits

the basic ideas of DEL well.

1.2.1 Public Announcement Logic

PAL describes dynamics of informational states of agents when true information is

publicly announced. PAL represents public announcements as model relativization.

Given an epistemic modelM and a formula ϕ, the public announcement of ϕ, denoted

by !ϕ, is the operation that eliminates the worlds in M where ϕ is false. This

is illustrated in Figure 1.2. p is true at the black world and false at the white

world. Through the public announcement !p, the white world is eliminated and a

new epistemic model, represented on the right, is obtained.

PAL extends EL with operators of the form [!ϕ]. The language of PAL is thus

defined as follows.

Definition 1.2.1 (Language of PAL) Formulas of PAL is inductively defined as

follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [!ϕ]ϕ

where p ∈ At and i ∈ A. The duals, 〈i〉 and 〈!ϕ〉, of [i] and [!ϕ], and the other boolean

operators are defined in the standard way. We denote the set of formulas in PAL by

Lpal. /

Definition 1.2.2 (Truth in PAL) The truth of formulas in PAL is defined by adding

the inductive clause for the operator [!ϕ] to the truth definition of EL (Defini-

tion 1.1.4). Given an epistemic model M = (W,∼, V),

24 CHAPTER 1. MERGING FRAMEWORKS

w v

2

1

p ¬p
w

p

M M×!p

Figure 1.2: Public Announcement

M, w |= [!ϕ]ψ iff M, w |= ϕ implies M×!ϕ,w |= ψ

where M×!ϕ = (W ′,∼′, V ′) is defined by:

W ′ = {v ∈ W | M, v |= ϕ}

∼′ (i) = ∼ (i) ∩ (W ′ ×W ′)

V ′(p) = V (p) ∩W ′.

/

The intended readings of [!ϕ]ψ and 〈!ϕ〉ψ are respectively “After the truth of ϕ

is publicly announced, ψ.” and “The truth of ϕ can be publicly announced after

which ψ.” However readers should not be misled by the term “public announcement”

here. !ϕ is defined simply by model relativization to the worlds where ϕ is true and,

depending on our purposes, we may capture other kinds of informational events by

!ϕ, insofar as their informational effects can be so construed. Other possible readings

of [!ϕ] are: e.g. “after (publicly) observing ϕ, . . . ”, “after (publicly) verifying the

truth of ϕ”, etc.

1.2. DYNAMIC EPISTEMIC LOGIC 25

Example 1.2.3 (Office-Card Example: PAL) On this note, we can think of Fig-

ure 1.2 as a model of one of the scenarios in our office-card example. Suppose that

the card on the desk is the ace of Diamonds. Our informational state when we come

in to the office can be then represented by the epistemic model M on the left by

interpreting p as “The card on the desk is the ace of Diamonds.” Turning the card

on the desk over, we will publicly observe that the card is the ace of Diamonds. This

informational event changes our informational state into the state represented in the

epistemic model M×!ϕ on the right. Thus at w, we have [!p][1]p and [!p][2]p true

(both 1 and 2 come to know that p).

Also note that, in the model in question, a formula ϕ := p∧¬[1]p (p but 1 does not

know p) is true at w inM, but false at w inM×!ϕ. Therefore, [!ϕ][i]ϕ is false (at w

inM)! (False propositions can never be known.) Thus, as mentioned in Introduction,

some truth may not be known after it is publicly announced. This phenomena will

be closely studied in Chapter 4. /

1.2.2 Event Models and Product Update

Although public announcements represent a variety of informational events, there are

still different kinds of informational events that cannot be properly captured by public

announcements. For instance, observation may not have to be completely public. In

our example, I may peep into the card on the desk while you do not. I may even try

to do it secretly without making you realize I do. Dynamic Epistemic Logic (DEL)

generalizes the framework of PAL by introducing the machinery of event models and

product update.

Definition 1.2.4 (Event Model) An event model E is a tuple (E,→, pre), where

(i) E is a finite nonempty set, (ii) →, a function from A to ℘(E ×E) and (iii) pre, a

function from E to Lel. /

26 CHAPTER 1. MERGING FRAMEWORKS

e f
2

p ¬p

g

fe

2

2

>

p ¬p

Peeping Publicly Peeping Secretly

E1 E2

Figure 1.3: Event Models

The domain E of an event model can be considered as the set of events. Given

two events, e and f , the intended interpretation of (e, f) ∈→ (i) is as “when e

happens, an agent i considers it possible that f has happened.” As discussed in the

case of the indistinguishability relation of epistemic models, ∼ (Section 1.1), when

→ (i) is an equivalence class on E, an equivalence class induced by → (i) represents

a set of events that i cannot distinguish: When an event in an equivalence class

happens, i thinks that any of the events in the class has happened. Thus we will

call→ the indistinguishability relation for i over events. The function pre determines

preconditions of events. Given pre(e) = ϕ, an event e can happen at a world iff ϕ

is true at the world. (More on preconditions below. See Section 1.2.3) Note that a

precondition that pre maps to each event must be an epistemic formula (a formula

in Lel). This assumption can be lifted. See Chapter 3.

When (e, f) ∈→ (i), we write e →i f by convention. Also given an event model

E , we denote its domain, indistinguishability relation, and precondition function by

Dom(E), →E , and preE respectively.

1.2. DYNAMIC EPISTEMIC LOGIC 27

Example 1.2.5 (Office-Card Example: Event Models) Let us come back to the

office-card example. Figure 1.3 visualizes the two event models, E1 and E2, which rep-

resent the two scenarios in which I peep into the card on the desk in front of you or

secretly from you. Suppose that the card on the desk is the ace of Diamonds. Denote

the proposition expressing this fact by p and let 1 and 2 be me and you respectively.

First consider E1. It has two events, e and f , with preconditions p and ¬p respectively.

1 can distinguish e and f (→1 partitions the model into {e} and {f}), while 2 cannot

(→2 partitions the model into the whole domain {e, f}). We can think of the event e

in the event model as the event of 1’s peeping into the card in front of 2. Suppose e

happens. 1 thinks that e happened but not f , since he can distinguish e and f . Also

e can happen only if p. Thus 1 comes to know that p. On the other hand, 2 cannot

distinguish e and f . Thus she does not come to know that p after e. However, in the

sense that these two event, e and f , are the only events that 2 considers possible, 2

come to know that 1 now know whether p or ¬p.

Next consider E2. It adds the third event, g, to the model on the left. Having

> (a tautologous truth) as its precondition, g can be thought of as any trivial event

that can happen no matter how the world is. Thus when e happens, 2 cannot tell

whether 1 has peeped into the card (by which 1 would obtain the information that p

or ¬p) or whether anything that informs 1 of what the card is has happened. Thus,

unlike the model on the left, 2 does not come to know that 1 now know whether p

or ¬p. The event e in the model on the right can be interpreted as the event of 1’s

peeping into the card without making 2 realizing that 1 does. /

In DEL, these event models induce model transformations via product update to

represent the informational effects of corresponding informational events.

Definition 1.2.6 (Product Update) The product update M⊗ E of an epistemic

model M = (W,∼, V) and an event model E = (E,→, pre) is the epistemic model

28 CHAPTER 1. MERGING FRAMEWORKS

(w, e) (v, f)
2

(w, e) (v, f)
2

(w, g)

2

(v, g)

2

2

1

M×E1 M×E2

After peeping publicly After peeping secretly

Figure 1.4: Product Update

(W ′,∼′, V ′) with

1. W ′ = {(w, e) | w ∈ W, e ∈ E and M, w |= pre(e)},

2. (w, e) ∼′i (v, f) iff w ∼i v in M and e −→i f in E , and

3. (w, e) ∈ V ′(p) = w ∈ V (p) for all p ∈ At. /

Figure 1.4 represents the epistemic models obtained by transforming the model M

in Figure 1.1 via product update based on the event models, E1 and E2, in Figure 1.3.

The readers are invited to verify those results.

DEL captures temporal evolution of agents’ informational states by model trans-

formations induced from event models via product update. However, as seen in the

above examples, events have their meanings relative to event models that they belong

to. For this reason, DEL deals with pairs of event models and events in them. A

1.2. DYNAMIC EPISTEMIC LOGIC 29

pointed event model ε is a pair (E , e), where E is an event model and e is an event in

Dom(E).

Definition 1.2.7 (Language of DEL) Formulas of DEL is inductively defined as

follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [E , e]ϕ

where p ∈ At, i ∈ A, and (E , e) is a pointed event model. The duals, 〈i〉 and 〈E , e〉,

of [i] and [E , e], and the other boolean operators are defined in the standard way. We

denote the set of formulas in PAL by Ldel. /

Definition 1.2.8 (Truth in DEL) The truth of formulas in DEL is defined by

adding the inductive clause for the operator [E , e] to the truth definition of EL (Def-

inition 1.1.4). Given an epistemic model M = (W,∼, V),

M, w |= [E , e]ψ iff M, w |= preE(e) implies M⊗E , (w, e) |= ψ.

/

The intended readings of [E , e]ψ and 〈E , e〉ψ are respectively “After the event (E , e)

happens, ψ.” and “The event (E , e) can happen after which ψ.”

Example 1.2.9 (Office-Card Example: Truth in DEL) Let us consider our office-

card example in Figure 1.4. After peeping in public, you come to know I come to know

whether p. This is expressed by the truth of [E1, e][2]([1]p ∨ ¬[1]p) at w in M. The

formula is true since [2]([1]p ∨ ¬[1]p) is true at (w, e) in M× E1. Also after peeping

secretly, you do not come to know I know whether p. This is expressed by the truth

of [E2, e]¬[2]([1]p ∨ ¬[1]p) at w in M. The formula is true since ¬[2]([1]p ∨ ¬[1]p) is

true at (w, e) in M×E2. /

30 CHAPTER 1. MERGING FRAMEWORKS

Remark 1.2.10 (Public Announcement) DEL generalizes PAL in the sense that

public announcements can be captured by a certain kind of event models. The public

announcement !ϕ of a formula ϕ (in Lel) can be thought of as the event model

Eϕ = (E,→, pre), where (i) E = {e}, (ii) for each i ∈ A, →i= {(e, e)} (equivalence

relation on e), and (iii) pre(e) = ϕ. The product update of an epistemic model

M = (W,∼, V) with an event model Eϕ produces a ‘submodel’ ofM containing only

the states where ϕ is true (in M). More precisely, M×Eϕ = (W ′,∼′, V ′) is:

• W ′ = {(w, e) | M, w |= ϕ}

• (w, e) ∼′i (v, e) iff w ∼i v

• V ′(p) = {(w, e) | w ∈ V (p)}

Note that, by the above mentioned restriction on the precondition function on pre,

only public announcements of epistemic formulas can be directly modeled in this way.

(cf. Definition 2.1.2) This is not a substantial restriction in DEL, since formulas in

DEL reduces equivalent to formulas in EL via reduction axioms as we will discuss

later (Section 2.3 and 2.5.1). However the situation is different in our own framework.

See also Remark 1.4.13. /

Remark 1.2.11 (Identifying Event Models) Strictly speaking, there are as many

distinct event models as there are distinct elements, according to Definition 1.2.4. For

instance, two event models, E and F , consisting of single reflexive elements e and f

(with e 6= f) with precondition ϕ, can be identified with ϕ. However, we will identify

event models, when they are isomorphic. Two event models E and F are isomor-

phic, if there is a one-to-one map from E onto F that preserves indistinguishability

relations and precondition functions. Given that event models are finite (See below

Remark 1.2.12), the class of all event models is countable. /

1.2. DYNAMIC EPISTEMIC LOGIC 31

Remark 1.2.12 (Finite Domain) In Definition 1.2.4, the domains of event models

are defined to be finite. The main reason is that the standard reduction axioms for

the DEL modality [E , e] (cf. [6]) contain a conjunction over all elements of E reachable

from e. Now if this set is infinite, then the reduction axiom will not be a formula of

LDEL since it contains an infinite conjunction. We return to this issue in Section 1.5.2.

/

1.2.3 Protocol Information in DEL?

As we have seen above, DEL provides a good representational framework for epistemic

dynamics. It represents static informational states of agents by epistemic models and

informational events by event models. Product update transforms epistemic models

into new models that represent informational states after informational events.

However DEL does not provide a machinery that is suitable for representing pro-

tocol information. There are two senses in which it does not. First, in DEL, there

is no restriction on event models to be applied to given epistemic models. Any event

model can be applied to any epistemic model and the epistemic model obtained by the

process can be described by using corresponding event operators. As we saw above,

the informational state after I peep into the card on the desk can be represented (in

Figure 1.4) by an epistemic model. No matter what communication constraints we

think of for the situation after my peeping, e.g. I put the card into the deck after

peeping and leave the office, DEL does not forbid us from applying the public an-

nouncement of !p (The card is the ace of Diamonds), which will yield the truth of

〈!ϕ〉[2]p (p can be publicly announced after which you know p).

Second, one may try to adjust precondition functions of event models to represent

communication constraints. One component of event models is a precondition func-

tion pre. The function is interpreted in such a way that an event e can happen iff

pre(e) = ϕ. Thus, in the above example, we may introduce a new propositional letter,

32 CHAPTER 1. MERGING FRAMEWORKS

say d, to represent whatever communicational or observational constraints there will

be after my peeping, and say that the public announcement of p is in fact the public

announcement of p ∧ d, since the public announcement of p can happen only if p is

true and the condition d is satisfied. For instance, we may interpret d here as “the

card is still on the desk in the office in front of us”, and make d false to represent

the situation after I put the card back into the deck of cards and leave the office.

〈!(p∧ d)〉[2]p then become false, since p∧ d is false in that case. Thus, after I put the

card into the deck and leave the office, you cannot know what the card is by turning

the card over or asking me what the card was.

Even though such an adjustment of precondition functions may yield satisfac-

tory representations for certain cases of intelligent interaction, the strategy cannot

be applied generally to represent protocol information. The main obstacle is that the

informational events that can happen may change over time. In many interaction

scenarios, the information about what can happen at a given moment depends on the

information about what has happened earlier. For instance, our conversation may

obey implicit rules such as “Do not repeat yourself”, “Say p after q”, etc. Protocol

information of this kind cannot be captured by the above maneuver, since the precon-

ditions of events are encoded by propositional letters, whose truth values are constant

in DEL at a given world. A given world can evolve in various possible ways, depend-

ing on what event happens, and propositional letters cannot do the job of tracking

how the world has evolved. For this reason, DEL is not suitable for capturing the

temporality in protocol information.

1.3 Epistemic Temporal Logic

Epistemic Temporal Logic (ETL) provides an alternative framework to represent in-

telligent interaction. ETL represents temporal evolutions of agents’ epistemic states

1.3. EPISTEMIC TEMPORAL LOGIC 33

by branching-time tree structures. Those structures describe how histories of given

states evolve.

1.3.1 Branching-Time Tree Structure

Fix a finite set of agents A and a countable set of propositional letter At. Let Σ be

a set of events. A history is a finite sequence of events from Σ. We write Σ∗ for the

set of histories built from elements of Σ. For a history h, we write he for the history

h followed by the event e. Given h, h′ ∈ Σ∗, we write h � h′ if h is a prefix of h′, i.e.

there is some k such that hk = h′. H ⊆ Σ∗ is closed under finite prefix if, for every

h ∈ H and h′ � h, h′ ∈ H. We denote the empty sequence by λ.

Definition 1.3.1 (ETL Models) Let Σ be a set of events. An ETL model is a

tuple (Σ, H,∼, V) where (i) H does not contain λ and is a subset of Σ∗ closed under

finite prefix, (ii) ∼ is a function from A to ℘(H ×H), and (iii) V is a function from

At to ℘(H). /

H represents the temporal structure with h′ = he representing the temporal point

after the event e has happened at the point h. For each i ∈ A, the relation ∼ (i)

(also denoted by ∼i) represents the indistinguishability relation on histories for i. V

is a valuation function on H. (cf. Definition 1.1.1 and 1.2.4).

Figure 1.5 visualizes two ETL models. Let us consider the models by using our

example. Let e0 and f0 be respectively the event of the ace of Diamonds being placed

on the desk and the event of a different card being placed face-down on the desk

respectively. Let p be “the card on the desk is the ace of Diamonds.” Thus, assume

that, in both models, p is true at each node following e0, while p is false at each node

following f0. Now when we come into the office, we do not know what the card is.

Thus, the nodes e0 and f0 are indistinguishable to me and you (1 and 2 respectively)

in both models. At the node e0, we can turn over the card (the event represented

34 CHAPTER 1. MERGING FRAMEWORKS

2

e3

e2e1
f1

1

2
e0 f0

2

e2e1
f1

1

2
e0 f0

Figure 1.5: ETL Models

by e1) or I can peep into the card in front of you (the event represented by e2). If

e1 happens, we both know the card is the ace of Diamonds (we can distinguish the

node e0e1, where p is true, from the nodes coming out of f0). If e2 happen, I come

to know p but you don’t, since you (2) cannot distinguish e0e2 from f0f1, where p

is false. So far, the two models in Figure 1.5 are the same. They differ in what can

happen at e0e2. The left model can be thought of as representing the situation where

I stay in the office. Thus I can tell you what the card is (the event represented by e3)

and you will come to know p. On the other hand, the right model can be thought of

as representing the situation where I leave the office after putting the card into the

deck. No event can happen to change the informational states of ours.

Different modal languages describe ETL models (see, for example, [21, 38]). Here

we give just the minimal language of ETL.

Definition 1.3.2 (Language of ETL) Let Σ be a set of events. Formulas Letl are

1.3. EPISTEMIC TEMPORAL LOGIC 35

defined inductively as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [e]ϕ

where i ∈ A, e ∈ Σ and p ∈ At. The dual, 〈i〉 and 〈e〉, and boolean connectives

(∨,→,↔) are defined in the standard way. We denote the set of formulas in ETL by

Letl. /

It is often natural to extend the language Letl with group knowledge operators (e.g.,

common or distributed knowledge) and more expressive temporal operators (e.g.,

arbitrary future or past modalities). This may lead to high complexity of the validity

problem (cf. [29, 70]). We will study some of those operators in Chapter 2 and 3.

Definition 1.3.3 (Truth in ETL) Let H = (Σ, H,∼, V) be an ETL model. The

truth of a formula ϕ at a history h ∈ H, denoted H, h |= ϕ, is defined inductively as

follows:

H, h |= p iff h ∈ V (p) (with p ∈ At)

H, h |= ¬ϕ iff H, h 6|= ϕ

H, h |= ϕ ∧ ψ iff H, h |= ϕ and H, h |= ψ

H, h |= [i]ϕ iff ∀h′ ∈ H : h ∼i h′ implies H, h |= ϕ

H, h |= [e]ϕ iff he ∈ H implies H, he |= ϕ

/

The intended readings of [e]ϕ and 〈e〉ϕ are respectively “After the event e happens,

ϕ.” and “The event e can happen after which ϕ.”

Example 1.3.4 (Office-Card Example: Truth in ETL) In the models discussed

in Figure 1.5, 〈e1〉[1]p is true at e0, since e0e2 is in the model and [1]p is true at e0e2.

Also, 〈e3〉> is true at e0e2 in the left model but false in the right.2 This is simply

2The formula reads as “The event e3 can happen.” It literally reads as “The event e3 can happen

36 CHAPTER 1. MERGING FRAMEWORKS

because e0e2e3 is in the left model but not in the right. /

1.3.2 Epistemic Dynamics in ETL?

As the above examples illustrate, time-branching tree structures in ETL are suitable

for representing protocol information. Each history represents temporal development

of a given state (or world) and each node of a history represents a temporal moment

of the development of the corresponding state. Branches coming out of a given node

represent what can happen at the moment and express protocol information.

However, ETL does not provide a systematic method to represent informational

events and their informational effects. In ETL models, events are unanalyzable prim-

itive elements. In order to represent an intended effect of an informational event,

say, e, we must impose an appropriate structure for time-branching trees and agents’

indistinguishability relations with respect to the event e. This may be done for some

simple cases as presented in Figure 1.5. However, there is no guarantee that we suc-

ceed in doing so for more complex situations. How can we come up with a right

structure, say for the one of our scenarios, where I peep into the card secretly. In

DEL, we could produce the epistemic model in Figure 1.4 that represents the infor-

mational state after the informational event by the mechanism of event models and

product update. However, ETL does not provide such a systematic procedure and

we need to come up with appropriate structures by considerations external to the

framework of ETL. Therefore ETL is not suitable for analyzing epistemic dynamics.

1.4 Merging DEL and ETL

As we have seen, DEL is suitable for describing epistemic dynamics, while ETL is

suitable for describing protocol information. To obtain a formal framework that

after which >”. However, >, being a tautologous truth, is true at any node.

1.4. MERGING DEL AND ETL 37

describes both aspects of intelligent interaction together, we merge DEL and ETL.

Our key idea is that by repeatedly updating an epistemic model with event models,

DEL in effect generates ETL models. First, to represent protocol information, we

assign to each world of a given epistemic model a set of sequences of (pointed) event

models. We call those assigned sets protocols. Sequences in protocols represent the

sequences of events that can take place at a given world. Then, by applying the

product update mechanism successively to the epistemic model based on the assigned

protocols, we generate ETL tree structures. The generated tree structures represent

all possible temporal evolutions of agents’ initial informational states that accord with

protocol information. Below we will make these ideas precise.

1.4.1 Protocols

Let E be the class of all pointed event models, i.e.

E = {(E , e) | E an event model and e ∈ D(E)}.

We denote the set of finite sequences of pointed event models by E∗. (By consid-

erations given in Remark 1.2.11, both E and E∗ are countable. More on this in

Chapter 3)

Definition 1.4.1 (DEL-Protocol) A DEL-protocol is a set P ⊆ E∗ closed under

finite prefix. We denote by Ptcl(E) the class of all DEL-protocols, i.e., Ptcl(E) =

{P | P ⊆ E∗ is closed under initial segments}. /

Definition 1.4.2 (State-Dependent DEL-Protocol) LetM be an arbitrary epis-

temic model. A state-dependent DEL-protocol on M, abbreviated by an sd -DEL-

protocols is any function p : Dom(M)→ Ptcl(E). /

38 CHAPTER 1. MERGING FRAMEWORKS

When there is no confusion, we will simply say protocols or sd -protocols for DEL-

protocols or sd -DEL-protocols.

Sd -protocols significantly generalize the usual ETL setting where the protocol is as-

sumed to be common knowledge among agents (cf. [21, 51]). An sd -protocol can as-

sign different protocols to different worlds in a given epistemic model. Consequently,

what event can happen at a given moment may not be even known by agents. On

the other hand, if an sd -protocol p assigns the same protocol, say P, to each world

of a given epistemic model, then the protocol P will be common knowledge. This is

thus a special kind of sd -protocols and we will call them uniform protocols.

Definition 1.4.3 (Uniform Protocol) An sd -DEL-protocol p on M is a uniform

protocol on M, if, for all w ∈ Dom(M), p(w) = P for some P. Clearly a given

DEL-protocol P induces a uniform protocol on any epistemic model. For this reason,

when there is no confusion, we drop the specification of epistemic models and call

DEL-protocols uniform protocols. /

State-dependent and uniform protocols are two extreme cases with many interesting

cases in between, where agents have only partial knowledge of the type of conversation,

experimental protocol, or learning process they are in. One natural example is the

assumption that all agents individually know the protocol: for each w, v ∈ D(M), if

wRiv then p(w) = p(v). In this chapter, we will restrict attention to state-dependent

protocols and uniform protocols.

1.4.2 DEL-Generated ETL Models

We now present the main construction of this chapter: generating an ETL model from

an initial epistemic model and a (state-dependent or uniform) DEL-protocol. We need

some notations. We need to introduce some notations. Let σ = (E1, e1)(E2, e2) . . . (En, en) ∈

1.4. MERGING DEL AND ETL 39

E∗. We denote the length of σ by len(σ), i.e. len(σ) = n. When k ≤ len(σ), we write

σ(k) for the initial segment of σ of length k, and σk for the kth component of σ. When

k > len(σ) or k = 0, σk and σ(k) are the empty sequence λ. Also we write σL and

σR for E1 · · · En and e1 · · · en respectively. Thus, for example, (σL)(3) = E1E2E3 and

(σR)3 = e3. Clearly, (·)L, (·)R on the one hand and (·)n, (·)(n) on the other commute.

Thus, we omit parentheses when there is no danger of ambiguity.

Construction with Uniform Protocols

We start by constructing an ETL model from a uniform DEL-protocol since the

definition is more transparent. However, we stress that the following two definitions

are special cases of the more general construction given below (cf. Definition 1.4.8

and Definition 1.4.9).

Definition 1.4.4 (σ-Generated Epistemic Model) Given an epistemic modelM =

(W,∼, V) and a finite sequence of pointed event models σ, we define the σ-generated

epistemic model, Mσ = (W σ,∼σ, V σ) as M× σL1 × σL2 ⊗ . . .⊗ σLlen(σ). /

Definition 1.4.5 (ETL Model Generated from a Uniform DEL-Protocol) Let

M be a pointed epistemic model and P a DEL protocol. The ETL model generated by

M and P, Forest(M,P) is an ETL model (Dom(M)∪E, H,∼, V), where (H ′,∼′, V ′)

is such that

• H ′ =
⋃
σ∈PW

σ,

• for each i ∈ A, ∼′i:=
⋃
σ∈P ∼σi , and

• for each p ∈ At, V ′(p) :=
⋃
σ∈P V

σ(p)

We will omit Dom(M) ∪ E and write Forest(M, p) = (H ′,∼′, V ′), where there is no

confusion. Also we identify (w, σ1, . . . , σlen(σ)) in Mσ with a history wσ. /

40 CHAPTER 1. MERGING FRAMEWORKS

Forest(M,P) represents all possible evolutions of the system obtained by updating

M with sequences from P. It is straightforward to verify the following proposition.

Proposition 1.4.6 For every epistemic modelM and a uniform protocol P, Forest(M,P)

is an ETL model.

Proof. The proposition immediately follows from the fact that every DEL protocol P

is closed under prefixes by Definition 1.4.1. Indeed, when wσε (or (w, σ1, . . . , σlen(σ), ε))

is in Forest(M,P), σ ∈ P. This means that wσ is in Forest(M,P), since (w, σ1, . . . , σlen(σ))

is inMσ. Therefore, H is closed under finite prefix and Forest(M,P) is an ETL model

by Definition 1.3.1 qed

Example 1.4.7 (ETL Models Generated from Uniform Protocols) Here is a

concrete illustration of the construction. Let M be an epistemic model that have

three worlds, w, v, u, where p is true only at w and v and q is true only at w. An

agent 1 cannot distinguish w and v and an agent 2 cannot distinguish v and u. Let

P be a uniform protocol consisting of sequences of public announcements such that

P = {!p!q, !¬p!¬q}. Forest(M,P) can be visualized as in Figure 1.6. At the bottom,

we have three nodes (circled for emphasis) corresponding to M. These three nodes

are updated by the sequences of public announcements in P. Consider the sequence

!p!q. After M is updated by !p, two nodes, w!p and v!p, corresponding to M×!p

are created. Then the model is further updated by !q, which creates the node w!p!q

corresponding to (M×!p)×!q. Similarly for the sequence !¬q!¬p.

/

Construction with State-Dependent Protocols

Now we present the method to generate ETL models from sd -DEL-protocols in gen-

eral. The basic intuition is the same here. We apply product update based on the

1.4. MERGING DEL AND ETL 41

!q

2

!¬p

1

!p
!p !¬q

1

!¬q

2

w v u

p, q p,¬q ¬p,¬q

P : {!p!q, !¬q!¬p}

(M×!¬q)×!¬p(M×!p)×!q

M×!p M×!¬q

M

Figure 1.6: ETL Models Generated from Uniform Protocols

sequences of pointed event models that appear in protocols. The process was simple

for uniform protocols, since what can happen was the same. For general sd -protocols,

what can happen may differ between worlds. Thus, even if an event (E , e) is in the

protocol at a world w in an epistemic model M, it may not be in the protocol at

another world v. In this case, whether or not the precondition of e is true at v,

we cannot create the new node v(E , e). This means that, dealing with general sd -

protocols, we cannot simply apply sequences of event models allowed in protocols. In

applying product update with an event model, we need to exclude the worlds where

the event model is not allowed to happen, as well as the world where the precondi-

tion is not satisfied. This is taken care of in the following definitions that generalize

Definition 1.4.4 and 1.4.5. We will give definitions with comments for clarification,

since definitions are much more complicated than the case for uniform protocols.

Definition 1.4.8 (σL-Generated Model) Let M = 〈W,∼, V 〉 be an epistemic

42 CHAPTER 1. MERGING FRAMEWORKS

model and p, a state-dependant DEL-protocol on M. Given a sequence σ ∈ E∗,

the σL-generated model under p,

MσL,p = (W σL,p,∼σ
L,p
i , V σL,p),

is defined by induction on the initial segment of σL:

• W σL
(0)
,p := W , for each i ∈ A, ∼

σL
(0)
,p

i :=∼i and V σL
(0)
,p := V .

(Thus we start with the initial epistemic model M.)

• wτ ∈ W σL
(n+1)

,p iff

1. w ∈ W ,

2. σL(n+1) = τL,

3. wτ(n) ∈ W σL
(n)
,p,

4. τ ∈ p(w), and

5. MσL
(n)
,p, wτ(n) |= preτLn (τRn+1).

(By Item 2, every element in W σLn+1,p is of the form wτ with τ of the length n+1. Item

4 guarantees that only sequences of events models that are allowed by the protocol

will be in W σLn ,p. Item 5 guarantees that the precondition of the event τn+1 is satisfied

at the previous stage MσL
(n)
,p.)

• For each wτ, vτ ′ ∈ W σL
(n+1)

,p (0 < n < len(σL)), wτ ∼σ
L
(n+1) vτ ′ iff

1. wτ(n) ∼
σL
(n)
,p

i vτ ′(n), and

2. (τRn+1, (τ
′
n+1)R) ∈→ (i) in τLn+1.

1.4. MERGING DEL AND ETL 43

(By Item 1, the two nodes in question must be indistinguishable at the previous stage

MσL
(n)
,p. By Item 2, they are indistinguishable in τLn+1 too. Item 2 also guarantees

that τL = (τ ′)L = σL(n+1))

• For each p ∈ At, V σL
(n+1)

,p(p) = {wσ ∈ W σL
(n+1)

,p | w ∈ V (p)}. /

(This clause guarantees that propositional valuation stays the same in the course of

interaction)

Definition 1.4.9 (DEL-Generated ETL Model) LetM = (W,∼, V) be an epis-

temic model and p a state-dependent DEL protocol onM. An ETL model Forest(M, p) =

(H,∼′, V ′) is defined as follows:

• H = {h | there is a w ∈ W , σ ∈
⋃
w∈W p(w) with h = wσ ∈ W σL,p}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ′, h ∼i h′ iff wσ ∼σ
L,p
i vσ′.

• For each p ∈ At and h = wσ ∈ H, h ∈ V ′(p) iff h ∈ V σL,p(p). /

The readers are invited to verify that Definition 1.4.4 and Definition 1.4.5 are special

cases of Definition 1.4.8 and Definition 1.4.9, respectively, when we restrict attention

to uniform protocols (the details are left to the reader).

Proposition 1.4.10 For every epistemic model M and an sd-DEL-protocol p on

M, Forest(M, p) is an ETL model.

Proof. Straightforward by the reasoning given in 1.4.6. qed

We illustrate this construction with another example.

Example 1.4.11 (DEL-Generated ETL Model) Let us illustrate the construc-

tion by the following example. Take an epistemic model M given in Example 1.4.7.

44 CHAPTER 1. MERGING FRAMEWORKS

(M consists of w, v, u, in which p is true only at w, v and q is true only at w.)

Let p be an sd -protocol on M such that p(w) = {!p![i]q}, p(v) = {!p![i]q, !¬q},

p(u) = {!p, !¬q!>}. The ETL model we construct from M and p can be visualized

as in Figure 1.7.

The basic procedure to produce this model is to (i) check what is permitted

according to p as a public announcement at each stage, (ii) create a new node if what

is permitted is in fact true at the stage and (iii) compute indistinguishability relation

for the created stage.

We start from the first stage M (indicated by the solid line enclosing the three

points). In all states in M, !p is assigned by p. Since p is true at w, v, we create

the nodes w!p and v!p, while we do not create the node “u!p” since p is false at u.

Also we connect w!p and v!p by the indistinguishability relation (indicated by the

horizontal dashed line), since they are indistinguishable in M w ∼1 v (where ∼1 is

assumed to be an equivalence relation) and !p→i!p (since public announcements are

single reflexive points). Note that the created nodes constitute the model obtained

by applying !p to M, i.e. the model M×!p. In this second stage (indicated by the

circle enclosing the two nodes), ![i]q is permitted and true at both nodes. Thus we

produces the third stage consisting of w!p![i]p and v!p![i]p. Similarly the nodes v!¬q

and u!¬q are created since ¬q are permitted and true at v, u, while w!¬q is not, since

!¬q is neither permitted nor true at u. Furthermore, the node u!¬q!> is created but

the node “v!¬q!>” is not present, since !> is only permitted at u!¬q though >, being

a tautologous truth, is clearly true.

/

Definition 1.4.12 (Class of DEL-Generated ETL Models) Given a class of state-

dependent (or uniform) DEL protocols X, let

F(X) = {Forest(M, p) | M an epistemic model and p ∈ X}.

1.4. MERGING DEL AND ETL 45

1

![i]p

2

!>

1

![i]p

!p

1

!p !¬q
!¬q

2

p, q p,¬q ¬p,¬q

{!p![i]q} {!p![i]q, !¬q} {!p, !¬q!>}

M
w v u

V

p

Figure 1.7: DEL-Generated ETL Models

Similarly, If X is a class of uniform protocols,

F(X) = {Forest(M,P) | M an epistemic model and P ∈ X}.

In particular, when X is the class of all sd -protocols, we denote F(X) by Fsd. Similarly,

when X is the class of all uniform protocols, we denote F(X) by Funi. /

Also if X = {p} (respectively X = {P}) then we write F(p) (respectively F(P)) instead

of F({p}) (respectively F({P})).

Remark 1.4.13 (Preconditions Given by Epistemic Formulas) As defined in

Definition 1.2.4, precondition functions of event models assign to each event an epis-

temic formula (a formula in Lel). This restriction is not substantial in DEL, since

formulas in DEL reduce equivalently to formulas in EL by reduction axioms. (Sec-

tion 2.3 and 2.5.1) On the other hand, in our framework, such axioms are not available.

46 CHAPTER 1. MERGING FRAMEWORKS

We need to generalize the construction presented above to lift the assumption. We

will discuss this in Chapter 3. /

1.5 Comparing DEL and ETL

In generating ETL models from DEL models, our framework can provide a formal

ground on which DEL and ETL can be compared in a precise manner. For the rest

of this chapter, we will give formal comparisons between DEL and ETL based on the

framework that has been introduced in the previous sections.

1.5.1 Reinterpreting DEL-Operators as ETL-Operators

Our first observation is that, under a mild condition, we can think of the languages

Ldel and Letl as the same formal language. In other words, We can reinterpret formulas

in DEL as we interpret formulas in ETL. In particular, we can reinterpret the event

operator 〈E , e〉 in DEL as a labeled temporal modality in ETL as follows. Given

Forest(M, p) ∈ Fsd and h in Forest(M, p),

Forest(M, p), h |= 〈E , e〉ϕ iff Forest(M, p), h(E , e) |= ϕ.

(The truth definitions for the other operators are as given in Definition 1.3.3.) The

only thing that we have to make sure is that the set of events in ETL, Σ, contains

Dom(M) and E (the set of all pointed event models).

An easy induction shows that this model transformation preserves truth in the

following sense.

Proposition 1.5.1 Let E∗ be the DEL-protocol consisting of all finite sequences of

pointed event models in DEL. Let M an epistemic model with w ∈ Dom(M) (and

1.5. COMPARING DEL AND ETL 47

hence (w) is a history in Forest(M,E∗)): For any formula ϕ ∈ Ldel,

M, w |= ϕ iff Forest(M,E∗), (w) |= ϕ.

Proposition 1.5.1 explains a common intuition about linking DEL to ETL.

1.5.2 Representation Theorem

Next, we will deal with the question which ETL models can be generated by DEL-

protocols. We will show that DEL-generated ETL models have a number of special

properties. Our main result is the representation theorem (Theorem 1.5.8) that char-

acterizes the class of DEL-generated ETL models by certain properties. The result

is an improvement of an existing characterization result found in [62] and provides a

precise comparison between the DEL and ETL frameworks.

We start with the result from Van Benthem [62] which characterizes the ETL

models resulting from consecutive updates with one single event model. The following

properties come from the definition of product update (Definition 1.2.6).

Definition 1.5.2 (Synchronicity, Perfect Recall, Uniform No Miracles) LetH =

(Σ, H,∼, V) be an ETL model. H satisfies:

• Synchronicity iff for all h, h′ ∈ H, if h ∼i h′ then len(h) = len(h′) (len(h) is

the number of events in h).

• Perfect Recall iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if he ∼i h′e′,

then h ∼i h′

• Uniform No Miracles iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if there

are h′′, h′′′ ∈ H with h′′e, h′′′e′ ∈ H such that h′′e ∼i h′′′e′ and h ∼i h′, then

he ∼i h′e′. /

48 CHAPTER 1. MERGING FRAMEWORKS

Additional properties vary depending on the class of DEL protocols considered.

Remark 1.5.3 (Alternative Definition of Perfect Recall) Van Benthem gives

an alternative definition of Perfect Recall in [62]:

if he ∼i h′ then there is an event f with h′ = h′′f and h ∼i h′′.

This property is equivalent over the class of ETL models to the above definition of

Perfect Recall and synchronicity. We use the above formulation of Perfect Recall

in order to stay closer to the computer science literature on verifying multi-agent

systems (cf. [21]) and the game theory literature (cf. [11]). /

The next property reflects that preconditions of events are formulas of Lel.

Definition 1.5.4 (Epistemic Bisimulation Invariance) Let H = (Σ, H,∼, V)

and H′ = (Σ, H,∼′, V) be two ETL models. A relation Z ⊆ H × H ′ is an epis-

temic bisimulation provided that, for all h ∈ H and h′ ∈ H ′, if hZh′, then

(prop) h and h′ satisfy the same propositional formulas,

(forth) for every g ∈ H, if h ∼i g then there exists g′ ∈ H ′ with h′ ∼i g′ and gZg′

(back) for every g′ ∈ H ′, if h′ ∼′i g′ then there exists g ∈ H with h ∼i g and gZg′.

If Z is an epistemic bisimulation and hZh′ then we say h and h′ are epistemically

bisimilar. An ETL model H satisfies epistemic bisimulation invariance iff for all

epistemically bisimilar histories h, h′ ∈ H, if he ∈ H then h′e ∈ H. /

Another property is needed since we are assuming that product update does not

change propositional valuations (see Definition 1.2.4 and 1.2.6. An ETL model H

satisfies propositional stability provided for all histories h in H, events e with he in H

and all propositional variables P , if P is true at h then P is true at he. We remark

1.5. COMPARING DEL AND ETL 49

that this property is not crucial for the results in this section and can be dropped pro-

vided we allow product update to change the ground facts by revising Definition 1.2.4

and 1.2.6 (cf. [71]).

Finally, we need the following definition:

Definition 1.5.5 (Isomorphism between ETL models) An isomorphic map be-

tween two ETL models, H = (Σ, H,∼, V) and H′ = (Σ′, H ′,∼′, V ′), is a one-to-one

function f from Σ onto Σ′ such that, for every σ1, . . . , σn, τ1, . . . , τm ∈ Σ, i ∈ A and

p ∈ At,

• if σ1 . . . σn ∼i τ1 . . . τm, then f(σ1) . . . f(σn) ∼′i f(τ1) . . . f(τm), and

• if σ1 . . . σn ∈ V (p), then f(σ1) . . . f(σn) ∈ V ′(p).

/

Let E be a fixed event model and PE be the protocol that consists of all finite sequences

of the repetition of E . That is, PE = ({(E , e) | e ∈ Dom(E)})∗, where λ is the empty

string.

Proposition 1.5.6 (van Benthem [62]) An ETL modelH is isomorphic to Forest(M,PE)

for some epistemic model M and event model E iff H satisfies propositional stability,

synchronicity, perfect recall, uniform no miracles, as well as epistemic bisimulation

invariance.

We do not repeat the proof from [62] here since it is a specific case of our main

representation theorem (Theorem 1.5.8) given below. But there are many further

DEL-protocols of interest3. For example, let PAL be the class of all uniform protocols

3Van Benthem & Liu [69] suggest that iterating one large disjoint union of event model involving
suitable preconditions can ‘mimic’ ETL style evolution for more complex protocols with varying
event models. We do not pursue this claim here.

50 CHAPTER 1. MERGING FRAMEWORKS

consisting of public announcements (with epistemic formula as preconditions). Recall

that F(PAL) = {Forest(M,P) | M an epistemic model and P ∈ PAL}. The class

F(PAL) is one of the classes that we will closely study in Chapter 2. The class is

characterized by the following representation theorem.

Proposition 1.5.7 (PAL-Generated Models) An ETL model (Σ, H,∼, V) is iso-

morphic to some model in F(PAL) iff it satisfies the minimal properties of Theo-

rem 1.5.8, and:

• for all h, h′, he, h′e ∈ H, if h ∼i h′, then he ∼i h′e (all events are reflexive)

• for all h, h′ ∈ H, if he ∼i h′e′, then e = e′ (no different events are linked).

This result is also an easy variant of our representation theorem below.

Before proving the representation theorem, a few technical comments are in order.

The following proof will construct a DEL-protocol from an ETL model satisfying

certain properties. In particular, an event model will be constructed at each level

of a given ETL model. Therefore, at each level of the ETL model we will need to

specify a formula of Lel as a precondition for each primitive event e (cf. Definition

1.2.6). Thus, we already see the role that bisimulation invariance will play in the

proof: without it, there is no hope of finding a formula of Lel for a precondition of

an event e. However, as is well-known, epistemic bisimulation invariance alone is

typically not enough to guarantee the existence of such a formula. More specifically,

there are examples of infinite sets that are bisimulation closed but not definable by

any formula of Lel (however, it will be definable by a formula of epistemic logic with

infinitary conjunctions — see [10] for a discussion). Thus, if the set of histories

at some level in which an event e can be executed is infinite, there may not be

a formula of Lel that defines this set to be used as a precondition for e. Such a

1.5. COMPARING DEL AND ETL 51

formula will exist under an appropriate finiteness assumption: at each level there

are only finitely many histories in which e can be executed, i.e., for each n, the set

{h | he ∈ H and len(h) = n} is finite.

Theorem 1.5.8 (Main Representation Theorem) If an ETL model is isomor-

phic to some model in Funi then it satisfies propositional stability, synchronicity, per-

fect recall, uniform no miracles, as well as epistemic bisimulation invariance.

If an ETL model H satisfies the finiteness assumption, propositional stability, syn-

chronicity, perfect recall, uniform no miracles, and epistemic bisimulation invariance,

then H is isomorphic to some model in Funi.

Proof. Suppose that H = (Σ, H,∼, V) is isomorphic to some model H′ = (Σ′, H ′,∼′

, V) ∈ Funi. It suffices to show thatH′ satisfies the specified conditions. We show that

H′ satisfies epistemic bisimulation invariance, and leave it to the reader to check that

H satisfies the remaining properties. Let M and P be such that H′ = Forest(M,P).

Suppose that h, h′ ∈ H ′, h and h′ are epistemically bisimilar, and he ∈ H ′ for

some event e. We must show h′e ∈ H. By construction (Definition 1.4.5), h =

se1e2 · · · ene ∈ Dom(M×E1 × · · · En × E) where (E1, e1)(E2, e2) · · · (En, en)(E , e) ∈ P,

s ∈ D(M), for each i = 1, . . . , n, ei ∈ Dom(Ei) and e ∈ Dom(E). In order to prove

h′e ∈ H, it is enough to show h′e ∈ Dom(M× E1 × · · · En × E). This follows from

two facts: (1) h′ ∈ D(M × E1 × · · · × En) and (2) h′ |= pre(e). (2) follows from the

fact that h and h′ are epistemically bisimilar and pre(e) is assumed to be a formula

of Lel. (1) follows from the assumption that h ∼∗ h′.

Suppose H = (Σ, H,∼, V) is an ETL model satisfying the above properties. We

must show there is an epistemic model MH and a DEL protocol PH such that H =

Forest(M,P). For the initial epistemic model, let M = (W ′,∼′, V ′) with W ′ = {h ∈

H| len(h) = 1}, for h, h′ ∈ W , define h ∼′i h′ provided h ∼i h′, and for each p ∈ At,

52 CHAPTER 1. MERGING FRAMEWORKS

V ′(p) = V (p) ∩W .

Call a history h ∈ H maximal if there is no h′ ∈ H such that h ≺ h′. Now

let ∼∗ be the reflexive transitive closure of the union of the ∼i relations. For each

maximal history h ∈ H, define the closure of h, denoted C(h), to be the the smallest

set that contains all finite prefixes of h, and if h′ ∈ C(h) and h′ ∼∗ h′′, then also

h′′ ∈ C(h). Note that by perfect recall, C(h) is closed under finite prefixes and

is completely connected with respect to the ∼∗ relation. It is easy to see that4

H =
⋃
{C(h) | h is a maximal history}.

We define, for each maximal history h ∈ H and j = 1, . . . , len(h), an event model

Ehj = (Shj ,→, pre) as follows:

1. Shj = {e ∈ Σ | there is a history h of length j in H with h = h′ · e}.

2. For each e, e′ ∈ Shj , define e→i e
′ provided there are histories h and h′ of length

j ending in e and e′ respectively, such that h ∼i h′.

3. For each e ∈ Shj , let pre(e) be the formula that characterizes the set {h | he ∈ H

and len(h) = j}. Such a formula does exist, due to epistemic bisimulation

invariance and the finiteness assumption.

Finally, let P = {(E)hj | h is a maximal history in H and j ≤ len(h)}. Clearly, P is

a DEL protocol and so is a uniform DEL-protocol. It is easy to see that Forest(M,P)

and H have the same set of histories. All that remains is to prove that the epistemic

relations are the same in H and Forest(M,P)

Claim For each h1, h2 ∈ H, h1 ∼i h2 in H iff h1 ∼i h2 in Forest(M,P).

Proof of Claim. The proof is by induction on the length of h and h′ (which can

4Note that C(h) only contains finite histories. According to Definition 1.3.1, H only contains
finite histories. This restriction is not crucial, however, and our result remains true without it.

1.5. COMPARING DEL AND ETL 53

be assumed to be the same by synchronicity). If len(h) = 1, the claim is immediate

by the definition of M .

For the induction step, let h1 = h · e and h2 = h′ · e′. Suppose h1 ∼i h2 in H.

Then by perfect recall, h ∼i h′ in H. So, by the induction hypothesis, h ∼i h′ in

Forest(M,P) as well. By the definition given above, e→i e
′ in the appropriate event

model Ehmj for a maximal history hm and j = len(h1). It follows by the definition of

product update that h1 ∼i h2 in Forest(M,P).

For the other direction, assume h1 ∼i h2 in Forest(M,P). Then, by definition

of product update, h ∼i h′ in Forest(M,P) and e −→i e
′ in the appropriate event

model. By the way the event model is defined, there must be some x and x′ with

x · e ∼i x′ · e′ in H, and therefore, by uniform no miracles, also h · e ∼i h′ · e′ in H.

qed (of Claim)

An immediate consequence is that H and Forest(M,P) are the same model. qed

This Theorem identifies the minimal properties that any DEL generated model

must satisfy, and thus it describes exactly what type of agent is presupposed in the

DEL framework. The proof generalizes the one in van Benthem & Liu [69], which

is an immediate special case. The proof of the characterization of PAL (Proposition

1.5.7) is also a simple variant. The details are left to the reader.

Note that the finiteness assumption can be dropped at the expense of allowing pre-

conditions to come from a more expressive language (specifically, infinitary epistemic

logic). Alternatively, we can define the preconditions to be sets of histories (instead

of formulas of some logical language). A possible compromise is to work with state-

dependent protocols instead of uniform protocols. More precisely, in the above proof,

we set the precondition of e ∈ Shj to be >, and define a local DEL-protocol p so

that, for all w ∈ W , p(w) = {(E)hj | h is a maximal history in H and j ≥ len(h)}.5

5This construction suggests that the preconditions of events can be imitated by a trivial precon-
dition, >, and appropriate protocol constraints. For a further discussion about the relation between

54 CHAPTER 1. MERGING FRAMEWORKS

Using this observation, we can argue in the same style as above to show the following

representation theorems for state-dependent DEL protocols.

Theorem 1.5.9 An ETL model is isomorphic to some model in Fsd iff it satisfies

propositional stability, synchronicity, perfect recall, and uniform no miracles.

Theorem 1.5.10 An ETL model (Σ, H,∼, V) is isomorphic to some model in F(PALuni)

iff it satisfies the minimal properties of Theorem 1.5.9, and the additional properties

of Proposition 1.5.7.

1.6 Conclusion and Discussion

In this chapter, we have developed a formal framework that can describe two impor-

tant aspects of intelligent interaction, epistemic dynamics and protocol information.

We have achieved this by merging the two major systems in intelligent interaction,

DEL and ETL. DEL describes epistemic dynamics well by the mechanism of event

models and product update, and ETL uses tree structures to represent communica-

tional or observational constraints that are present in various situations of intelligent

interaction. These representational frameworks are combined in our framework and

allow precise descriptions of epistemic dynamics and protocol information. In merging

DEL and ETL, our framework also provides a precise comparison of the two systems.

In particular we have proved that representations in DEL can be captured by a special

class of ETL models.

Our representation theorems suggest a more general correspondence theory6 re-

lating natural properties of ETL frames to formulas in suitable modal languages.

For instance, what should the language of ETL should be to express natural prop-

erties of ETL models? For instance, consider some of the properties mentioned in

preconditions and protocols, see Remark 2.2.15.
6[61] discusses related correspondence issues but without our connection to DEL protocols.

1.6. CONCLUSION AND DISCUSSION 55

Theorem1.5.8. Synchronicity suggests the extension of Letl with an operator that

quantifies over the histories of the same length. (A similar operator is considered

in Chapter 2) Perfect recall suggests the addition of an operator that refers to the

previous nodes. (This operator is considered in Chapter 3) Theorem 1.5.8 demarcates

some important properties of ETL models and this raises the issue of how to design

the corresponding formal language to express the properties.

Another natural question to ask is whether a similar result can be obtained in sys-

tems that describe belief revision. While our framework merges the systems that are

designed to describe knowledge, can we investigate a similar project for the systems

that describe beliefs? Indeed, van Benthem & Dègremont [67] pursue the question.

Recently, Dynamic Doxastic Logic (e.g [7, 64]) has been developed to represent agents’

belief state and informational change, on the one hand, and temporal structures de-

scribing beliefs have been studied (e.g. [12]), on the other. [67] investigates the exact

connection between the two kinds of systems. In their framework, doxastic temporal

structures are generated by repeatedly updating doxastic models, and a representa-

tion theorem is proved to characterize the class of generated temporal structures.

Chapter 2

Logics

In the previous chapter, we have developed a method to generate time-branching tree

structures by repeated applications of product update in order to represent temporal

evolutions of agents’ informational states. In Section 1.5.1, we reinterpreted the

language of DEL over the class of these structures called DEL-generated ETL models.

The goal of this chapter is to pursue this perspective further and study logics of DEL

reinterpreted over classes of DEL-generated ETL models.

The main results in this chapter concern complete axiomatizations of classes of

DEL-generated ETL models. Each set X of DEL-protocols induces a class F(X) of

DEL-generated ETL models. This suggests the following natural questions:

• Which DEL protocols generate interesting ETL models?

• Can we axiomatize interesting classes of DEL-generated ETL models?

For some specific combinations of model classes and logical languages, the answers

are already already known. For example, recall E∗ is the set of all finite sequences

of DEL event models — i.e., the forest of all possible DEL event structures. Then

F(E∗) is the class consisting of all DEL-generated ETL models. Its logic (with respect

56

57

to the language LDEL) can be axiomatized using the well-known reduction axioms:

indeed this is the standard completeness theorem for DEL: cf. [6].

In this chapter, we will closely investigate the class of ETL models generated from

protocols consisting of public announcements. We will reinterpret Public Announce-

ment Logic over the class and study the resulted logic, which we will call Temporal

Public Announcement Logic (TPAL). As we saw in Chapter 1 (Section 1.2.1), public

announcements are the simplest kind of model transformations in DEL. Nonethe-

less, a close study of models generated from them will reveal essential features of

our framework and help us develop techniques that can be applied to other logics

based on our framework. Indeed we will show that the methods developed for the

axiomatization of TPAL can be generalized to obtain axiomatizations for logics over

different subclasses of DEL-generated ETL models. We will call the resulted logical

systems systems of Temporal Dynamic Epistemic Logic (TDEL).

We will proceed as follows. We will start by presenting the system TPAL (Sec-

tion 2.1) and go on to study various semantic results, such as model normalization

(Section 2.2). Then we will give axiomatization of TPAL and prove the completeness

theorem (Section 2.3). We will also show that the satisfiability problem of TPAL is

decidable and discuss how we can incorporate (relativized) common knowledge into

the system. After this, we will provide the axiomatization of TPAL restricted to

uniform protocols and prove that PAL can be faithfully embedded into TPAL (Sec-

tion 2.4). Having these results in TPAL, we will extend our system to TDEL. We

will first prove the completeness and decidability results for TDEL and its fragments

TDEL(X) (Section 2.5). Then we will show how other results can be also generalized

for TDEL (Section 2.6).

58 CHAPTER 2. LOGICS

2.1 Temporal Public Announcement Logic

We will start by presenting the system of TPAL. First the definition of protocols must

be restricted to public announcements.

Definition 2.1.1 (PAL-Protocol) Let PAL be the set of public announcements in

E, i.e. {!ϕ | ϕ ∈ Lel}.1 A PAL-protocol is a set P ⊆ PAL∗ closed under finite

prefix. We denote the set of PAL-protocols by Ptcl(PAL). A state-dependent PAL-

protocol (sd -PAL-protocol) p on an epistemic model M is a function that assigns a

PAL-protocol to each world in M a PAL-protocol. We denote the class of sd -PAL-

protocols by PAL. /

By the above notations, we can denote the classes of ETL models generated from

sd -PAL-protocols and uniform PAL-protocols by F(PAL) and F(Ptcl(PAL)) respec-

tively. Below we will axiomatize both F(PAL) and F(Ptcl(PAL)).

Definition 2.1.2 (Language of TPAL) Formulas of TPAL is inductively defined

as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [!ψ]ϕ

where p ∈ At, i ∈ A and ψ ∈ Lel.2 The duals, 〈i〉 and 〈!ϕ〉, of [i] and [!ϕ], and

the other boolean operators are defined in the standard way. We denote the set of

formulas in PAL by Ltpal. /

By restricting our attention to public announcements, we can simplify many of

the definitions in Section 1.4.2.

1The restriction to Lel here is placed here, since we deal with a subclass of DEL-generated
ETL models and DEL-protocols are restricted to the event models with preconditions in Lel. (See
Definition 1.2.4 and Remark 1.4.13.) As we will see in Chapter 3, this restriction can be lifted by
generalizing the method of generating ETL models.

2This last restriction is due to the definition of PAL-protocols. See Footnote 1.

2.1. TEMPORAL PUBLIC ANNOUNCEMENT LOGIC 59

Definition 2.1.3 (cf. Definition 1.4.8) LetM = (W,∼, V) be an epistemic model,

and p an sd -PAL-protocol on M. We define

Mσ,p = (W σ,p,∼σ,p, V σ,p)

by induction on the length of σ:

• W σ0,p = W , for each i ∈ A, ∼σ0,p
i = ∼i and V σ0,p = V .

• wσm+1 ∈ W σm+1,p iff (1) w ∈ W, (2)Mσm,p, wσm |= ϕm+1, and also(3) σm+1 ∈

p(w).

• For each wσm+1, vσm+1 ∈ W σm+1,p, wσm+1 ∼σm+1,p
i vσm+1 iff w ∼i v.

• For each p ∈ At, V σm+1,p(p) = {wσm+1 ∈ W σm+1,p | w ∈ V (p)}. /

Definition 2.1.4 (cf. Definition 1.4.9) LetM = (W,∼, V) be an epistemic model

and p an sd -PAL-protocol onM. A PAL-generated ETL model Forest(M, p) = (H,∼′

, V ′) is defined as follows:

• H = {h | h ∈ W σ,p for some σ ∈
⋃
w∈W p(w)}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ for some σ ∈
⋃
w∈W p(w), h ∼i

h′ iff h ∼σ,pi h′.

• For each p ∈ At, h ∈ V ′(p) iff h ∈ V σ,p(p), where h = wσ for some σ ∈⋃
w∈W p(w). /

Example 1.4.11 in Chapter 1 illustrates how ETL-generated models are generated

from PAL-protocols. The readers are invited to consult the example.

Definition 2.1.5 (Truth) Let H ∈ F(PAL) with H = Forest(M, p) = (H,∼, V).

For a history h ∈ H, the truth of ϕ ∈ Ltpal is inductively defined as follows:

60 CHAPTER 2. LOGICS

H, h |= p iff h ∈ V (P) (with P ∈ At)

H, h |= ¬ϕ iff H, h 6|= ϕ

H, h |= ϕ ∧ ψ iff H, h |= ϕ and H, h |= ψ

H, h |= [i]ϕ iff ∀h′ ∈ H, h ∼i h′ implies H, h′ |= ϕ

H, h |= 〈!ψ〉ϕ iff h!ψ ∈ H and H, h!ψ |= ϕ

/

Based on this semantic framework, the main semantic notions are defined by the

standard way.

Definition 2.1.6 (Semantic Notions) Let ϕ ∈ Lel. ϕ is satisfiable in M, if there

is w in M such that M, w |= ϕ. ϕ is satisfiable if ϕ is satisfiable in some M. ϕ is

valid in M, written as M |= ϕ, if M, w |= ϕ for all w in M. ϕ is valid, written as

|= ϕ, if ϕ is valid for all epistemic models. /

2.2 Semantic Results

Next we study semantic results of the system TPAL. We start out by seeing some

semantic features that relate PAL and TPAL. Then we will make some simple obser-

vations in TPAL, which we will be used later in this chapter. These results will lead

us to prove a truth-preservation result under a certain kind of model transformations,

which we call normalization..

2.2.1 PAL and TPAL

We first make some observations that relate TPAL and PAL. The following proposi-

tion is an immediate consequence of Proposition 1.5.1.

2.2. SEMANTIC RESULTS 61

Proposition 2.2.1 Let M be an epistemic model. Let PAL be the set of public an-

nouncements in E. Then, for any formula ϕ in Ltpal,

M, w |= ϕ in PAL iff Forest(M,PAL∗), w |= ϕ in TPAL.

This proposition also shows that the semantics framework of TPAL generalizes that

of PAL. If we permit all formulas to be publicly announced by taking the uniform pro-

tocol PAL∗, then the truth of formulas in TPAL corresponds to that in the framework

of PAL. Because of the generalization, some basic validities in PAL do not obtain in

TPAL.

Proposition 2.2.2 (Public Announcement Operators) The following properties

hold in PAL but not in TPAL.

(A) |= 〈!p〉〈!q〉ϕ↔ 〈!(p ∧ q)〉ϕ (with p, q ∈ At)

(B) |= 〈!ϕ〉 ↔ ϕ (with ϕ ∈ Lel)

Proof. For PAL, A and B follows straightforwardly from the semantic definition

of 〈!ϕ〉, as given Definition 1.2.2. The readers are invited to give counterexamples

against A and B in TPAL. Also see the following discussion. qed

The validity of A in PAL shows that sequences of public announcements are iden-

tified with some single announcements in PAL. On the other hand, it is invalid in

TAPAL, since a protocol may not allow the single announcement !(p∧q) even when it

allows the sequence of announcements !p!q. The validity of B in PAL reflects the gen-

eral assumption in DEL that every event can happen if its precondition is true. (See

Section 1.2.2) TPAL removes this assumption and invalidates the principle, while it

assumes the truthfulness of announcements and validates the left-to-right direction.

Because the invalidity of the principle, the standard reduction axioms in PAL do not

62 CHAPTER 2. LOGICS

hold. See below in Section 2.3.

Next, we will observe some simple properties of models in TPAL. First, the eval-

uation of epistemic formulas only depends on the ‘current stage’ of DEL-generated

ETL models.

Observation 2.2.3 Let H = Forest(M, p) ∈ F(PAL). For ϕ ∈ Lel, for histories h

in Forest(M, p) with h = wσ where w ∈ Dom(M) and σ ∈ PAL∗,

H, hσ |= ϕ iff Mσ,p, wσ |= ϕ.

Proof. By a straightforward induction on ϕ. qed

2.2.2 Simple Observations

Next we see some simple results that we will use later in this chapter. First, a formula

ϕ ∈ Ltpal can describe, at most, what is true after a sequence of announcements

bounded in length by the depth of ϕ.

Definition 2.2.4 (Depth of a Formula) Suppose ϕ ∈ Ltpal. The depth of ϕ, de-

noted d(ϕ), is defined as follows:

• d(p) = 0 with p ∈ At

• d(¬ϕ) = d(ϕ)

• d(ϕ ∧ ψ) = max(d(ϕ), d(ψ))

• d([i]ϕ) = d(ϕ)

• d(〈ψ〉ϕ) = 1 + d(ϕ)

2.2. SEMANTIC RESULTS 63

This definition is lifted to a set X ⊆ Ltpal of formulas as follows: d(X) = max{d(ϕ) |

ϕ ∈ X}. /

Given a protocol p on M and a sequence σ ∈ PAL∗ with σ ∈ p(w) for some

w ∈ Dom(M), we define a protocol pσ<k on Mσ,p so that pσ<k (wσ) = {τ | στ ∈

p(w) and len(τ) ≤ k} for all wσ ∈ Dom(Mσ,p). pσ<k represents which sequences of

public announcements of length k or less are allowed in p after σ. Also, we define

pσ<(wσ) = {τ |στ ∈ p(w)} when not stating the upper bound. A straightforward

induction gives the following result:

Observation 2.2.5 Let M be an epistemic model, p a state-dependent protocol on

M. For all w ∈ Dom(M) and σ ∈
⋃
w∈Dom(M) p(w),

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<d(ϕ)), wσ |= ϕ

and

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<), wσ |= ϕ.

Next, the histories relevant to evaluate the truth of a given formula ϕ ∈ Ltpal are

only the ones that contain public announcements occurring in ϕ.

Definition 2.2.6 (Announcement Occurrence Set) The announcement occurrence

set AOC(ϕ) of a TAPAL-formula ϕ is defined inductively as follows:

• AOC(p) = ∅ with p ∈ At

• AOC(¬ϕ) = AOC(ϕ)

• AOC(ϕ ∧ ψ) = AOC(ϕ) ∪ AOC(ψ)

• AOC([i]ϕ) = AOC(ϕ)

64 CHAPTER 2. LOGICS

• AOC(〈!ψ〉ϕ) = {!ψ} ∪ AOC(ϕ)

Given a sequence σ =!ϕ1 . . .!ϕn ∈ Σ∗pal, we define

AOC(σ) := AOC(ϕ1) ∪ · · · ∪ AOC(ϕn).

Furthermore, given an sd -PAL-protocol p on M = (W,∼, V), we define

AOC(p) :=
⋃

{σ|∃w∈W :σ∈p(w)}

AOC(σ).

/

Given a state-dependent protocol p on a model M, for w ∈ Dom(M) define

(p(w))AOC(ϕ) as follows:

(p(w))AOC(ϕ) = {σ ∈ p(w) | for each !θ in σ, !θ ∈ AOC(ϕ)}.

This set represents announceable sequences of announcements at w that only con-

sist of public announcements occurring in ϕ. Now we can show the following by a

straightforward induction.

Observation 2.2.7 SupposeM is an epistemic model and p and q are two protocols

on M. Suppose (p(v))AOC(ϕ) = (q(v))AOC(ϕ) for all v ∈ Dom(M). Then for all

w ∈ Dom(M) and ϕ ∈ Ltpal,

Forest(M, p), w |= ϕ iff Forest(M, q), w |= ϕ.

Finally we state the variant of Proposition 2.2.1. Given a formula ϕ ∈ Ltpal and an

epistemic modelM, define pϕ so that, for all w ∈ Dom(M), pϕ(w) = {!θ1 · · · θk |!θi ∈

AOC(ϕ) (1 ≤ i ≤ k) for some k}. In the light of the above lemma, pϕ represents

2.2. SEMANTIC RESULTS 65

the sequences of public announcements that are relevant to the truth value of ϕ. We

can show by an easy induction that the generated ETL model from pϕ preserves the

truth value of ϕ in PAL in the following sense.

Observation 2.2.8 Let ϕ ∈ Ltpal. Then

M, w |= ϕ in PAL iff Forest(M, pϕ), w |= ϕ in TPAL.

2.2.3 Model Normalization

Next, we turn our attention to the following distinctive property of models in TPAL.

Given a set X of public announcements, models in TPAL can be transformed so

that they contain only the public announcements in X and public announcements

with tautologous preconditions (call such public announcements tautologous public

announcements), while the truth of the formulas expressed with public announce-

ments in X is preserved. We call this model transformation normalization. This

transformation is a general property of model in our framework and will be used in

Chapter 3.

To formulate the transformation, we need some definitions. Let ϕ0, ϕ1, . . . and

>0,>1, . . . be a pair of (possibly infinite) sequences of formulas in Lel such that (i)

>i is tautologous and (ii) ϕi 6= ϕj and >i 6= >j for all i, j ≥ 0.

Definition 2.2.9 (Normalization of Sequences) Given a sequence σ ∈ PAL∗, we

define σ[!>0/!ϕ0, !>1/!ϕ1, . . .] to be the result of replacing all occurrences of !ϕi in σ

with !>i for all i. /

The idea of normalization is to replace public announcements with tautologous

public announcements, preserving tree structures.

66 CHAPTER 2. LOGICS

Definition 2.2.10 (Normalization of Models) Let p be an sd -protocol on M.

Also letH = Forest(M, p) = (H,∼, V). DefineH[!>0/!ϕ0, !>1/!ϕ1, . . .] = (H ′,∼′, V ′)

by:

• H ′ := {h[!>0/!ϕ0, !>1/!ϕ1, . . .] | h ∈ H}

• (h[!>0/!ϕ0, !>1/!ϕ1, . . .], g[!>0/!ϕ0, !>1/!ϕ1, . . .]) ∈∼′ (i) iff (h, g) ∈∼ (i)

• V ′(p) := {h[!>0/!ϕ0, !>1/!ϕ1, . . .] | h ∈ V (p)}

/

Now we need to confirm that, given that H is in F(PAL), H[!>0/!ϕ0, !>1/!ϕ1, . . .]

is also in F(PAL). Indeed, when h!ϕi is in H, h!>i must be in H[!>0/!ϕ0, !>1/!ϕ1, . . .]

since the tautologous formula !>i is guaranteed to be true at h. Also if (h, g) ∈∼ (i),

the corresponding nodes for h and g will be indistinguishable by the construction of

models in TPAL. We state this fact more precisely as follows.

Definition 2.2.11 (Protocol above σ in H) Let H = Forest(M, p) ∈ F(PAL).

Let σ ∈ PAL∗. Then define pH,σ< on Mp,σ so that

pH,σ<(wσ) = {τ | wστ in H}

/

Observation 2.2.12 Let ϕ0, ϕ1, . . . be a sequence of formulas in Lel and >0,>1, . . . ,

a sequence of tautologous formulas in Lel. Suppose, for every i, j ≤ 0, if i 6= j, then

ϕi 6= ϕj and >i 6= >j. Let H = Forest(M, p). Put G = H[!>0/!ϕ0, !>1/!ϕ1, . . .].

G = Forest(M, pG,λ<)

where λ is the empty sequence. /

2.2. SEMANTIC RESULTS 67

1
![i]p

2

!>

1

![i]p

!p

1

!p !¬q
!¬q

2

1
!>1

2

!>

1

!>1

!>0

1

!>0 !¬q
!¬q

2

1
!>1

2

!>3

1

!>1

!>0

1

!>0 !>2

!>2

2

Figure 2.1: Model Normalization

Example 2.2.13 (Normalization) Let us illustrate the idea of normalization. In

Figure 2.1, the model on the left visualizes a DEL-generated ETL model (the one dis-

cussed in Figure 1.7). Let us denote the model by H. The upper-right model is the

ETL model H[!>0/!p, !>1/![i]p] obtained by replacing !p and ![i]p with >0 and >0 re-

spectively. The lower-right model is the ETL modelH[!>0/!p, !>1/![i]p, !>2/!¬q, !>3/!>]

obtained by replacing ¬q and > with >2 and >3 additionally. /

Now we prove the truth-preservation result with respect to model normalization.

Given a formula ϕ ∈ Ltapal, even if we replace the announcements that do not occur

in ϕ with “new” tautologous formulas in a DEL-generated ETL model, the truth of

ϕ is preserved.

Proposition 2.2.14 (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let X

be a finite subset of PAL. Furthermore, let !ϕ0, !ϕ1 . . . be an enumeration of public

announcements in PAL\X without repetition, and !>0, !>1, . . . be an enumeration of

68 CHAPTER 2. LOGICS

tautologous public announcements in PAL\X without repetition. Then, for every h

and TPAL-formula ϕ such that AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . .], h[!>0/!ϕ0, !>1/!ϕ1, . . .] |= ϕ

Proof. Let h = wσ with w in M and σ ∈ p(w). Denote by H′ = (H ′,∼′, V ′)

and h′ respectively the normalization of H = (H,∼, V) and the element (in H′)

corresponding h. The proof is by a straightforward induction on ϕ. The base and

boolean cases are clear. For the case where ϕ is of the form [i]ψ, note that the

normalization [!>0/!ϕ0, !>1/!ϕ1, . . .] can be considered as an isomorphic map from

H to H ′ by Definition 2.2.10, given our assumption that all >i 6= >j and ϕi 6= ϕj

for all distinct i, j. Therefore we have {g | h′ ∼′i g′} = {g | h ∼i g}. Given this

consideration, the case of [i] is immediate by IH.

Assume that ϕ is of the form 〈!θ〉ψ. Assume LHS. Then we have Forest(M, p), h!θ |=

ψ. Since AOC(ψ) ⊆ AOC(〈!θ〉ψ) ⊆ X, we can by IH obtain

H[!>0/!ϕ0, !>1/!ϕ1, . . .], h!θ[!>0/!ϕ0, !>1/!ϕ1, . . .] |= ψ.

Since θ ∈ AOC(〈!θ〉ψ), we have

H[!>0/!ϕ0, !>1/!ϕ1, . . .], h[!>0/!ϕ0, !>1/!ϕ1, . . .]!θ |= ψ.

Therefore, we have H[!>0/!ϕ0, !>1/!ϕ1, . . .], h[!>0/!ϕ0, !>1/!ϕ1, . . .] |= 〈!θ〉ψ. qed

Remark 2.2.15 (Preconditions and Protocol Information) As we will see be-

low (Section 2.6.1), the idea of normalization can be generalized to the full class

of DEL-generated ETL models and a similar result can be obtained for Temporal

Dynamic Epistemic Logic.

2.3. COMPLETE AXIOMATIZATION 69

One thing that this theorem illustrates is that preconditions of events can be imi-

tated by trivial preconditions and appropriate adjustment of protocols. For instance,

the public announcement !p can only happen at the worlds where p is true and, as

a result, it eliminates from a model the worlds at which p is false. However, we can

make the trivial public announcement !> work in the same way by adjusting proto-

cols so that !> can happen at the worlds where p is true. Note that the argument for

Theorem 1.5.9 appealed to the same type of consideration. /

Remark 2.2.16 (Normalization and Observation 2.2.7) Observation 2.2.7 should

not be conceived as the generalization of Proposition 2.2.14. Observation 2.2.7 only

refers to certain initial segments of PAL-protocols, whereas Proposition 2.2.14 refers

to all parts of PAL-protocols. Also in Observation 2.2.7, two compared ETL mod-

els do not have to have the same tree structure, whereas an ETL model and its

normalization share the same structure by construction. /

2.3 Complete Axiomatization

Before we move on to the axiomatization of TPAL, the following fact about the system

of PAL should be mentioned for contrast. In PAL, the following reduction axioms are

valid:

〈!θ〉p ↔ θ ∧ p (with p ∈ At)

〈!θ〉¬ϕ ↔ θ ∧ ¬〈!θ〉ϕ

〈!θ〉(ϕ ∧ ψ) ↔ 〈!θ〉ϕ ∧ 〈!θ〉ψ

〈!θ〉[i]ϕ ↔ θ ∧ [i](θ → 〈!θ〉ϕ).

Using these equivalences, we can transform any PAL-formulas equivalently into some

EL-formulas ([6]). (We can push public announcement operators toward the right

until they precedes propositional letters, and then apply the first reduction axiom.)

Thus, with these axioms, the completeness of PAL is guaranteed by the completeness

70 CHAPTER 2. LOGICS

of EL. In fact, the type of compositional analysis via reduction axioms can be applied

to the full DEL and provides a strong means to provide the complete axiomatization.

The validity of the reduction axioms in PAL depends crucially on the equivalence

between the truth of a formula θ and the availability of !θ, more precisely, θ ↔ 〈!θ〉>.

(〈!θ〉> literally reads as “!θ can happen after which >”. Given > is tautologous,

we can read 〈θ〉> as “!θ can happen.”) For instance, in the first reduction axiom,

〈!θ〉p on the left, which reads as “!θ can happen after which p”, is equated with

θ ∧ p on the right, which only claims the truth of θ and p. However, as we saw in

Proposition 2.2.2, the equivalence does not hold in TPAL. Consequently we cannot

appeal to the compositional analysis via reduction axioms to axiomatize the system

of TPAL. We need to redo the work.

2.3.1 Axiomatic System

Definition 2.3.1 (Axiomatization of TPAL) The axiomatization TPAL consists

of the following axiom schemes and inference rules.

Axioms

PC Propositional validities

iK [i](ϕ→ ψ)→ ([i]ϕ→ [i]ψ)

!K [!θ](ϕ→ ψ)→ ([!θ]ϕ→ [!θ]ψ)

R1 〈!θ〉p↔ 〈!θ〉> ∧ p (with p ∈ At)

R2 〈!θ〉¬ϕ↔ 〈!θ〉> ∧ ¬〈!θ〉ϕ

R3 〈!θ〉(ϕ ∧ ψ)↔ 〈!θ〉ϕ ∧ 〈!θ〉ψ 3

3R3 follows from !N and !K. However we included it to make the contrast with the PAL reduction
axioms explicit.

2.3. COMPLETE AXIOMATIZATION 71

R4 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](〈!θ〉> → 〈!θ〉ϕ)

A1 〈!θ〉> → θ

Inference Rules

MP If ` ϕ and ` ϕ→ ψ, then ` ψ.

iN If ` ϕ, then ` [i]ϕ for any i ∈ A.

!N If ` ϕ, then ` [!θ]ϕ for any !ψ ∈ PAL. /

First note that R1-4 are similar to the reduction axioms in PAL. However they

differ from reduction axioms in PAL in terms of occurrences of the formulas of the

form 〈!θ〉> instead of simply θ. Because of this, formulas in TPAL do not reduce to

formulas in EL. Second, A1 gives the only one way of the equivalence between the

truth of a formula and its availability as a public announcement. A1 reads as “only

true formulas can be announced”. The converse is invalid.

Remark 2.3.2 (Without Uniform Substitution) Notice that TPAL does not sat-

isfy uniform substitution. For one thing, axiom R1 only applies to atomic proposi-

tions p ∈ At. Furthermore, the preconditions of public announcements are in Lel.

Thus, for example, 〈!〈!θ1〉>〉p↔ 〈!〈!θ2〉>〉>∧ p is not an instance of axiom R1. This

restriction will be lifted in Chapter 3. /

Before turning to the main result of this Section, we consider axiom R4 in more

detail. Consider the following three variations of R4:

1. 〈!θ〉[i]ϕ↔!θ ∧ [i]〈!θ〉ϕ

2. 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](θ → 〈!θ〉ϕ)

3. 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](〈!θ〉> → 〈!θ〉ϕ)

72 CHAPTER 2. LOGICS

Each of these axioms represent a different assumption about the underlying protocol

and how that affects the agents’ knowledge. The first is the usual PAL reduction

axiom and assumes a specific protocol (which is common knowledge) where all true

formulas are always available for announcement. The second (weaker) axiom is valid

when there is a fixed protocol that is common knowledge (cf. Section 2.4.1). Finally,

the third is an instance of R4 and is thus true for all protocols.

2.3.2 Completeness Proof

Now our goal is to prove the following theorem:

Theorem 2.3.3 TPAL is sound and strongly complete with respect to the class of

ETL models F(PAL).

The proof is a variant of the standard Henkin construction. We construct the

canonical ETL model from the set of maximal consistent sets in TPAL (mcs below).

The main idea is that each mcs defines sequences of ‘legal’ public announcements

which we use to define a canonical state-dependent protocol. We start by defining

the set of legal histories and a function λn that assigns maximally consistent sets to

each node on a history.

Definition 2.3.4 (Legal Histories) Let W0 be the set of all maximal consistent

sets in TPAL. We define λn and Hn (0 ≤ n ≤ d(Σ)) are defined as follows:

• Set H0 = W0, and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {h!θ | h ∈ Hn and 〈!θ〉> ∈ λn(h)}. For each h = h′!θ ∈ Hn+1,

define λn+1(h) = {ϕ | 〈!θ〉ϕ ∈ λn(h′)}. /

We first confirm that each map λn is well-defined.

2.3. COMPLETE AXIOMATIZATION 73

Lemma 2.3.5 For each n ≥ 0, for each σ ∈ Hn, λn(σ) is maximally consistent.

Proof. The proof is by induction on n. The case n = 0 is by definition. Suppose

that the statement holds for Hn and λn. Suppose σ ∈ Hn+1 with σ = σ′!θ. By the

induction hypothesis, λn(σ′) is an mcs. Furthermore, by the construction of Hn+1,

〈!θ〉> ∈ λn(σ). Therefore, λn+1(σ) 6= ∅. Let ϕ ∈ Ltpal. Since λn(σ′) is an mcs, either

〈!θ〉ϕ ∈ λn(σ′) or ¬〈!θ〉ϕ ∈ λn(σ′). If 〈!θ〉ϕ ∈ λn(σ′), ϕ ∈ λn+1(σ) by construction.

If ¬〈!θ〉ϕ ∈ λn(σ′), by axiom R2, we have 〈!θ〉¬ϕ ∈ λn(σ′). Thus, by construction,

¬ϕ ∈ λn+1(σ). Thus, for all ϕ ∈ Ltpal, either ϕ ∈ λn+1(σ) or ¬ϕ ∈ λn+1(σ).

To show that λn+1 is consistent, assume toward contradiction that there are formu-

las ϕ1, ..., ϕm ∈ λn+1(σ) such that `
∧m
i=1 ϕ → ⊥. Using standard modal reasoning,

` 〈!θ〉> →
∨m
i=1〈!θ〉¬ϕi. Since 〈!θ〉> ∈ λn(σ′), we have

∨m
i=1〈!θ〉¬ϕ ∈ λn(σ′). And

so, since λn(σ′) is a maximally consistent set, there is some j with 1 ≤ j ≤ m and

〈!θ〉¬ϕj ∈ λn(σ′). Using axioms R2, we have ¬〈!θ〉ϕj ∈ λn(σ′). By construction of

λn+1(σ) we have for each i = 1, . . . ,m, 〈!θ〉ϕi ∈ λn(σ′). This contradicts the fact that

λn(σ′) is consistent. qed

We now define a canonical ETL model Hcan. We start by defining Hcan
0 = (H0,∼0

, V 0). For this, we use the usual definitions:

• For w, v ∈ H0, let w ∼0
i v iff {ϕ | [i]ϕ ∈ w} ⊆ v.

• For each P ∈ At and w ∈ H0, P ∈ V 0(w) iff P ∈ w.

Definition 2.3.6 (Canonical Model) The canonical model Hcan = (Hcan,∼can

, V can) is defined as follows:

• Hcan =
⋃∞
i=0 Hi.

• For each h, h′ ∈ Hcan with h = wσ and h′ = w′σ′, let h ∼cani h′ iff (1) σ = σ′

and (2) w ∼0
i v.

74 CHAPTER 2. LOGICS

• For every p ∈ At and h = wσ ∈ Hcan, wσ ∈ V can(p) iff w ∈ V 0(p). /

Given h ∈ Hcan with h = w!θ1 · · ·!θn, we write λ(h) for λn(h). We now show that

the canonical model Hcan works as intended:

Lemma 2.3.7 (Truth Lemma) For every ϕ ∈ Ltpal, for each h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

Proof. We show by induction on the structure of ϕ ∈ Ltpal that for each h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ. The base and the boolean cases are straightforward. For

the knowledge modality, let h ∈ Hcan with h = w!θ1 · · ·!θn and assume [i]ψ ∈ λ(h).

Suppose h′ ∈ Hcan with h ∼i h′. By construction of the canonical model, we know

that h′ = v!θ1 · · ·!θn for some v ∈ H0 with w ∼0
i v. By Definition 2.3.4, since

[i]ψ ∈ λ(w!θ1 · · ·!θn), we have 〈!θn〉[i]ψ ∈ λ(w!θ1 · · ·!θn−1). Using Axiom R4, we have

[i](〈!θn〉> → 〈!θn〉ψ) ∈ λ(w!θ1 · · ·!θn−1). Continuing this way, we have

[i](〈!θ1〉> → 〈!θ1〉(〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · ·)) ∈ w.

By Definition 2.3.6, since h ∼cani h′, we have w ∼0
i v. Hence,

〈!θ1〉> → 〈!θ1〉(〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · ·) ∈ v.

Now note that

〈!θ1〉> ∈ λ(w), 〈!θ2〉> ∈ λ(w!θ1), . . . , 〈!θn〉> ∈ λ(w!θ1...!θn−1).

Thus, we have

〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · ·) ∈ λ(v!θ1)

2.3. COMPLETE AXIOMATIZATION 75

〈!θ3〉> → 〈!θ3〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · ·) ∈ λ(v!θ1!θ2)

...

〈!θn〉ψ ∈ λ(v!θ1 · · ·!θn−1)

Therefore, ψ ∈ λ(v!θ1 · · ·!θn) = λ(h′). By the induction hypothesis, Hcan, h′ |= ψ.

Therefore, Hcan, h |= [i]ψ, as desired.

For the other direction, let h ∈ Hcan and assume [i]ψ 6∈ λ(h). For simplicity, we

let h = w!θ with w ∈ W0 and θ ∈ Lel. The argument can easily be generalized to

deal with the general case along the lines of the argument above. Since λ(h) is an

mcs, we have ¬[i]ψ ∈ λ(h). Thus, by Definition 2.3.4, 〈!θ〉¬[i]ψ ∈ λ(w). Using axiom

R2, ¬〈!θ〉[i]ψ ∈ λ(w); and so, by Axiom R4, ¬〈!θ〉> ∨ ¬[i](〈!θ〉> → 〈!θ〉ψ) ∈ λ(w).

Since 〈!θ〉> ∈ λ(w) by construction, it follows that ¬[i](〈!θ〉> → 〈!θ〉ψ) ∈ λ(w).

Now consider the set v0 = {θ | [i]γ ∈ λ(w)} ∪ {¬(〈!θ〉> → 〈!θ〉ψ)}. We claim

that this set is consistent. Suppose not. Then, there are formulas γ1, . . . , γm such

that `
∧m
j=1 γj → 〈!θ〉> → 〈!θ〉ψ and for j = 1, . . . ,m, [i]γj ∈ λ(w). By standard

modal reasoning, `
∧m
j=1[i]γj → [i](〈!θ〉> → 〈!θ〉ψ). This implies that [i](〈!θ〉> →

〈!θ〉ψ) ∈ λ(w). However, this contradicts the fact that ¬[i](〈!θ〉> → 〈!θ〉ψ) ∈ λ(w),

since λ(w) is an mcs. Now using standard arguments (Lindenbaum’s lemma), there

exists a maximally consistent set v with v0 ⊆ v. By the construction of v, we must

have w ∼0
i v and thus w!θ ∼cani v!θ. Also, since ¬(〈!θ〉> → 〈!θ〉ψ) ∈ v, we have

〈!θ〉> ∈ λ(v) and ¬〈!θ〉ψ ∈ λ(v). Therefore, by axiom R2, 〈!θ〉¬ψ ∈ λ(v). Hence

¬ψ ∈ λ(v!θ) and therefore ψ 6∈ λ(v!θ). By the induction hypothesis, Hcan, v!θ 6|= ψ.

This implies Hcan, w!θ 6|= [i]ψ, as desired.

For the public announcement operator, assume that 〈!θ〉ψ ∈ λ(h). Since 〈!θ〉> ∈

λ(h) (for ¬〈!θ〉> ∈ λ(h) makes λ(h) inconsistent), ψ ∈ λ(h!θ). By the induction

hypothesis, we have Hcan, h!θ |= ψ, which implies Hcan, h |= 〈!θ〉ψ. For the other di-

rection, assume Hcan, h |= 〈!θ〉ψ. Then, Hcan, h!θ |= ψ. By the induction hypothesis,

76 CHAPTER 2. LOGICS

we have ψ ∈ λ(h!θ) and thus 〈!θ〉ψ ∈ λ(h). qed

All that remains is to show that canonical model Hcan is in F(PAL).

Lemma 2.3.8 Hcan is in F(PAL). That is, there is an epistemic model M and

state-dependent protocol p ∈ PAL on M such that Hcan = Forest(M, p).

Proof. Let M = (W,∼, V) and define pcan ∈ PAL on M so that pcan(w) = {σ |

wσ ∈ Hcan}. Suppose that Hpcan = Forest(M, pcan). We claim that Hcan and Hpcan

are the same model. For this, it suffices to show that for all w ∈ W and σ ∈ PAL∗

we have wσ ∈ Hcan iff wσ ∈ W σ,pcan (cf. Definition 2.1.3). For this implies Hcan =

Hpcan , where Hpcan is the domain of Hpcan . Then, by inspecting Definition 2.1.4 and

Definition 2.3.6, we see that Hcan and Hpcan are the same model.

We show by induction on the length of σ ∈ PAL∗ that for any w ∈ W , wσ ∈ Hcan

iff wσ ∈ W σ,pcan . The base case (len(σ) = 0) is clear. Assume that the claim holds

for all σ with len(σ) = n.

Given any σ ∈ PAL∗ with len(σ) = n, we first show by subinduction (on the

structure of θ) that, for all θ ∈ Lel, Hcan, wσ |= θ iff Mσ,pcan , wσ |= θ. The base

and boolean cases are straightforward. Suppose that Hcan, wσ |= [i]γ. We must

show Mσ,pcan , wσ |= [i]γ. Let vσ ∈ W σ,pcan with wσ ∼σ,pcani vσ. By the main

induction hypothesis, we have both vσ ∈ Hcan and wσ ∈ W σ,pcan . By Definition

2.1.3, since wσ ∼σ,pcani vσ, we have w ∼0
i v. Thus by Definition 2.3.6, wσ ∼cani vσ.

Hence, Hcan, vσ |= γ. By the subinduction hypothesis, Mσ,pcan , vσ |= γ. Therefore,

Mσ,pcan , wσ |= [i]γ. The other direction is similar.

Coming back to the main induction, assume wσ!θ ∈ Hcan. This implies that

〈!θ〉> ∈ λ(wσ). By the Truth Lemma, we have Hcan, wσ |= 〈!θ〉>. This, together

with axiom A1, implies Hcan, wσ |= θ. From the above subinduction, it follows that

Mσ,pcan , wσ |= θ (recall that θ ∈ LEL by definition). Thus, by the construction of

2.3. COMPLETE AXIOMATIZATION 77

pcan, we have wσ!θ ∈ W σ!θ,pcan . This shows that if wσ!θ ∈ Hcan then wσ!θ ∈ W σ!θ,pcan .

The other direction is similar. This completes the proof. qed

The proof of the completeness theorem (Theorem 2.3.3) follows from Lemma 2.3.7

and Lemma 2.3.8 using a standard argument. The details are left to the reader.

2.3.3 Decidability via Finite Completeness Proof

We can modify the above proof to obtain a finite completeness proof. As a result,

we can show that the satisfiability problem for TPAL is decidable. Our strategy is

to construct a finite model from maximally consistent sets with respect to a suitable

finite fragment of TPAL. In particular, we will associate what we call a TPAL-closed

set with a given formula ϕ. The idea of the TPAL-closed set is based on the Fisher-

Ladner closure in Propositional Dynamic Logic (PDL, [33, 32]) . Once the finite

canonical model is constructed, the proof follows the idea of the full completeness

proof from Section 2.3.2.

Definition 2.3.9 (TPAL-Closed Sets) Let X be a set of TPAL formulas. X is

TPAL-closed if X satisfies the following closure conditions:

1. Closed under subformulas: If ϕ ∈ X and ψ is a subformula of ϕ, then ψ ∈ X.

2. Closed under single negations: If ϕ ∈ X and ϕ is of the form ¬ψ, then ψ ∈ X;

and if ϕ ∈ X and ϕ is not of the form ¬ψ, ¬ϕ ∈ X.

3. If 〈!θ〉ϕ ∈ X, then 〈!θ〉> ∈ X.

4. If 〈!θ〉[i]ϕ ∈ X, then [i](〈!θ〉> → 〈!θ〉ϕ) ∈ X.

5. If ϕ ∈ X, then 〈!θ1〉...〈!θk〉ϕ ∈ X (1 ≤ k ≤ d(X)− d(ϕ)) where 〈!θi〉> ∈ X for

every 1 ≤ i ≤ k. /

78 CHAPTER 2. LOGICS

Given a set X ⊆ Ltpal, we denote by (X)TPAL the smallest expansion of X that is

TPAL-closed. Note that provided that X is a finite set of formulas, (X)TPAL is also

finite; also, d(X) = d((X)TPAL). We denote by (X)TPALk with 0 ≤ k ≤ d(X) the set

{ϕ ∈ (X)TPAL | d(ϕ) ≤ k}.

Here some remarks are in order about the closure conditions. The point of closure

conditions is to make sure that formulas in closed sets can express ‘enough’ informa-

tion about the truth of a formula of our interest in canonical models. In the above

definition, the first two closure condition guarantees that closed sets contain enough

source to say whether subformulas are true or false. By the third condition, closed

sets can say whether public announcement in the sets can be made or not. By the

fourth condition, closed sets contains enough source to express agents’ future knowl-

edge (cf Axiom R4). Finally the fifth condition guarantees that closed sets have

enough future information to determine the truth of formulas in them.

Let Σ be a set of formulas in TPAL. We call a set a ⊆ (Σ)TPALk an atom of depth

k over Σ (0 ≤ k ≤ d(Σ)), if a is TPAL-consistent and if a ⊂ b ⊆ (Σ)TPALk , then b is

inconsistent. We denote the set of the atoms of depth k over Σ as Atk(Σ). Now it is

easy to check the following properties of atoms.

Lemma 2.3.10 Let Σ be a set of TPAL formulas. For every a ∈ Atk(Σ), the follow-

ing properties hold:

1. For all ϕ ∈ (Σ)TPALk , ϕ ∈ a or ¬ϕ ∈ a, but not both.

2. For all ϕ ∧ ψ ∈ (Σ)TPALk , ϕ ∧ ψ ∈ a iff ϕ ∈ a and ψ ∈ a.

3. For all 〈!θ〉p ∈ (Σ)TPALk with p a proposition letter, 〈!θ〉ϕ ∈ a iff 〈!θ〉> ∈ a and

p ∈ a.

4. For all 〈!θ〉¬ϕ ∈ (Σ)TPALk , 〈!θ〉¬ϕ ∈ a iff 〈!θ〉> ∈ a and ¬〈!θ〉ϕ ∈ a.

2.3. COMPLETE AXIOMATIZATION 79

5. For all 〈!θ〉(ϕ ∧ ψ) ∈ (Σ)TPALk , 〈!θ〉(ϕ ∧ ψ) ∈ a iff 〈!θ〉ϕ ∈ a and 〈!θ〉ψ ∈ a.

6. For all 〈!θ〉[i]ϕ ∈ (Σ)TPALk , 〈!θ〉[i]ϕ ∈ a iff 〈!θ〉> ∈ a and [i](〈!θ〉> → 〈!θ〉ϕ) ∈ a.

7. For all 〈!θ〉ϕ ∈ (Σ)TPALk , if 〈!θ〉ϕ ∈ a, then 〈!θ〉> ∈ a.

8. For all 〈!θ〉> ∈ (Σ)TPALk , if 〈!θ〉> ∈ a, the !θ ∈ a.

Proof. Immediate from the definition of an atom and Definition 2.3.9. qed

Given a finite set Σ of TPAL-formulas, we construct a finite canonical model from

the set (Σ)TPAL. The construction follows exactly the construction from Section 2.3.2

(cf. Definition 2.3.4 and Definition 2.3.6). First, as in Definition 2.3.4 we construct

maps λfinn and sets Hfin
n (0 ≤ n ≤ d(Σ)) as follows:

• Let Hfin
0 = Atd(Σ)(Σ) and for each a ∈ Hfin

0 , λfin0 (a) = a.

• Let Hfin
n+1 = {σ!θ | σ ∈ Hfin

n and 〈!θ〉> ∈ λfinn (σ)}. For every σ = σ′!θ ∈ Hfin
n+1,

define λfinn+1(σ) = {ψ | 〈!θ〉ψ ∈ λfinn (σ′)}.

Proposition 2.3.11 For all n, λfinn (σ) ∈ Atd(Σ)−n(Σ).

Proof. The proof is by induction on n. The base case is clear. For the inductive

step, the argument is completely analogous to the proof of Lemma 2.3.5, given Lemma

2.3.10 and Definition 2.3.9. qed

We now define a finite canonical modelHfin. This goes exactly like Definition 2.3.6

except for the domain, which is now Hf in =
⋃

0≤i≤d(Σ)H
fin
i . As in Section 2.3.2, we

write λfin(h) from λfinn (h) where n is the number of announcements in h. We use

∼fini and V fin to denote the canonical relations and valuations in Hfin, just as in

Definition 2.3.6. All that remains to be proved are analogues of Lemma 2.3.7 and

Lemma 2.3.8.

80 CHAPTER 2. LOGICS

Lemma 2.3.12 (Finite Truth Lemma) Let ϕ ∈ (Σ)TPAL. For every history h in

Hfin such that len(h) ≤ d(Σ)− d(ϕ) + 1,

ϕ ∈ λfin(h) iff Hfin, h |= ϕ.

Proof. The proof is by induction on ϕ. Given Lemma 2.3.10 and the closure condi-

tions in Definition 2.3.9, the proof is similar to the proof of Lemma 2.3.7. We only

present the public announcement modality case. Readers are invited to verify that

the argument holds for the other cases as well. In particular, note that the formulas

used in the proof of Lemma 2.3.7 are in fact in the set λfin(h).

Let ϕ be 〈!θ〉ψ. First, assume that 〈!θ〉ψ ∈ λfin(h), where len(h) ≤ d(Σ)−d(ϕ)+1.

Since 〈!θ〉ψ ∈ λfin(h) by Lemma 2.3.9, 〈!θ〉> ∈ λfin(h). Thus, h!θ ∈ Hfin and ψ ∈

λfin(h!θ). Here note that len(h!θ) = len(h)+1 ≤ d(Σ)−(d(ϕ)−1)+1 = d(Σ)−d(ψ)+1.

Thus, by induction, we have Hfin, h!θ |= ψ, which implies Hfin, h |= 〈!θ〉ψ. For the

other direction, assume that Hfin, h |= 〈!θ〉ψ. This implies Hfin, h!θ |= ψ with

len(h!θ) ≤ d(Σ)− d(ψ) + 1. By induction, ψ ∈ λfin(h!θ). By the construction of the

canonical model, 〈!θ〉ψ ∈ λfin(h) as desired. qed

Lemma 2.3.13 Hfin is an ETL model generated from an epistemic model and a

PAL-protocol.

Proof. The proof is similar to that of Lemma 2.3.8. qed

Putting everything together, it is not difficult to verify that:

Theorem 2.3.14 (Decidability of TPAL) The satisfiability problem for the logic

TPAL is decidable.

2.3. COMPLETE AXIOMATIZATION 81

2.3.4 Common Knowledge

So far, we have only considered the knowledge modality [i] to describe agents’ infor-

mational sates. However, other interesting informational states arise in multi-agent

contexts. One such state is common knowledge. The notion was first studied by D.

Lewis in [48] and formalized in [4]. Common knowledge has been one of the key

epistemic notion in the literature.

We now describe how to incorporate the common knowledge operator into our

axiomatic system. Our strategy has two components. First, as we did in the above

completeness proof, we will make use of compositional analysis via reduction axioms

in PAL. [71] provides the reduction axiom for relativized common knowledge in the

context of PAL. We will modify the reduction axiom for TPAL and add it to TPAL

together with other standard axioms associated with relativized common knowledge.

Second, we will appeal to the finite completeness argument developed in the previous

subsection. We will extend the closure condition in Definition 2.3.9 and show that it

is enough to carry out the completeness argument.

First let us define common knowledge operators. Given a binary relation X,

denote by X+ the transitive closure of X, i.e. the smallest set containing X such

that, if (w, v), (v, u) ∈ X+, then (w, u). Let G be a set of agents in A, i.e. G ⊆ A.

Given an ETL model H = (H,∼, V), define ∼G:= (
⋃
i∈G ∼i)+. The operator CG,

where CGϕ reads as “ϕ is common knowledge among G”, is defined by:

H, h |= CGϕ iff for each h′ ∈ H, if h ∼G h′ then h′ |= ϕ

Van Benthem, van Eijk and Kooi ([71]) discuss the technical issues that arise

when axiomatizing Public Announcement Logic in languages with common knowl-

edge. They introduce a new “relativized common knowledge” operator CG(ψ|ϕ) say-

ing that every ψ-path (a path in which each step leads to a ψ-world) along the relation

82 CHAPTER 2. LOGICS

∼G ends in a state satisfying ϕ. More formally, let [[ϕ[] be the set of histories satisfying

ϕ. Given a DEL-generated ETL model H = (H,∼, V)

H, h |= CG(ψ|ϕ) iff ∀h′ ∈ H, (h, h′) ∈ (
⋃
i∈G ∼i ∩ (H × [[ψ]]))+ implies H, h′ |= ϕ

The usual common knowledge operator CGϕ can be defined as CG(>|ϕ).

We denote by TPALC the extension of TPAL with the relativized common knowl-

edge operator. We now provide the axiomatization TPALC of the extension. For

convenience, we denote
∧
i∈G[i]ϕ by EGϕ (“everybody in G knows ϕ”).

Definition 2.3.15 (Axiomatization of TPALC) The axiomatization TPALC ex-

tends TPAL by the following axioms and the inference rule:

Axioms

CK CG(ϕ|ψ → χ)→ (CG(ϕ|ψ)→ CG(ϕ|χ))

C1 CG(ϕ|ψ)↔ EG(ϕ→ (ψ ∧ CG(ϕ|ψ)))

C2 (EG(ϕ→ ψ) ∧ CG(ϕ|ψ → EG(ϕ→ ψ)))→ CG(ϕ|ψ)

R5 〈!θ〉C(ψ|ϕ)↔ 〈!θ〉> ∧ C(〈!θ〉ψ|〈!θ〉ϕ)

Inference Rule

CN If ` ϕ, then ` CG(ψ|ϕ). /

[71] provides the completeness proof for the extension of EL with the relativized

common knowledge operator by CK, C1-2 and CN. Then it reduces the extension

of PAL with the operator by the following reduction axiom:

〈!θ〉C(ψ|ϕ)↔ θ ∧ CG(〈!θ〉ψ|〈!θ〉ϕ).

The difference between this axiom and our R5 is that θ is replaced by 〈!θ〉> in R5.

This is the maneuver that we appealed to when we axiomatized TPAL above in

2.3. COMPLETE AXIOMATIZATION 83

Definition 2.3.1. Given this, it is not hard to see that the above axiom is valid on the

class F(PAL).

Now the idea of the completeness proof is based on the finite completeness argu-

ment in Section 2.3.3. Thus, we will take a closure of a finite set X of our interest

and construct a finite canonical model from maximally consistent sets in the closed

set. With the addition of the relativized common knowledge operator, we need to

add the following closure condition to the definition of TPAL-closed sets above (Def-

inition 2.3.9):

• If CG(ψ|ϕ) ∈ X, then [i](ψ → (ϕ ∧ CG(ψ, ϕ))) ∈ X for all i ∈ G.

This condition is the same as the closure condition used in [71] to give the finite

completeness argument for EL with the common knowledge operator.

With a TPAL-closure of a finite set, the canonical model is constructed in the

way presented in Section 2.3.3. To see how the proof will go, it is helpful to inspect

our completeness proof in TPAL given above. Consider the argument given in the

proof of Lemma 2.3.7. To prove the knowledge modality case, our strategy was to

go down along the history to the bottom level by appealing to R4 and give the

standard completeness argument inside the bottom epistemic model Hcan
0 . In fact,

the left-to-right direction of the argument can be characterized by the following three

steps:

1. Assume [i]ψ ∈ λ(w!θ1 . . .!θn).

2. By successive applications of R4, obtain

[i](〈!θ1〉> → 〈!θ1〉(. . . (〈!θn〉> → 〈!θn〉ψ) . . .) ∈ λ(w).

84 CHAPTER 2. LOGICS

3. By the standard epistemic canonical model reasoning in Hcan
0 , obtain

[i](〈!θ1〉> → 〈!θ1〉(. . . (〈!θn〉> → 〈!θn〉ψ) . . .) ∈ λ(v).

4. Obtain ψ ∈ λ(v!θ1 . . .!θn) by construction and conclude by IH thatHcan, v!θ1 . . .!θn |=

ψ.

The reasoning from 2 to 3 only requires the argument given in the completeness

argument in the canonical model of epistemic logic. Here in particular, 3 is obtained

from 2 based on the fact that the indistinguishability relation between w and v is

established by the canonical model construction, w ∼cani v in Hcan
0 iff {ϕ | [i]ϕ ∈

w} ⊆ v. From 1 to 2 and from 3 to 4, we need considerations special to TPAL and

appeal to R4 and the construction of the canonical model. This point applies to the

right-to-left direction of the proof. (the construction of v0 is completely analogous to

what is done in the canonical model of epistemic logic).

Our proof of the completeness of TPALC below is based on this idea. Having R5,

we can ‘go down’ the tree to the bottom and do the standard completeness argument

at the bottom by using CK, C1-3 and CN. After doing so, we ‘come’ up the tree

back and apply the inductive hypothesis. In the following proof, we will not repeat

the completeness argument at the bottom for relativized common knowledge given in

[71].

Lemma 2.3.16 Let ϕ ∈ (Σ)TPAL. For every history h in Hfin such that len(h) ≤

d(Σ)− d(ϕ) + 1,

ϕ ∈ λfin(h) iff Hfin, h |= ϕ.

Proof. The proof is induction on the complexity of ϕ. We only do the case for

relativized common knowledge. The other cases are done by the completeness argu-

ments in Lemma 2.3.7 and 2.3.12. Assume that CG(ψ|χ) ∈ λfin(w!θ1 . . .!θn) with

2.4. OTHER RESULTS IN TPAL 85

h = w!θ1 . . .!θn. Let us write !θ1 . . .!θn =!~θ. By repeated applications of R5, we obtain

CG(〈!~θ〉ψ|〈!~θ〉χ) ∈ λ(w).

where 〈!θ1〉 . . . 〈!θn〉 is denoted by 〈!~θ〉. From this, by the standard argument for the

relativized common knowledge operator (see [71]), we can show that, for any v in a

path from w along nodes where 〈!~θ〉ψ is true, 〈!~θ〉χ ∈ λ(v) (and CG(〈!~θ〉ψ, 〈!~θ〉χ) ∈

λ(v)). By construction, we have χ ∈ λ(v!~θ). By IH, Hcan, h |= χ. On the other hand,

by definition, Hcan, v |= 〈!~θ〉ψ iff Hcan, v!~θ |= ψ. Therefore, we can say, for any v!~θ

in a path from w!~θ along nodes where ψ is true, χ ∈ λ(v!~θ). Therefore, by inductive

hypothesis, we are done.

For the other direction, assume thatHcan, w!~θ |= CG(ψ|χ). This impliesHcan, w |=

CG(〈!~θ〉ψ|〈!~θ〉χ). By the standard argument given in [71], we can show CG(〈!~θ〉ψ|〈!~θ〉χ)) ∈

λ(w). Now, since w~!θ in Hcan implies

〈θ1〉> ∈ λ(w), . . . , 〈θn〉> ∈ λ(w!θ1 . . . θn−1),

we can apply R5 successively and obtain CG(ψ|χ) ∈ λ(w~θ). qed

We can make sure that the canonical model is in the right class of models as in

Lemma 2.3.13. Therefore, we have the following result:

Theorem 2.3.17 TPALC is sound and (weakly) complete with respect to Fsd. More-

over, the satisfiability problem of TPALC is decidable.

2.4 Other Results in TPAL

We will now prove other important results in TPAL. First, we will axiomatize the

class of ETL models generated from uniform PAL-protocols. Second, we will show

86 CHAPTER 2. LOGICS

that PAL can be faithfully embedded into TPAL.

2.4.1 Uniform Protocols

First we will axiomatize the class F(Ptcl(PAL)) of ETL models generated from uni-

form PAL-protocols. For this, we extend the language Ltpal with an existential

modality. Let Eϕ mean that “ϕ is true at some history with the same sequence

of announcements”. (cf. Chapter 1.6) We define this as follows. Let H be an ETL

model generated by an epistemic model M = (W,∼, V) and a (state-dependent or

uniform) PAL-protocol. Let w ∈ W and σ a sequence of announcements with wσ in

H. Then we interpret the existential modality as follows:

H, wσ |= Eϕ iff ∃v ∈ W such that vσ is in H and H, vσ |= ϕ.

This operator functions as an existential modality at each ‘stage’ of successive public

announcements. The dual U of E is a universal modality in the same sense. We

consider the extension TPALE of TPAL.

First let us remark that the introduction of this operator keeps the system of

TPAL manageable. A complete axiomatization can be given in a similar way by

adding the following axioms to TPAL as in Definition 2.3.1:

E1 E(ϕ→ ψ)→ (Eϕ→ Eψ)

E2 ϕ→ Eϕ

E3 ϕ→ UEϕ

E4 EEϕ→ Eϕ

E5 Uϕ→ [i]ϕ

R5 〈!θ〉Eϕ↔ 〈!θ〉> ∧ E〈!θ〉ϕ.

2.4. OTHER RESULTS IN TPAL 87

R5 allows us to obtain the results corresponding to Lemma 2.3.7 and Lemma 2.3.8

with respect to uniform protocols. Axioms E1-5 are the standard axiomatization of

the existential modality. We denote the resulting axiomatization by TPALE

We now would like to axiomatize the class

F(Ptcl(PAL)) = {Forest(M,P) | M an epistemic model and P ∈ Ptcl(PAL)}

For this, we extend the axiomatization TPALE with the following axiom:

Uni 〈!θ〉> → U(θ → 〈!θ〉>).

This axiom characterizes uniform protocols in the following sense. Let us say a state-

dependent protocol p ∈ PAL on a given modelM generates a uniform ETL model if

Forest(M, p) = Forest(M,P) for some P ∈ Ptcl(PAL).

Proposition 2.4.1 The axiom Uni is valid on a frame Forest(M, p) iff p generates

a uniform ETL model.

Proof. (⇐) Assume that p generates a uniform ETL model H = Forest(M, p).

Then there is some uniform protocol P ∈ Ptcl(PAL) such that H = Forest(M,P).

Now suppose that w ∈ Dom(M) and σ ∈ PAL∗. Assume that H, wσ |= 〈!θ〉>. Then,

we have wσ!θ in H. This means that σ!θ ∈ p(w). Since p is uniform, there is some

P ∈ Ptcl(PAL) such that H = Forest(M,P). Therefore σ!θ ∈ P. Now, let v be an

arbitrary state inM. If H, vσ |= θ, then, since σ!θ ∈ P, we have vσ!θ ∈ D(H). Hence

H, vσ |= 〈!θ〉>. Since v was arbitrary, we have H, wσ |= U(θ → 〈!θ〉>).

(⇒) Assume that Uni is valid on an ETL model Hp = Forest(M, p). Construct

a protocol P = {σ | wσ is in Hp for some w ∈ Dom(M)}. Clearly, P is closed under

prefixes, so is in fact a protocol. We need to show that Hp = Forest(M,P). For

this, it suffices to show that, for all σ, Mσ,p = Mσ,P, equivalently (via definition)

W σ,p = W σ,P. We prove this by induction on σ. First, the left-to-right inclusion is

88 CHAPTER 2. LOGICS

clear by the construction of P. For the other direction, the base case is clear. For

if σ is the empty sequence, the inclusion clearly holds as W σ,p = W σ,P = D(M).

For the inductive step, assume that wσ!θ ∈ W σ!θ,P. Then we have Mσ,P, wσ |= θ.

By the induction hypothesis, we have Mσ,p, wσ |= θ. Since θ ∈ Lel, it follows from

Observation 2.2.3 that Hp, wσ |= θ. Note that by the construction of P, there must

be some v ∈ Dom(M) such that vσ!θ ∈ W σ,p. This implies that Hp, vσ |= 〈!θ〉>.

Here, since Uni is valid in Hp, we have Hp,vσ |= U(θ → 〈!θ〉>). Thus, it follows that

Hp, wσ |=!θ → 〈!θ〉>. From the fact that Hp, wσ |= θ, we then have Hp, wσ |= 〈!θ〉>,

which is equivalent to wσ!θ in Hp, i.e., wσ!θ ∈ W σ!θ,p, as desired. qed

Let TPALUni be the extension of TPALE with the axiom Uni. The following is an

immediate consequence of a suitable truth lemma analogous to Lemma 2.3.7 and the

above proposition:

Corollary 2.4.2 TPALUni is sound and strongly complete with respect to the class

F(Ptcl(PAL)).

Proof. The proof is similar to the one given in Section 2.3.2 (making use of the above

proposition to show that the canonical model is generated by a uniform protocol).

qed

2.4.2 Embedding PAL into TPAL

The introduction of the operator E allows us to obtain another interesting result. The

relation between the original public announcement logic PAL and our new TPAL is

not completely straightforward. Clearly all principles of TPAL are valid in PAL.

Indeed, the inclusion seems proper, as standard public announcement logic is about

special “full” protocols. But is it really stronger than TPAL? Using the existential

modality of the previous section, we can answer this question almost in the negative

by providing an effective semantic translation from PAL into TPALE

2.4. OTHER RESULTS IN TPAL 89

Given a formula ϕ, let Ptcl(ϕ) be the set of formulas of the form:

U(θ1 → 〈!θ1〉(θ2 → 〈!θ2〉(· · · 〈!θk−1〉(θk → 〈θk〉>) · · ·)))

where !θi ∈ AOC(ϕ) (1 ≤ i ≤ k) and 1 ≤ k ≤ d(ϕ).

The formulas in Ptcl(ϕ) state that the public announcements that are relevant to

the truth value of ϕ are all announceable at any node of a given ETL model.

Theorem 2.4.3 For any formula ϕ ∈ Ltpal,

|= ϕ in PAL iff |=
∧

Ptcl(ϕ)→ ϕ in TPAL.

Proof. (⇐) Suppose |=
∧
Ptcl(ϕ)→ ϕ in TPAL. Then, for all epistemic models M

and all w ∈ Dom(M), we have Forest(M,PAL∗), w |=
∧
Ptcl(ϕ) → ϕ, where PAL∗

is the class of all finite sequences of public announcements. By Proposition 2.2.1,

M, w |=
∧
Ptcl(ϕ)→ ϕ in PAL. Now, by Proposition 2.2.2, Ptcl(ϕ) is valid in PAL.

Hence, M, w |= ϕ. Since M and w were arbitrary, we have |= ϕ in PAL.

(⇒) Suppose |= ϕ in PAL. Let Forest(M, p) be an arbitrary PAL-generated ETL

model. Fix h in Forest(M, p) and assume Forest(M, p), h |=
∧
Ptcl(ϕ). Note that

h = wσ where w ∈ Dom(M) and σ a sequence of formulas in PAL∗. Now consider

the epistemic model Mσ,p. Since ϕ is valid in PAL, we have Mσ,p, wσ |= ϕ. By Ob-

servation 2.2.8, Forest(Mσ,p, pϕ), wσ |= ϕ. We now show that Forest(M, p) contains

the model Forest(Mσ,p, pϕ).

Claim If h′ is in Forest(Mσ,p, pϕ), then h′ is in Forest(M, p).

Proof of Claim. We prove this claim by induction on the length of h′ (len(h) ≤

len(h′) ≤ len(h) + d(ϕ)). For the base case, assume that len(h) = len(h′). If h′ is

in Dom(Forest(Mσ,p, pϕ)), then h′ ∈ Dom(Mσ,p). Thus, h′ in Forest(M, p). For the

90 CHAPTER 2. LOGICS

inductive step, assume that h′ is in Forest(Mσ,p, pϕ). Then we have h′ = vσ!θ1...!θn

for !θi ∈ AOC(ϕ) (1 ≤ i ≤ n) and v ∈ Dom(M). Here, our assumption that

Forest(M, p), wσ |=
∧
Ptcl(ϕ) implies

Forest(M, p), wσ |= U(!θ1 → 〈!θ1〉(· · · (!θn → 〈!θn〉>) · · ·))

and so,

Forest(M, p), vσ |=!θ1 → 〈!θ1〉(· · · (!θn → 〈!θn〉>) · · ·).

Also, we have assumed that h′ is in Forest(Mσ,p, pϕ), whose construction implies that

Mσ,p, vσ |= θ1, . . ., Mσ!θ1...!θn−1,p, vσ!θ1...!θn−1 |= θn. Now by the induction hypoth-

esis, vσ, vσ!θ1, . . ., vσ!θ1...!θn−1 are all in Forest(M, p). This, together with Obser-

vation 2.2.3, implies that Forest(M, p), vσ |= θ1, . . ., Forest(M, p), vσ!θ1...!θn−1 |= θn

(since θ1, . . ., θn are all formulas in Lel as parts of protocols).

Thus, we have

Forest(M, p), vσ |= 〈!θ1〉(θ2 → 〈!θ2〉(· · · (θn → 〈!θn〉>) · · ·)

Forest(M, p), vσ!θ1 |= 〈!θ2〉(θ3 → 〈!θ3〉(· · · (!θn → 〈!θn〉>) · · ·)

...

Forest(M, p), vσ!θ1 · · ·!θn−1 |= θn → 〈!θn〉>.

Forest(M, p), vσ!θ1 · · ·!θn−1 |= 〈!θn〉>.

Therefore, h′ = vσ!θ1...!θn is in Forest(M, p). qed (of Claim)

Now, by the preceding claim, Forest(M, p) includes Forest(Mσ,p, pϕ). Since we had

Forest(Mσ,p, pϕ), wσ |= ϕ as above, it follows from Observations 2.2.5 and 2.2.7 that

2.5. TEMPORAL DYNAMIC EPISTEMIC LOGIC 91

Forest(M, p) |= ϕ. (Note that ϕ is in Ltpal.) This completes the proof. qed

We do not know if we can do this reduction without the existential modality. Also,

we have not solved the opposite question, whether TPAL can be faithfully embedded

into PAL, though we think the answer is negative.

2.5 Temporal Dynamic Epistemic Logic

Now we will extend the logic of TPAL to the full class of DEL-generated ETL mod-

els Fsd. We will call the resulted logical system, Temporal Dynamic Epistemic Logic

(TDEL). Indeed many of the techniques in TPAL can be generalized and similar

results can be obtained for TDEL. For illustration, we will first look at the axioma-

tization of TDEL in some details.

2.5.1 Axiomatization of TDEL

First we introduce the system of TDEL.

Definition 2.5.1 (Language of TDEL) Let E be the class of pointed event mod-

els. Formulas of TDEL is inductively defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [ε]ϕ

where p ∈ At, i ∈ A and ε ∈ E. The duals, 〈i〉 and 〈!ϕ〉, of [i] and [ε], and the other

boolean operators are defined in the standard way. We denote the set of formulas in

TDEL by Ltdel. /

Definition 2.5.2 (Truth) Let H ∈ Fsd be a DEL-generated ETL model with

H = Forest(M, p) = (H,∼, V).

92 CHAPTER 2. LOGICS

The truth definition of the event model operator 〈ε〉 is defined by:

• H, h |= 〈ε〉ϕ iff hε ∈ H and H, hε |= ϕ.

The other operators are defined in the standard way as in Definition 2.1.5. /

Definition 2.5.3 (Axiomatization) The axiomatization TDEL of TDEL extends

the axiomatization of EL (PC, iK, iN, MP in Definition 2.3.1) with the following

axiom schemes and rule.4

Axioms

εK [ε](ϕ→ ψ)→ ([ε]ϕ→ [ε]ψ)

F1 〈ε〉p↔ 〈ε〉> ∧ p

F2 〈ε〉¬ϕ↔ 〈ε〉> ∧ ¬〈ε〉ϕ

F3 〈ε〉(ϕ ∧ ψ)↔ 〈ε〉ϕ ∧ 〈ε〉ψ

F4 〈ε〉[i]ϕ↔ 〈ε〉> ∧
∧
{e∈Dom(εL)|(εR,e)∈→

εL
(i)}[i](〈εL, e〉> → 〈εL, e〉ϕ)

E1 〈ε〉> → preεL(εR)

Inference Rule

εN If ` ϕ, then ` [ε]ϕ with ε ∈ E. /

Here what was said about reduction axioms in PAL and axioms in TPAL (Sec-

tion 2.3) applies to F1-4 here. As PAL, DEL reduces to EL via compositional analysis

4Below F3 follows from εK and εN. Nonetheless we put the axiom here to make the contrast
explicit between TPAL and TDEL.

2.5. TEMPORAL DYNAMIC EPISTEMIC LOGIC 93

based on reduction axioms. For instance, the reduction axiom for the knowledge op-

erator [i] is:

〈ε〉[i]ϕ↔ preεL(εR) ∧
∧

{e∈Dom(εL)|(εR,e)∈Rel(εL)(i)}

[i](〈εL, e〉> → 〈εL, e〉ϕ)

The difference from F4 is in the right-hand side of the biconditional: 〈ε〉> (“the

event ε can happen”) is replaced by preεL(εR) (the precondition of εR). The DEL-

reduction axioms are valid as they are, since DEL assumes that if the precondition of

a given event is satisfied, then the event can always happen. However TDEL lift this

assumption. In TDEL, even if the precondition of a given event is satisfied, the event

cannot always happen, unless it is ‘permitted’ by protocols. This is why we have E1,

but not its converse. Readers are invited to verify that these are sound with respect

to Fsd.

2.5.2 Completeness Proof

The completeness proof can be given based on the methods used for the completeness

of TPAL. To take care of the full class of event models, we have only to generalize

the construction of canonical model (Definition 2.5.6) and prove an additional lemma

(Proposition 2.5.7) to make sure that the argument for the truth lemma goes through

in TDEL.

Definition 2.5.4 (Legal Histories) Let W0 be the set of all TDEL-maximal con-

sistent sets. We define λn and Hn as follows:

• Define H0 = W0 and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {hε | h ∈ Hn and 〈ε〉> ∈ λn(h)}. For each h = h′ε ∈ Hn+1, define

λn+1(h) = {ϕ | 〈ε〉ϕ ∈ λn(h′)}.

94 CHAPTER 2. LOGICS

Given h ∈ Hn, we write λ(h) for λn(h). /

Lemma 2.5.5 For each n ≥ 0, for each σ ∈ Hn, λn(σ) is a maximally consistent

set. /

Proof. The same argument can be applied as in Lemma 2.3.5. qed

Let Hcan
0 = (H0,∼0, V 0), where ∼0 and V 0 are defined by

• w ∼0
i v iff {ϕ | [i]ϕ ∈ w} ⊆ v.

• For each p ∈ At and w ∈ H0, p ∈ V (w) iff p ∈ w.

Definition 2.5.6 (Canonical Model) The canonical modelHcan is a triple (Hcan,∼can

, V can), where each item is defined as follows:

• Hcan :=
⋃∞
i=0Hi.

• For each wσ,w′σ′ ∈ Hcan, wσ ∼cani w′σ′ iff wσ ∼σLi w′σ′, where ∼σL is defined

by induction in the following way:

– ∼
σL
(0)

i =∼0
i

– For each wτ, vτ ′ ∈ Hn+1 (0 < n < len(σL)), wτ ∼σ
L
(n+1) vτ ′ iff wτ(n) ∼

σL
(n)

i

vτ ′(n) and (τRn+1, (τ
′)Rn+1) ∈ Rel(τLn+1)(i).

• For every p ∈ At and h = wσ ∈ Hcan, wσ ∈ V can(p) iff w ∈ V 0(p).

/

The above definition simulates Definition 1.4.8 and 1.4.9. The construction guarantees

that, at each stage along histories in the canonical model, ∼cani respects updates made

by corresponding event models. This makes the following proofs simpler.

2.5. TEMPORAL DYNAMIC EPISTEMIC LOGIC 95

Proposition 2.5.7 Let wσ ∼cani vτ with w, v ∈ W 0, σ = σ1 . . . σn and τ = τ1 . . . τn.

If [i]ϕ ∈ λ(wσ), then

[i](〈τ1〉> → 〈τ1〉(〈τ2〉> → 〈τ2〉(. . . (〈τn〉> → 〈τn〉ϕ) . . .) ∈ λ(w).

Proof. By induction on n. When n = 0, σ, τ are empty and thus the claim clearly

holds. For the inductive step, assume that [i]ϕ ∈ λ(wσ). Then, by the construction

of Hcan, 〈σn〉[i]ϕ ∈ λ(wσ(n−1)). By F4, for all events e in σLn = (E,→, V) such that

σRn →i e:

[i](〈σLn , e〉> → 〈σLn , e〉ϕ) ∈ λ(wσ(n−1)).

Here, since wσ ∼cani vτ , we have σRn →i τ
R
n by the construction of Hcan. By applying

the IH, we are done. qed

This proposition makes sure that the argument given for the truth lemma in TPAL

(Lemma 2.3.7) can be carried out for TDEL. In TPAL, we did not need to prove the

lemma of this sort, since wσ ∼i vτ obtains just in case w ∼i v and σ = τ . Therefore,

when [i]ϕ ∈ λ(wσ), we have

[i](〈σ1〉> → (. . . (〈σlen(σ)〉> → 〈σlen(σ)ϕ) . . .) ∈ λ(w)

and this implies by construction of ∼i that

(〈σ1〉> → (. . . (〈σlen(σ)〉> → 〈σlen(σ)ϕ) . . .) ∈ λ(v).

From this, we could argue that ϕ ∈ λ(vσ) in the argument. However, in TDEL,

wσ ∼i vτ does not generally imply that σ = τ . Therefore, we needed the above

proposition to guarantee

(〈τ1〉> → (. . . (〈τlen(σ)〉> → 〈τlen(σ)ϕ) . . .) ∈ λ(v).

96 CHAPTER 2. LOGICS

given wσ ∼i vτ . This enables us to carry out the argument and obtain the truth

lemma stated as follows:

Lemma 2.5.8 (Truth Lemma) For every ϕ ∈ LTDEL and h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

We can also prove that Hcan is in Fsd by the argument given in TPAL for an

analogous lemma (Lemma 2.3.8)

Lemma 2.5.9 The canonical model Hcan is in Fsd. That is, there is an epistemic

model M and local protocol p on M such that Hcan = Forest(M, p).

Therefore, we have:

Theorem 2.5.10 TDEL is sound and strongly complete with respect to Fsd.

2.5.3 TDEL Restricted to Subclasses of Protocols

TDEL axiomatizes the class Fsd. However, note that the completeness proof above

does not depend on the fact that TDEL allows the whole class of pointed event models.

Indeed, even if we restrict our attention to subclasses of pointed event models, the

proof should work. However, here we have to be careful that we must at least have

all the “relevant” pointed event models: if (E , e) is in the class of our interest, then

(E , e′) is also in for all e′ in E . Otherwise the knowledge modality case of Lemma 2.5.8

would fail, since all the “relevant” histories must be included in the canonical model.

Definition 2.5.11 (e-Closure) Let X ⊆ E. Call X e-closed if, for all E , if there is

ε ∈ X such that εL = E , then, for every event e in E , (εL, e) is in X. /

2.5. TEMPORAL DYNAMIC EPISTEMIC LOGIC 97

Definition 2.5.12 (TDEL(X)) Denote by Ltdel(X) the fragment of Ltdel that only

allows the event model operators 〈ε〉 such that ε ∈ X. Also, let TDEL(X) be axiom-

atized as in Definition 2.5.3 except that the axiom schemas and the εN rule can only

be instantiated by the event models in X. /

The following claim can follows from the above considerations.

Theorem 2.5.13 Let X be an e-closed subclass of E. Denote by X the class of sd-

protocols whose values are subsets of X∗. (sd-protocols that only allows events in X.)

Then TDEL(X) is sound and complete with respect to F(X).

2.5.4 Decidability

Next, having the above completeness proof for TDEL(X), we can combine it with the

finite completeness argument for TPAL (Section 2.3.3) and show that the satisfiability

problem of TDEL(X) (with X e-closed) is decidable. The main idea in Section 2.3.3

was to construct the finite canonical model from a finite set of formulas that satisfies

certain closure conditions. For the decidability of TDEL(X), we need to revise the

closure conditions so that we can carry out the completeness argument of TDEL in

the finite canonical model.

To state the closure conditions, first define the depth of a formula ϕ in TDEL

as in TPAL (Definition 2.2.4) so that d(ϕ) is the greatest length of the consecutive

occurrences of event operators in ϕ.

Definition 2.5.14 (TDEL-Closed Sets) Let Σ be a set of formulas. Σ is TDEL-

closed if (i) Σ is closed under subformulas and single negations (as in Definition 2.3.9)

and (ii) satisfies the following conditions:

1. If 〈E , e〉ϕ ∈ Σ, then 〈E , e′〉> ∈ Σ for all e′ in E .

98 CHAPTER 2. LOGICS

2. If 〈E , e〉> ∈ Σ, then pre(E)(e) ∈ Σ.

3. If 〈E , e〉[i]ϕ ∈ Σ, then [i](〈(E , e′〉> → 〈E , e′〉ϕ) ∈ Σ for all e′ in E such that

(e, e′) ∈→E (i).

4. If ϕ ∈ Σ, then 〈!ε1〉...〈!εk〉ϕ ∈ Σ (1 ≤ k ≤ d(Σ) − d(ϕ)) where 〈εi〉> ∈ Σ for

every 1 ≤ i ≤ k. /

Given a set Σ, denote by (Σ)TDEL the smallest set that contains Σ with the above

closure properties. Since event models are finite (Definition 1.2.4), (Σ)TDEL is finite

if Σ is finite.

Once this definition is given, the rest of the proof is similar to Section 2.3.3.

Given a consistent formula ϕ in TDEL(X), we take {ϕ}TDEL. Based on this set, we

define atoms and construct finite canonical models in a way similar to Section 2.3.3.

(Of course, the construction will use the canonical model construction in TDEL as

in Definition 2.5.6, but not the one in TPAL.) The above closure conditions then

guarantee that the rest of the argument can be carried out. Therefore, we can obtain

the decidability of TDEL(X).

Theorem 2.5.15 (Decidability of TDEL(X)) Let X be an e-closed set of pointed

event models. The satisfiability problem for the logic TDEL(X) is decidable.

2.5.5 Other Epistemic Operators?

The results in this section, together with the results in Section 2.3.4, suggest the

possibility of incorporating (relativized) common knowledge operator into our system

TDEL(X). If we have an axiom similar to R5, we will be able to axiomatize the

system with relativized common knowledge as we argued in Section 2.3.4. Can we

obtain such an axiom schema? Or generally can we obtain the corresponding axiom

schemas every time we introduce new epistemic operators?

2.6. GENERALIZATION OF OTHER RESULTS IN TDEL 99

This question is answered in the context of DEL by van Benthem et al in [71]. They

introduce a general algorithm to compute reduction axioms for epistemic operators

expressible in their language, epistemic PDL. Therefore, we may ask the same question

in the context of TDEL. Can we come up with a general algorithm to compute

‘reduction’-like axioms? Many of the constructions we have seen so far in terms of

TDEL suggests that it should be possible. However, we will leave the question for

future research.

2.6 Generalization of Other Results in TDEL

The completeness proof is not the only technique that we can generalize for the full

TDEL. The other results we saw in TPAL can be also extended. In this section, we

will sketch how we can extend other results: model normalization, uniform protocols

and embeddability.

2.6.1 Normalization

First, model normalization can be generalized to TDEL, based on the same idea as in

TPAL. We replace preconditions of events by tautologous formulas without distorting

the structures of ETL-trees. We can prove a truth-preservation result analogous to

Proposition 2.2.14. Here we will not describe the full formal details, but sketch how

to proceed.

Let α0, α1, . . . and β0, β1, . . . be a pair of (possibly infinite) sequences of pointed

event models such that, for all k, l ≥ 0, (i) the preconditions of βRk is a tautologous

formula in Lel and (ii) αk 6= αl and βk 6= βl. Given a sequence h ∈ E∗, define

h[β0/α0, β1/α1, . . .] to be the sequence obtained by replacing all occurrences of αk in

H with βk (for all k). Given an DEL-generated ETL model H = (H,∼, V), define

H[β0/α0, β1/α1, . . .] = (H ′,∼′, V ′) by:

100 CHAPTER 2. LOGICS

H ′ := {h[β0/α0, β1/α1, . . .] | h ∈ H}

∼′ (i) = {(h[β0/α0, β1/α1, . . .], g[β0/α0, β1/α1, . . .]) | (h, g) ∈∼ (i)}

V ′(p) = {h[β0/α0, β1/α1, . . .] ∼′ g[β0/α0, β1/α1, . . .] | h ∈ V (p)}.

Given a formula in Ltdel, define the event occurrence set EOC(ϕ) of ϕ to be the

set of pointed event models occurring in ϕ. (cf. Definition 2.2.6)

Proposition 2.6.1 (Normalization in TDEL) Let H = Forest(M, p) ∈ F(E).

Let X be a finite subset of E. Furthermore, let α0, α1 . . . and β0, β1, . . . be enu-

merations of elements in E\X without repetition such that, for all k, the precondition

of βRk is a tautologous formula in Lel. Then, for every h and TDEL-formula ϕ such

that EOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[β0/α0, β1/α1, . . .], h[β0/α0, β1/α1, . . .] |= ϕ

2.6.2 Uniform Protocols

We can also generalize the axiomatization of uniform PAL-protocols TPALUni (Sec-

tion 2.4.1) to obtain the axiomatization of uniform TDEL-protocols. Fix an e-closed

set X below. We first need to generalize the definition of the existential operator E.

In the context of TPAL, the existential modality was defined as follows:

Forest(M, p), wσ |= Eϕ iff ∃v ∈ W such that vσ is in H and H, vσ |= ϕ.

where w ∈ Dom(M) and σ is a sequence of public announcements (i.e. σ ∈ PAL∗. The

operator could be defined this way, since event models and events, so to speak, do not

have to be distinguished in TPAL. Event models that represent public announcements

contain single events and thus we do not have to specify which event in an public

2.6. GENERALIZATION OF OTHER RESULTS IN TDEL 101

announcement event model we talk about. In the context of TDEL, we need to be

explicit about the distinction. The definition is thus given as follows:

Forest(M, p), wσ |= Eϕ iff ∃v ∈ Dom(M)∃τ ∈ E∗ : σL = τL and H, vτ |= ϕ.

where w is in M and σ ∈ E∗. Defined this way, Eϕ reads as “ϕ is true at some

history with the same sequence of product updates”. We denote the dual of E by

U and read Uϕ as “ϕ is true at every history with the same sequence of product

updates”. Finally we denote the extension of TDEL(X) by TDELE(X).

The complete axiomatization of TDELE(X) can be obtained straightforwardly

as in Section 2.4.1. We need to add the standard axiom schemas for the existential

modality, E1-5, and the following axiom to TDEL(X):

F5 〈E , e〉Eϕ↔ 〈E , e〉> ∧ E
∨
e′∈{e′∈Dom(E)|(e,e′)∈→E(i)}〈E , e′〉ϕ

F5 is an analogue of R5 in TPALE. (cf. also F4 in TDEL) We denote the resulting

axiomatization by TDELE(X).

We now would like to axiomatize the class F(Ptcl(X)) of ETL models generated

from uniform protocols in Ptcl(X). (Remember Ptcl(X) = ℘(X∗)). For this, we

extend the axiomatization TDELE(X) with the axiom that expresses the uniformity

of protocols, as we did in the context of TPAL. The uniformity of protocols in the

context of TDEL can be generalized by simply replacing public announcements in

Uni with pointed event models, as expected:

UniX 〈E , e〉> → U(preE(e)→ 〈E , e〉>), where (E , e) ∈ X.

Let X be the class of sd -protocols whose values are subsets of X∗. We say a

state-dependent protocol p ∈ X generates a uniform ETL model if Forest(M, p) =

Forest(M,P) for some P ∈ Ptcl(X). Then we can proceed as in the proof of Propo-

sition 2.4.1 and prove the following:

102 CHAPTER 2. LOGICS

Proposition 2.6.2 Let p be in X. The axiom UniX is valid in Forest(M, p) iff p

generates a uniform ETL model.

Let TDELUni(X) be the extension of TDELE(X) with the axiom UniX . The

following is an immediate consequence of a suitable truth lemma analogous to Lemma

2.3.7 and Proposition 2.6.2:

Corollary 2.6.3 Let X be an e-closed set of pointed event models. TDELUni(X) is

sound and strongly complete with respect to the class F(Ptcl(X)).

2.6.3 Embedding DEL into TDEL

Finally, we can embed DEL into TDEL by generalizing the technique used in Sec-

tion 2.4.2. The technique was, given a formula ϕ, to construct a formula that expresses

that sequences of public announcements that are relevant to the truth value of ϕ are

all allowed by protocols. In the context of TPAL, the ‘relevant’ public announcements

were the ones occurring in ϕ. In the general setting of TDEL, the pointed event mod-

els relevant to the truth of a given formula ϕ are not only the ones that occur in ϕ.

The set of relevant pointed event models must be e-closed, that is, if (E , e) is in X,

then (E , e′) ∈ X for all e′ in E .

Given a set of pointed event models X, denote by Xe the smallest set Y such that

X ⊆ Y and Y is e-closed. Also denote by EOC(ϕ) the set of pointed event models

occurring in a formula ϕ. Given a formula ϕ, let Ptcl(ϕ) be the set of formulas of

the form:

U(preE1(e1)→ 〈E1, e1〉(preE2(e2)→ 〈E2, e2〉(· · · 〈Ek−1, ek−1〉(preEk(ek)→ 〈Ek, ek〉>) · · ·)))

where (Ei, ei) ∈ (EOC(ϕ))e (1 ≤ i ≤ k) and 1 ≤ k ≤ d(ϕ). (The operator U is as

defined in Section 2.6.2.)

2.7. CONCLUSION AND DISCUSSION 103

Having these machinery, we can proceed as in the proof of Theorem 2.4.3 and

prove the following embeddability result.

Theorem 2.6.4 For any formula ϕ ∈ Ltdel,

|= ϕ in DEL iff |=
∧

Ptcl(ϕ)→ ϕ in TDEL.

2.7 Conclusion and Discussion

We have studied logics on classes of ETL models generated from classes of protocols.

We started by investigating the logic TPAL over the class of PAL-generated ETL

models. We can characterize our main results in TPAL as follows. First, we showed

that model normalization preserves the truth of formulas in TPAL. Second, we ax-

iomatized the class of all PAL-generated ETL models and then extended our system

with relativized common knowledge. Third, by introducing the existential modality,

we axiomatized the class of ETL models generated based on uniform protocols. Forth,

we also used the existential modality to faithfully embed PAL into TPAL.

After studying TPAL in detail, we applied the techniques in TPAL to logics over

other subclasses of DEL-generated ETL models and obtained similar results. For

instance, Theorem 2.5.13 provides axiomatizations for logics over various subclasses

of DEL-generated ETL models. Beyond public announcements, there are other in-

formational events of our interest, such as secret communication ([50]), honest com-

munication ([68]), etc. The theorem (and other results) present general methods in

investigating logics of specific kinds of protocols.

Also there are other open questions that come out of our study in this chapter.

For instance, Theorem 2.5.15 shows that the satisfiability problem for TDEL(X) is

decidable. However, it does not give us the precise computational complexity of

the systems. In addition, the theorem only shows the decidability of systems with

104 CHAPTER 2. LOGICS

state-dependent protocols. The decidability of systems with uniform protocols is

still an open question. Furthermore, although Theorem 2.6.4 embeds DEL into our

framework, it is unknown whether we can go the other way to embed TDEL into DEL.

Finally, we discussed the question whether we can obtain an algorithm to compute

‘reduction’ axioms in TDEL(X), as [71] provides in the context of DEL (Section 2.5.5).

We will leave these questions for future investigation.

Chapter 3

Extensions

In this chapter, we will consider extensions of the systems developed in the previous

chapter. There are two kinds of extensions that we consider. One kind of extension

concerns the language of TDEL. Our minimal language of TDEL have the two modal-

ities, the knowledge operator [i] and the labeled event operators [ε]. There are some

natural extensions that suggest themselves. For instance, both DEL and ETL deal

with various kinds of epistemic operators other than [i] and among them is common

knowledge, which we have considered in the previous chapter (Section 2.3.4). Like-

wise, explicit time-branching structures in our models motivate temporal operators

that have been considered in the system of ETL. One such operator is an operator that

involves quantification over future events “Some event can happen after which. . . ”,

“Some sequences of events can happen after which. . . ”, etc. Operators of this kind

have been also considered in DEL in [5]. Another kind of operators describe what

happened in the past, “Previously,. . . ”, “before the event e happens. . . ”, etc. From

the perspective of DEL, such a kind of operators are interesting since DEL usually

deals only with future operators.1 Thus the first goal of this chapter is to consider

1We do not claim that past-operators have not been considered in the setting of DEL. Indeed,
past-operators have been considered in [83].

105

106 CHAPTER 3. EXTENSIONS

the extensions of our system with the two kinds of temporal operators.

The other kind of extension that we consider in this chapter is a generalization of

the model construction in our framework. Remember that the preconditions in event

models are restricted to epistemic formulas (formulas in Lel) and thus they cannot

contain event operators. The restriction does not seem substantial in the context of

DEL, since formulas in DEL reduces equivalently to epistemic formulas by reduction

axioms. On the other hand, full reduction axioms are not available in TDEL, as

we observed in the previous chapter, and our framework does not provide a way

to express preconditions by formulas containing event operators. This restriction of

our system can be a big obstacle in applications of our framework. For instance, in

TPAL, we cannot deal with public announcements expressing what will be true in

the future, etc. Therefore, the second goal of this chapter is to consider a way to lift

the restriction and allow the full class of event models to be in protocols.

We will tackle these problems in the simplest setting of our framework, i.e. TPAL.

We will proceed as follows. We will start out by extending TPAL with the gener-

alized future operator “Some public announcements can be made after which . . . ”.

(Section 3.1) Next, we will deal with the extension with the past operator in TPAL.

(Section 3.2) Then we will turn to the extension of models in TPAL to lift the as-

sumption on preconditions (Section 3.3). After seeing the extensions of TPAL, we

will discuss whether it is possible to give similar extensions in TDEL. (Section 3.4).

3.1 Quantifying over Public Announcements

We will study the extension of TPAL with the generalized public announcement

operator “Some public announcement can be made after which. . . ”. The kind of

operator can be motivated on various grounds. First, the operator has been one of

the standard operators in ETL. Since our framework is based on ETL-time-branching

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 107

tree structures, it is natural to ask how the operator behaves in the framework.

Second, the operator has been recently considered in the literature on DEL. Balbiani

et al [5] considers the extension of PAL with the operator, which they call Arbitrary

Public Announcement Logic (APAL). It is interesting to compare the system and the

corresponding extension of our system. Third, the generalized public announcement

operators enable us to express various epistemic concepts of our interest. For instance,

with the operator, we can express questions, such as whether there are some public

announcements after which epistemic states of interest will be reached. That is, with

the generalized public announcement operator, we can formulate the reachability

question, which motivated our protocol-based semantic framework in the first place.

Such a reachability question has a great importance to the notion of knowability

(whether a given proposition is knowable), which we will discuss in Chapter 4.

3.1.1 Temporal Arbitrary Public Announcement Logic

To extend TPAL with the kind of operator in question, we need some preliminary

considerations. In the framework of PAL, Balbiani et al [5] consider the operator ♦,

where the intended reading of ♦ϕ is “Some public announcement can be made after

which ϕ.” The semantics of the operator is given by:

M, w |= ♦ϕ iff ∃ψ ∈ Lpal :M, w |= 〈!ψ〉ϕ.

They call the extension of PAL with the operator Arbitrary Public Announcement

(APAL). The language of APAL is denoted by Lapal.

Now, to consider such a generalized operator in TPAL, we start out by noting the

following fact. In PAL, sequences of announcements are identified with some single

108 CHAPTER 3. EXTENSIONS

announcements, in terms of the validity of the following schema:

〈!α〉〈!β〉ϕ↔ 〈!(〈!α〉β)〉ϕ.

However, in TPAL, this is not the case. TPAL invalidates the schema, since the cor-

responding single announcements may not be available even if sequences of announce-

ments are available. (Proposition 2.2.2 in Chapter 2) Thus, we have to distinguish

single announcements and sequences of announcements in the semantic framework of

TPAL. This consideration motivates us to introduce two kinds of generalized pub-

lic announcement operators to distinguish quantifications over single announcements

and sequences of announcements.

Fix a set of agents A and a countable set of propositional letters At.

Definition 3.1.1 (Language of TAPAL) The language Ltapal of TAPAL extends

Ltpal with the operators ♦ and ♦∗. The formulas in Ltapal is inductively defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!θ〉ϕ | ♦ϕ |♦∗ϕ

where p ∈ At, i ∈ A and θ ∈ Lel. The duals, � and �∗, of ♦ and ♦∗ are defined in

the standard way. The other operators are defined as mentioned in Definition 2.1.2.

/

The intended interpretations of ♦ϕ and �ϕ are “Some public announcement can

be made after which ϕ is true” and “After every public announcement, ϕ is true.”

respectively. Also the intended interpretations of ♦∗ϕ and �∗ϕ are “Some sequences of

public announcement can be made after which ϕ is true.” and “After every sequence

of public announcement, ϕ is true.” respectively. (Sequences here are possibly empty.)

We call the extension Temporal Arbitrary Public Announcement Logic (TAPAL).

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 109

Definition 3.1.2 (Truth) Let PAL and PAL be the class of public announcements

in E and the class of state-dependent PAL-protocols.2 Given H = (H,∼, V) ∈

F(PAL) and a history h ∈ H, the truth of a TAPAL-formula ϕ at h is inductively

defined as follows. We only give the definitions for ♦, and ♦∗. The other definitions

are as given in Definition 2.1.5:

H, h |= ♦ϕ iff ∃!ψ ∈ PAL : h!ψ ∈ H and H, h!ψ |= ϕ

H, h |= ♦∗ϕ iff ∃σ ∈ PAL∗ : hσ ∈ H and H, hσ |= ϕ

Consistency, satisfiability, validity etc. are defined in the standard way as in Defini-

tion 2.1.6. /

Remark 3.1.3 (Language of TAPAL) Some remarks are in order concerning the

language of TAPAL. First note that the restriction, θ ∈ Lel, in Definition 3.1.1 makes

the truth definition of the generalized operators ♦ and ♦∗ well-defined (as well as it

reflects our notion of PAL-protocols and DEL-generated ETL models). For suppose

all TAPAL-formulas are allowed in sd -protocols. Assume further that �ϕ ∈ p(w) for

some w in a given model. By the truth definition in Definition 3.1.2, to determine

the truth value of �ϕ, we need to know the truth value of �ϕ. A similar restriction

is made in APAL in [5]. Second, given the restriction, we also needed to defined the

public announcement operators to be formed only from the formulas in Lel. By this,

we do not allow formulas such as 〈!♦ψ〉ϕ, which is allowed in APAL. /

2Thus we only consider public announcements !ϕ with ϕ ∈ Lel, as is in TPAL.

110 CHAPTER 3. EXTENSIONS

w!>!p!>

w!>!>

w!>!p

w!>w...

...

Figure 3.1: TAPAL-Model 1

3.1.2 Semantic Results

Next we see some basic semantic features of TAPAL in comparison with those in

APAL. First, consider the following properties:

1. |= �ϕ→ ϕ 2. |= �ϕ→ ��ϕ

3. |= �♦ϕ→ ♦�ϕ 4. |= ♦�ϕ→ �♦ϕ

Proposition 3.1.4 Generalized Operators

(A) All of the properties 1-4 hold in APAL.

(B) None of the properties 1-4 holds in TAPAL.

(C) The properties 1-2 hold, but 3 and 4 don’t in TAPAL, when ♦ and � are replaced

with ♦∗ and �∗ respectively.

Proof. The proofs of the properties A1-4 in APAL are in [5]. We only do B3-4 and

C3-4. The counterexamples are as follows:

B3 Let M, w |= p. Define p(w) = {!>, !>!>, !>!p, !>!p!>}. The model H =

Forest(M, p) can be represented by Figure 3.1. Here we have H, w!>!p |=

〈!>〉>, but H, w!>!> 6|= 〈!>〉>. Therefore, we have H, w |= �♦〈!>〉>, but

H, w |= �♦¬〈!>〉>, i.e. H, w 6|= ♦�〈!>〉>.

B4 In Figure 3.1, H, w!>!p |= �>, which yields H, w!> |= ♦�>, but H, w!>!> 6|=

♦>, which yields H, w!> 6|= �♦>.

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 111

C3 LetM, w |= p. Define p(w) = {!>, !>!p, !>!p!>, !>!p!>!p, ...}. LetH be Forest(M, p).

We claim that, for every h in H, there exists σ, σ′ ∈ p(w) such that H, hσ |=

〈!>〉> and H, hσ′ 6|= 〈!>〉>. To see this, note that every h ends with either >

or p. If h ends with !>, then put σ =!p and σ′ = ∅; if h ends with !p, then put

σ = ∅ and σ′ =!>. This fact implies H, w |= �♦〈!>〉> and H, w |= �♦¬〈!>〉>.

Thus, this model is a counterexample against 3.

C4 The models for B4 similarly works. qed

Now we will see the results concerning expressivity of the operators ♦ and ♦∗. First

the operators ‘implicitly’ denote (sequences of) announcements by quantification,

we do not have results similar to Proposition 2.2.7 in TPAL. This feature of the

operators adds expressive power to TPAL as in the following result. Let AOC(ϕ) be

the announcement occurrence set of ϕ, the set of public announcements occurring in

ϕ. (See Definition 2.2.6.)

Proposition 3.1.5 Both TAPAL is strictly more expressive than TPAL.

Proof. Consider the formula ♦p. Assume toward contradiction that this formula

is equivalent to some TPAL-formula ψ. Since TPAL-formulas are finite, there are

only a finite number of propositional letters, q1, q2, ..., qn, used in ψ. Let qn+1 be a

propositional letter that is distinct from all q1, q2, ..., qn, and M, an epistemic model

with only a state w at which p, qn+1 are both true. Then define p1, p2 be p1(w) = ∅

and p2(w) = {!qn+1}. Now consider H1 = Forest(M, p1) and H2 = Forest(M, p2).

Since (p1(w))AOC(ψ) = (p2(w))AOC(ψ), it follows from Proposition 2.2.7 that ψ has

the same value at H1, w and H2, w. However, clearly H1, w 6|= ♦p and H2, w |= ♦p.

This is a contradiction. qed

On the other hand, since ♦ and ♦∗ are future-looking in the sense that the truth

value of the formulas does not depend on the nodes below a point of evaluation, we

112 CHAPTER 3. EXTENSIONS

H1

w : p, qn+1

H2

w : p, qn+1

w!qn+1

Figure 3.2: TAPAL-Model 2

can obtain a result similar to Proposition 2.2.5 in TPAL. However, we cannot place

the explicit upper bound for every formula in TAPAL by the depth of the formula.

This is because the operator ♦∗ quantifies over all finite sequences of future public

announcements.

Observation 3.1.6 Let M be an epistemic model, p a state-dependent protocol on

M. For all w ∈ Dom(M) and σ ∈
⋃
w∈Dom(M) p(w), if ♦∗ does not occur in ϕ, then

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<d(ϕ)), wσ |= ϕ.

where d(ϕ) is the highest number of nested occurrences of operators of the form 〈!θ〉

or ♦. (cf Definition 2.2.4) If ♦∗ occur in ϕ, then

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<), wσ |= ϕ.

This feature of ♦∗ yields the following proposition.

Proposition 3.1.7 TAPAL is strictly more expressive than its fragment without ♦∗.

Proof. Consider �∗〈!>〉>. Assume toward contradiction that this formula is equiv-

alent to some formula without occurrences of ♦∗. Let M be an epistemic model

with only a state w. Let us denote as !>k the sequence of k !>’s. Let d(ψ) be

the highest number of nested occurrences of the operators 〈!θ〉 and ♦ in ψ. Define

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 113

H2 :

H1 :

. . .w!>d(ψ)

w!>d(ψ)

. . .

. . .

w!>

w!>

w

w

Figure 3.3: TAPAL-Model 3

p1, p2 be such that p1(w) = {!>i|0 ≤ i ≤ d(ψ)} and p2(w) = {!>i|i ∈ N}. Now

consider H1 = Forest(M, p1) and H2 = Forest(M, p2). The models are visualized

in Figure 3.3. Since H2 = Forest(M, (p2)λ<d(ψ)) with λ the empty sequence, it fol-

lows from Proposition 3.1.6 that ψ has the same value at H1, w and H2, w. On the

other hand, H1, w>d(ψ) 6|= 〈!>〉>, which implies H1, w 6|= �∗〈!>〉>, whereas clearly

H2, w |= �∗〈!>〉>.

qed

Furthermore, the expressive power of ♦ and ♦∗ renders the systems non-compact,

as in the case of APAL (see [5]).

Proposition 3.1.8 TAPAL is not compact. /

Proof. Straightforward by considering the set Γ = {¬〈!θ〉p|θ ∈ Lel} ∪ {♦p} or the

set
⋃∞
i=0 Γi ∪ {♦∗p}, where Γi = {¬〈!θ0〉...〈!θi〉p|θj ∈ Lel (0 ≤ j ≤ i)}. qed

3.1.3 Axiomatization

Next we axiomatize the logic of TAPAL. Let ♦n and �n be the sequences of n ♦’s

and �’s respectively. When n = 0, ♦n and �n denote ϕ. Also given σ = σ0 . . . σn−1 ∈

PAL∗, denote the sequences 〈σ0〉 . . . 〈σn−1〉 and [σ0] . . . [σn−1] by 〈σ〉 and [σ] respec-

tively. When n = 0, 〈σ〉ϕ and [σ]ϕ denote ϕ. Finally, we define the complexity |ϕ| of

a TAPAL-formula ϕ by:

• |p| = 0 with p propositional.

114 CHAPTER 3. EXTENSIONS

• |¬ϕ| = |♦ϕ| = |♦∗ϕ| = |ϕ|+ 1

• |ϕ ∧ ψ| = |〈!ϕ〉ψ| = |ϕ|+ |ψ|+ 1.

Definition 3.1.9 (Axiomatization TAPAL) The axiomatization TAPAL of TAPAL

extends the axiomatization TPAL by the following axiom schemas and inference rules:

Axiom Schema

A2 〈!χ〉ϕ→ ♦ϕ for any !χ ∈ PAL

A3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ

Inference Rules

R(�) If ` ϕ → [σ][!>0]ψ, then ` ϕ → [σ]�ψ, where >0 is a tautologous formula

in Lel such that !>0 does not occur in ϕ or [σ]�ψ.

R(�∗) If ` ϕ→ [σ]�kψ for every k such that 0 ≤ k ≤ |ϕ|+1, then ` ϕ→ [!σ]�∗ψ.

/

Some remarks are in order about the axiomatization. First, A2 expresses the fact

that ♦ generalizes public announcement operators 〈!θ〉. Second, A3 plays the role

of Fixed Point Axiom as in PDL (See e.g. [10]), as can be seen by their schematic

similarity.

Third, as we will discuss below (Corollary 3.6.7. See also Appendix 3.6.2), R(�)

is in fact equivalent to the following sound rule, which is a modification of the rule in

the system APAL in [5]:

R′(�) If ` ϕ→ [σ][!p]ψ where p is in At such that !p does not occur in ϕ or [σ]�ψ,

then ` ϕ→ [σ]�ψ.

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 115

This form of the rule clarifies what the rule R(�) is for. Observe the similarity

between R′(�) and the first-order rule:

FOQ If ` ϕ→ ψ with no occurrence of x in ϕ, then ` ϕ→ ∀xψ.

In fact, as we will see below in the completeness proof of TAPAL, the use of R(�)

is very similar to the use of this first-order rule in the completeness proof of first-

order logic. Nonetheless, we chose R(�) instead of R′(�), since it extracts from

the property of PAL-generated ETL models that they preserve truth over model

normalization (Proposition 2.2.14) and the soundness proof becomes simpler when

we appeal to the property.

Fourth, to see the role of R(�∗), consider the following rule:

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Given the semantic definition, it is straightforward to see that this infinitary rule is

sound. The idea of our rule R(�∗) is that we can extract a bound on n in the infinitary

rule from the complexity |ϕ| of the formula ϕ. (We will in fact use a more complicated

notion of complexity, but it is bounded by the standard notion of complexity defined

above. More on this in Appendix 3.6.3)

3.1.4 Soundness

The soundness of the axiom schemas and the necessitation rules are straightforward.

Thus leaving the details of the proofs to the reader, we go on to sketch the soundness

proofs of R(�) and R(�∗). The complete details are left to Appendix 3.6.

The Soundness of R(�)

To prove the soundness of R(�), it suffices to show the following:

116 CHAPTER 3. EXTENSIONS

Theorem 3.1.10 (Soundness of R(�)) If ϕ∧〈σ〉♦ψ is satisfiable in F(PAL), then

ϕ∧〈σ〉〈!>0〉ψ is satisfiable in F(PAL), where >0 is a tautologous formula in Lel such

that !>o does not occur in ϕ or 〈σ〉�ψ. /

The idea of the proof can be sketched as follows. Suppose that ϕ ∧ 〈σ〉♦ψ is true

at some h in H. Then, ϕ is true at h. Also there is some !θ such that hσ!θ is in H

and ψ is true at hσ!θ. This situation is visualized in the left figure in Figure 3.4. We

modify the model H by (i) taking the subtree starting from hσ!θ (the node labeled

with ψ in the figure), (ii) obtaining the subtree with a new branch !>0 attached

to its bottom, (iii) and grafting the new subtree to hσ and the nodes connected

to hσ by indistinguishability relations in which !θ can happen. Let us denote the

model obtained this way by H′. H′ is visualized in the right figure in Figure3.4. We

claim that the formula ϕ∧〈σ〉♦ψ is true at h in H′. First, since TAPAL-formulas are

‘future-looking’, ψ is true at hσ!>0 by Proposition 3.1.6, since the structure of the new

subtree is the same as the old subtree. Therefore, ♦ψ is true at hσ, which implies that

〈σ〉♦ψ is true at h. Furthermore, the truth of ϕ is preserved over this transformation,

since ϕ cannot distinguish the new and old subtrees by the assumption that !>0 does

not occur in ϕ. Therefore, ϕ ∧ 〈σ〉♦ψ is indeed satisfiable.

All this can be made precise and the above claim can be proved to obtain the

soundness of R(�). The readers are invited to verify the details in Appendix 3.6.2.

The above soundness argument can be made when we replace !>0 by !p0 when p0

is a propositional letter such that !p0 does not occur in ϕ or [σ]�ψ. We just have to

adjust the valuation of p0 appropriately so that it accord with the truth of θ in the

above argument. Therefore, we can prove the soundness of R′(�) mentioned above

in a similar way. The following is an immediate consequence of these facts.

Corollary 3.1.11 Let all ϕ, ψ ∈ Ltapal and σ ∈ PAL∗. Also let p0,>0 be a proposi-

tional letter and a tautologous formula in Lel such that neither !p0 nor >0 occurs in

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 117

. . .

...
...

...

ψ. . .

...
...

!θ

... } σ

ϕ

. . .

...
...

...

. . .

...
...

...

ψ. . .

...
...

ψ

!θ
!>0

... } σ

ϕ

Figure 3.4: Grafting Subtrees

ϕ or [σ]�ψ.. Then

` ϕ→ [σ][!p0]ψ ⇔ ` ϕ→ [σ][!>0]ψ ⇔ ` ϕ→ [σ]�ϕ

/

Proof. This follows immediate from the soundness of the rule R′(�) and Theo-

rem 3.6.6 via the semantic definition of �. qed

The benefit of using a tautologous formula !>0 is simply to do away with the process

of adjusting valuation functions.

The Soundness of R(�∗)

As we mentioned above, the role of R(�∗) can be most clearly seen by the infinitary

version of the rule:

118 CHAPTER 3. EXTENSIONS

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Given the semantic definition, it is straightforward to see that this infinitary rule is

sound. The question then becomes how we can extract a bound on n in the infinitary

rule from the complexity of the formula ϕ.

Let us start by observing the following fact. (The detailed proof of the fact is in

Appendix 3.6.3.)

Proposition 3.1.12 (Reduction of ♦∗ to ♦) For every ϕ ∈ Ltapal, if ♦∗ϕ is sat-

isfiable in F(PAL), then ♦nϕ is satisfiable in F(PAL) for n = 0 or n = 1.

This proposition can be shown based on the following idea. If H, h |= ♦∗ϕ,

then there is some σ ∈ PAL∗ such that H, h |= 〈σ〉ϕ. By a similar argument given

for Theorem 3.6.6, we take the subtree above h and form a new subtree with an

appropriate !>0 attached to the bottom node. Then we graft it to h and the nodes

related to h in which σ can happen. Since the structure of the new and old subtrees

are the same, ϕ should be satisfied at h!>0. Consequently ♦ϕ will be satisfied at h.

This way, we can replace the sequence σ with !>0, so to speak.

In the light of this observation, it might be expected that the following claim

holds:

Claim If ϕ∧〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ∧〈σ〉♦nψ is satisfiable in F(PAL)

for n = 0 or n = 1.

Unfortunately this claim does not hold, due to the semantics of the �-operator. For

simplicity, consider the case where σ is empty. Take �θ ∧ ♦∗ψ. If this formula is

satisfiable, then there will be a sequence τ after which ψ is satisfied. Here even if

we appeal to the grafting method as in Proposition 3.6.8, we may not obtain the

satisfiability of the whole formula �θ ∧ ♦∗ψ. For the new node added to the model

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 119

as a result of grafting must be quantified by � in �θ and there is no guarantee that

the node satisfies θ.

What this example illustrates is that, in general, the formula ϕ in ϕ ∧ 〈σ〉♦∗ψ

may ‘refer’ to the nodes between the current node h and hτ , where τ is a sequence

of announcements, whose existence is claimed by ♦∗ in the formula. When this

‘reference’ is made by �, we cannot safely graft as we did for Proposition 3.6.8.

However how ‘high up’ in the tree ϕ can ‘refer’ can be read off from the complexity

of ϕ. In particular, what is problematic is the occurrences of � in ϕ and we need

to know the highest number of nested occurrences of � in ϕ.3 Once we know such a

number for ϕ, we can safely graft above the height that ϕ can refer to, as we did for

Proposition 3.6.8. This way, we can put the bound on n in the infinitary rule based

on the complexity of ϕ in ϕ ∧ 〈σ〉♦∗ψ to obtain R(�).

All this can be made precise, but we will leave the complete details to Ap-

pendix 3.6.3. Here we state the theorem that we prove for the soundness of R(�∗).

Let ibi(ϕ) be the critical number about the occurrences of � in ϕ.

Theorem 3.1.13 If ϕ∧〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ∧〈σ〉♦kψ is satisfiable

in F(PAL) for some k such that 0 ≤ k ≤ ibi(ϕ)−̇len(σ) + 1, where a−̇b = a − b if

a− b > 0; a−̇b = 0 otherwise.

From this, we can immediately obtain the soundness of R(�∗).

Corollary 3.1.14 Soundness of R(�∗) R(�∗) is sound with respect to the class

F(PAL).

3This is measured in a suitable form of the formula. The basic idea is simply to get negation
signs pushed in front of atomic formulas and then count the nested occurrences. See Appendix 3.6.3.

120 CHAPTER 3. EXTENSIONS

3.1.5 Completeness

Finally we prove the (weak) completeness of TAPAL. The basic idea of the proof is

the same as the one give for TPAL in Section 2.3.2. However, some extra care must

be taken for TAPAL, when we construct the canonical model. We need to construct

the canonical model from the set of the maximal consistent sets Σ with the following

properties.

Definition 3.1.15 (Saturation wrt ♦) A set Σ of formula is saturated with respect

to ♦, if, for every sentence of the form 〈σ〉♦ϕ with σ ∈ PAL∗, 〈σ〉♦ϕ ∈ Σ implies that

there is some formula θ such that 〈σ〉〈!θ〉ϕ ∈ Σ. /

Definition 3.1.16 (Saturation wrt ♦∗) A set Σ of formulas is saturated with re-

spect to ♦∗, if, for every formula of the form 〈σ〉♦∗ϕ with σ ∈ PAL∗, 〈σ〉♦∗ϕ ∈ Σ

implies that there is some n such that 〈σ〉♦nϕ ∈ Σ. /

The motivation for these properties is to make sure that there are formulas that

“witness” ♦ and ♦∗ in every formula in a given maximally consistent set. Here the

analogy mentioned in the above remark (Section 3.1.9) between R(�) and the first-

order rule comes back again. In the proof below, when we construct a maximal

consistent set from a consistent formula, we add witnessing formulas for the formulas

of the above form. The consistency of the resulting set with witnessing formulas

will be guaranteed by the rule R(�), and this is very similar to the way that the

first-order rule in question (or its equivalent) is used in the completeness proof of

first-order logic. Similarly, R(�∗) gives a witness for ♦∗ϕ by finding an appropriate n

for ♦nϕ to be added, consistently, to a set, when we construct maximally consistent

sets. These roles of the two rules are clear in the proof of the following lemma.

Lemma 3.1.17 (Lindenbaum Lemma) Every consistent TAPAL-formula ϕ can

be expanded to a maximal consistent set saturated with respect to ♦ and ♦∗.

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 121

Proof. Let α0, .α1... be an enumeration of the TAPAL-formulas such that α0 = ϕ.

We construct a sequence Σ0,Σ1, ... of sets as follows:

• Σ0 = ∅

• If Σn ∪ {αn} is inconsistent, then Σn+1 = Σn.

• If Σn ∪ {αn} is consistent and αn is neither of the form 〈σ〉♦ψ nor of the form

〈σ〉♦∗ψ, then Σn+1 = Σn ∪ {αn}.

• If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦ψ, then Σn+1 = Σn ∪

{〈σ〉♦ψ, 〈σ〉〈!>0〉ψ} for a tautologous formula >0 in Lel such that !>0 does not

occur in 〈σ〉♦ψ or any θ ∈ Σn. Such a tautologous formula exists since Σn is

finite and we have a countable number of tautologous formulas in Lel.

• If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦∗ψ, then take k such that

Σn ∪ {〈σ〉♦∗ψ, 〈σ〉♦kψ} is consistent and put Σn+1 = Σn ∪ {〈σ〉♦∗ψ, 〈σ〉♦kψ}.

We show by induction that Σn is consistent for n ≥ 1. The base case is given by

the assumption that ϕ is consistent. Assume that Σn is consistent for an arbitrary n.

Clearly it suffices to show the following claims:

Claim 1: Σn+1 is consistent, if αn is of the form 〈σ〉♦ψ.

Claim 2: If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦∗ψ, there is some m

such that Σn ∪ {αn, 〈σ〉♦mψ} is consistent.

Proof of Claim 1 Suppose Σn+1 is inconsistent. Then, there must be some formulas

ψ1, ψ2, ..., ψl ∈ Σm ∪ {〈σ〉♦ψ} such that

` (ψ1 ∧ ... ∧ ψl)→ ¬〈σ〉〈!>0〉ψ.

122 CHAPTER 3. EXTENSIONS

However, this implies

` (ψ1 ∧ ... ∧ ψl)→ [σ][!>0]¬ψ.

Since >0 is chosen so that >0 does not occur in [σ]�ψ or any θ ∈ Σn, we can apply

R(�) to obtain

` (ψ1 ∧ ... ∧ ψl)→ [σ]�¬ψ

This gives us Σm ` [σ]�¬ψ and Σm ` ¬〈σ〉♦ψ. However this contradicts the assump-

tion that Σn ∪ {αn} is consistent.

Proof of Claim 2 : Suppose toward contradiction that there is no such m. Then, for

all m ≥ 0, we have:

`
∧

Σn → ¬〈σ〉♦mψ.

where
∧

Σn is a conjunction of the formulas in Σm−1. This implies that, for all m,

`
∧

Σn ∪ {αn} → [σ]�m¬ψ

and by R(�∗)

`
∧

Σn ∪ {αn} → [σ]�∗¬ψ.

Therefore, we have Σn ∪ {αn} ` [σ]�∗¬ψ and thus Σn ∪ {αn} ` ¬〈σ〉♦∗ψ. This

contradicts our assumption that Σn ∪ {〈σ〉♦∗ψ} is consistent.

Now take Σ′ =
⋃∞
i=0 Σi. The maximality and saturation with respect to ♦ and ♦∗

is clear by the construction. The consistency is shown in the standard way by the

consistency of Σn for n ≥ 1. qed

3.1. QUANTIFYING OVER PUBLIC ANNOUNCEMENTS 123

Having this lemma, we can construct the canonical model from the set of maxi-

mally consistent sets that are saturated with respect to ♦ and ♦∗ in the same was as

Section 2.3.2. The saturation properties of maximally consistent sets are needed to

prove the truth lemma for the canonical model. Before proving the truth lemma, we

need the following proposition.

Proposition 3.1.18 Let σ ∈ PAL∗ and len(σ) = n. Then,

1. ` 〈σ〉ϕ→ ♦nϕ.

2. ` ♦nϕ→ ♦∗ϕ.

Proof. Straightforward. The proof for the second appeals to the axiom A3. qed

Let Gcan be the canonical model constructed as in Section 2.3.2.

Lemma 3.1.19 (Truth Lemma) For every formula ϕ ∈ Ltapal,

ϕ ∈ λ(h) iff Gcan, h |= ϕ.

Proof.: The proof is by induction on ϕ. We only give the cases for ♦ and ♦∗. The

argument for the other cases are given in the proof of Lemma 2.3.7.

Assume that ϕ is of the form ♦ψ. First assume that ♦ψ ∈ λ(h). Given the

construction of the canonical model in Section 2.3.2, each λ(h) is maximally consistent

set and clearly saturated with respect to ♦ and ♦∗. Therefore, we have 〈!θ〉ψ ∈ λ(h)

for some θ. By the construction of Gcan, we have ψ ∈ λ(h!θ). By IH, we obtain

Gcan, h!θ |= ψ. Therefore, we have Gcan, h |= ♦ψ by truth definition.

For the other direction, assume that Gcan, h |= ♦ψ. By definition, there is some θ

such that h!θ ∈ Gcan and Gcan, h!θ |= ψ. By IH, we have ψ ∈ λ(h!θ), which, by the

construction of Gcan, implies 〈!θ〉ϕ ∈ λ(h). This implies by A2 that ♦ϕ ∈ λ(h).

124 CHAPTER 3. EXTENSIONS

Next, assume that ♦∗ψ ∈ λ(h). Since λ(h) is a maximally consistent set saturated

with respect to ♦∗, there is some k ≥ 0 such that ♦kψ ∈ λ(h) Now, since λ(h)

is also saturated with respect to ♦, we have 〈!θ1〉 . . . 〈!θk〉ψ ∈ λ(h). Thus, by the

construction of canonical model, we have ψ ∈ λ(h!θ1 . . .!θk), which implies by IH that

Gcan, h!θ1 . . .!θk |= ψ. This gives us Gcan, h |= ♦∗ψ.

Assume that Gcan, h |= ♦∗ψ. By definition, this is equivalent to saying that there

is some σ such that hσ ∈ Gcan and Gcan, hσ |= ψ. By IH, we have ψ ∈ λ(hσ), which,

by the construction of λ, implies 〈σ〉ψ ∈ λ(h). By Proposition 3.1.18, we have that

♦∗ψ ∈ λ(h). qed

The rest of the argument is similar to Section 2.3.2. Therefore, we obtain:

Theorem 3.1.20 (Completeness) TAPAL is weakly complete with respect to F(PAL).

3.2 Describing Past

So far we have considered only ‘future-looking’ operators, 〈ε〉, ♦, and ♦∗. The se-

mantic definitions of these operators only depend on what is or will be true in given

models and, in this sense, our language did not provide a way to describe what was

the case in the past. This is because we have reinterpreted the language of DEL

with our models in the first place. DEL captures the temporal transition of infor-

mational states by product update and, once models are updated, the information

about the previous models is (at least partially) lost. For this reason, the language

of DEL, admittedly, is limited to the descriptions about what will happen after in-

formational events happen, but not what was the case in the past. However, in our

framework, DEL-generated ETL models have the forest structures that encode all

successive stages of update by event models. With the temporal structures, we can

3.2. DESCRIBING PAST 125

naturally think about the operator that states what was the case prior to a given tem-

poral point. Indeed, languages of ETL often contain the operators that describe prior

temporal points in time-branching tree structures. These considerations motivate us

to extend our DEL-based language and consider past-operators in our framework. In

this section, we will consider the extension of TPAL with past-operators.

3.2.1 TPAL with Labelled Past Operators

Fix a set of agents A and a countable set of propositional letter At.

Definition 3.2.1 (Language of TPAL+P) The language Lptpal of TPAL+P ex-

tends Ltpal with the operators P!θ. The formulas in Lptpal is inductively defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!θ〉ϕ | P!θϕ

where p ∈ At, i ∈ A and θ ∈ Lel. The dual P̂!θ of the operator P!θ is defined in the

standard way. The other operators are defined as mentioned in Definition 2.1.2. /

The intended reading of P!θϕ is “the public announcement !θ has been made,

before which ϕ”. The intended reading of the dual P̂!θϕ is as “Before the public

announcement !θ has been made, ϕ.” However, this reading should be not taken as

implying that !θ has in fact happened. If the announcement !θ did not happen, we de-

fine P̂!θ vacuously true. We call the resulting system Temporal Public Announcement

with the Labelled Past Operators and denote by TDEL+P.

Definition 3.2.2 (Truth) Given H = (H,∼, V) ∈ F(PAL) and a history h ∈ H,

the truth of formulas in TPAL+P is inductively defined as follows. We only give the

definitions for P!θ. The other truth definitions are as given in Definition 2.1.5:

H, h |= P!θϕ iff ∃h′ such that h = h′!θ and H, h′ |= ϕ.

126 CHAPTER 3. EXTENSIONS

Consistency, satisfiability, validity etc. are defined in the standard way as in Defini-

tion 2.1.6. /

3.2.2 Semantic Results

Next, we make some simple semantic observations in TPAL+P and prove the nor-

malization theorem for TPAL, as we need it for the axiomatization of TPAL+P. First

the following proposition is straightforward to verify based on the truth definition in

TPAL+P.

Proposition 3.2.3 (Validities) The following validities obtain in TPAL+P.

1. |= 〈!θ〉P!θϕ↔ 〈!θ〉> ∧ ϕ.

2. |= ¬〈!θ′〉P!θ>, where θ′ 6= θ.

3. |= [!θ][i]P!θθ.

Item 3 is contrastive to the invalidity of the formula [!θ][i]θ (After the announce-

ment of !θ, i knows θ). [!θ][i]θ is invalid in the presence of the formulas that become

false after being publicly announced. The prime example of such a formula is p∧¬[i]p.

Although agents cannot know what has become false, they can always know that it

was true before it is announced. This is what Item 3 says.

Next, let us observe that the past-operator adds expressive power to TPAL. De-

note by !>k the sequence of k !>’s. Given an epistemic modelM and a world w inM,

define p be such thatp(w) = {!>k|0 ≤ i ≤ d(ψ)}. Now consider H = Forest(M, p),

which is visualized in Figure 3.5. Since TPAL does not describe the past, every for-

mula true at a node in the model is true at another. (Indeed any subtree of the model

is isomorphic to the whole model.) However, in TPAL+P, we can distinguish each

point of the model, say w!>k, by the formula P k
!>>, where P k

!θ denote k consecutive

occurrences of P!θ.

3.2. DESCRIBING PAST 127

H : . . .w!>k. . .w!>w

Figure 3.5: Expressivity of TPAL+P

Proposition 3.2.4 (Expressivity) TPAL+P is strictly more expressible than TPAL.

Finally the normalization result similar to Proposition 2.2.14 can be obtained

for TPAL+P, which we will need for our axiomatization of TPAL+P. Recall that,

given a model H ∈ F(PAL) and a history h in H, H[!>0/!ϕ0, !>1/!ϕ1, . . .] and

h[!>0/!ϕ0, !>1/!ϕ1, . . .] were the model and history obtained by replacing all occur-

rences of ϕi with >i in H. (See Definition 2.2.10) Also recall that, given AOC let us

extend the notion of announcement occurrence set (Definition 2.2.6) to TPAL+P by

the clause:

• AOC(P!θϕ) = {!θ} ∪ AOC(ϕ)

so that AOC(ϕ) in general yields the set of public announcements occurring in ϕ.

Proposition 3.2.5 (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let X

be a finite subset of PAL. Furthermore, let !ϕ0, !ϕ1 . . . be an enumeration of public

announcements in PAL\X without repetition, and !>0, !>1, . . . be an enumeration of

tautologous public announcements in PAL\X without repetition. Then, for every h

and a formula ϕ ∈ Lptpal such that AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . .], h[!>0/!ϕ0, !>1/!ϕ1, . . .] |= ϕ

Proof. The proof is by induction on ϕ. The cases other than Pε are as in Propo-

sition 2.2.14. Thus, assume H, h |= P!θψ. Then there must be some h′ such that

h = h′!θ and H, h′ |= ψ. By the IH,

H[!>0/!ϕ0, !>1/!ϕ1, . . .], h
′[!>0/!ϕ0, !>1/!ϕ1, . . .] |= ψ.

128 CHAPTER 3. EXTENSIONS

Since !θ ∈ X,

(h′θ)[!>0/!ϕ0, !>1/!ϕ1, . . .] = h′[!>0/!ϕ0, !>1/!ϕ1, . . .]ε.

Thus,

H[!>0/!ϕ0, !>1/!ϕ1, . . .], h
′!θ[!>0/!ϕ0, !>1/!ϕ1, . . .] |= P!θψ.

The other direction is similar. qed

3.2.3 Axiomatization

To present the axiomatization of TDEL+P, we need some definitions.

Definition 3.2.6 (Past-Depth) Given a formula ϕ, the past-depth pd(ϕ) of the

formula ϕ is defined as follows:

• pd(p) = 0 for p propositional.

• pd(¬ϕ) = d(ϕ)

• pd(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

• pd([i]ϕ) = d(ϕ)

• pd(〈!θ〉ϕ) = d(ϕ)− 1

• pd(P!θϕ) = max(d(ϕ), 0) + 1

/

The intuition behind this definition is that if a formula has a past-depth n, we would

have to go n-steps into the past from the current point of the ETL-tree in order to

verify it. Thus, the final clause reflects the intended meaning. Had the definition

3.2. DESCRIBING PAST 129

instead been pd(P!θϕ) = d(ϕ) + 1, this would not have worked, P!θ1〈!θ2〉〈!θ3〉p. That

definition would mistakenly have set the past-depth as -1 instead of 1.

Definition 3.2.7 (Axiomatization of TPAL+P) The axiomatization of TPAL+P

extends the axiomatization TPAL (Definition 2.3.1) with the following axiom schemas

and inference rule.

Axioms

P !K P̂!θ(ϕ→ ψ)→ (P̂!θϕ→ P̂!θψ)

P1 〈!θ〉P!θϕ↔ 〈!θ〉> ∧ ϕ

P2 〈!θ〉P!θ′ϕ→ ⊥ if !θ 6=!θ′

Inference Rules

P !N If ` ϕ, then ` P̂!θϕ for !θ ∈ PAL.

R(P) If ` [!θ1] . . . [!θpd(ϕ)]ϕ for every !θ1, . . . , !θpd(ϕ) such that each !θi is in AOC(ϕ)

or in !T (ϕ), then ` ϕ, where !T (ϕ) is a set of pd(ϕ) tautologous public announce-

ments not in AOC(ϕ).

/

3.2.4 Soundness Proof

P1 and P2 correspond to Item 1 and 2 in Proposition 3.2.3. The rule R(P) is

equivalent to the following statement.

Lemma 3.2.8 If ϕ is satisfiable in F(PAL), then 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is satisfiable in

F(PAL) for some !θ1, . . . , !θpd(ϕ) ∈ AOC(ϕ)∪!T (ϕ), where !T (ϕ) is a set of pd(ϕ)

tautologous public announcements not in AOC(ϕ).

130 CHAPTER 3. EXTENSIONS

w

w!θ1
!θ1

w!θ2
!θ2 !>0

!θ1!θ2

Figure 3.6: Lifting Histories by !>.

The basic idea of the proof will be as follows. Assuming H, h |= ϕ, we first apply

the normalization method based on Proposition 3.2.5. Then, if ϕ is satisfied in the

model at a sufficiently long history (i.e. strictly longer than d(ϕ)), then we can satisfy

〈!θ1〉 . . . 〈!θd(ϕ)〉ϕ by tracing down the history, using the truth definition of the future

operator. By adjusting the normalization at the beginning, we can make each !θi of

the form specified in R(X).

However, if ϕ is satisfied at a history that is not long enough, then we construct a

new model from H by ‘lifting’ the root nodes of the trees in H with the sequence of

tautologous public announcements τ =!>1 . . .!>pd(ϕ). The new model preserves the

structures above the sequence τ , since applying tautologous public announcements

(uniformly at every world) keeps the structure of the original model unchanged. In

addition, the added sequence τ cannot be ‘referred’ by the formula ϕ, since each !>i
in τ is a public announcement that does not occur in ϕ.

To illustrate this, consider the evaluation of the formula ϕ = P!θ1¬P!θ2>, with

past-depth 2. On the left model in Figure 3.6, ϕ is satisfied at world w!θ1, where

len(w!θ1) = 2. To obtain a length of 3 (as would be required for the soundness claim)

for the history at which ϕ is satisfied, we lift the model by a public announcement

!>0, which does not occur in ϕ. The model obtained by this operation is visualized

by the right figure in Figure 3.6.

To give the soundness proof based on the above idea, we need to recall some

definitions. Let p be a state-dependent protocol on M. Given σ ∈ PAL∗, we define a

3.2. DESCRIBING PAST 131

local protocol pσ< on Mσ,p so that, for all vτ ∈ Dom(Mσ,p), pσ<(vτ) = {ρ | vτρ ∈

p(w) where w ∈ Dom(M)}. Given an ETL model Forest(M, p) and a sequence σ,

the model Forest(Mσ,p, pσ<) can be seen as a submodel of Forest(M, p) that describes

what will happen in Forest(M, p) after the sequence σ of events have happened. Now

we prove Lemma 3.4.3.

Proof. LetM = (W,∼, V) be an epistemic model and p, a state-dependent protocol

on M. Put H = Forest(M, p). Assume H, h |= ϕ. Suppose len(h) ≥ pd(ϕ) + 1. Let

Σ0 be the set of the last pd(ϕ) elements of the sequence h that are not in AOC(ϕ).

Then apply Proposition 3.2.5 so that the elements in Σ0 are replaced by elements in

!T (ϕ). This can be done, since |Σ0| ≤ |!T (ϕ)| by definition. Denoting by H′ and h′

respectively the obtained normalization of H and the element in H′ corresponding to

h, we have:

sH′, h′ |= ϕ.

Now, since len(h′) ≥ dp(ϕ) + 1 by our assumption, we obtain:

H′, h′len(h′)−dp(ϕ) |= 〈h′len(h′)−dp(ϕ)+1〉 . . . 〈h′len(h′)〉ϕ.

Since each of h′len(h′)−pd(ϕ)+1, . . . , h
′
len(h′) is either in AOC(ϕ) or !T (ϕ) by our construc-

tion, we are done in this case.

Next, suppose len(h) < pd(ϕ) + 1. Put k = pd(ϕ) − len(h) + 1. Let !>0 be an

element in !T (ϕ). Also denote by !>k0 the sequence of k !>0’s. Construct a state-

dependent protocol p+ onM so that p+(w) is the set obtained by taking the closure

under finite prefix on {!>k0σ | σ ∈ p(w)}. Then, by the construction, for all σ (possibly

empty):

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ϕ iff Forest(M, p), wσ |= ϕ

132 CHAPTER 3. EXTENSIONS

where w is in M. We would like to show, for all σ,

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ϕ iff Forest(M, p+), w!>k0σ |= ϕ.

Once this is shown, we can argue as above in the case len(h′) ≥ pd(ϕ) + 1. Indeed, if

h = wσ, then len(w!>k0σ) = d(ϕ) + 1.

To show this, we prove the following general claim: for all σ and formulas ψ such

that !>0 does not occur in ψ,

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ψ iff Forest(M, p+), w!>k0σ |= ψ.

The proof is by a straightforward induction on the complexity of ψ. We will only

do the past-modality case. Suppose that ψ is of the form P!θχ. Assume that σ is

empty. By our assumption, !θ 6=!>0. Therefore, the RHS and LHS of the biconditional

are simply false. Next, assume that σ is non-empty. Further suppose the LHS of the

biconditional. Then the last element of σ, σlen(σ), must be !θ by the truth definition

of the past-operator. Thus we have

Forest(M!>k0 ,p+

, p+
!>k0<

), w!>k0σ(len(σ)−1) |= χ.

By IH, this is equivalent to

Forest(M, p+), w!>k0σ(len(σ)−1) |= χ.

Therefore, we have

Forest(M, p+), w!>k0σ(len(σ)) |= P!θχ.

This completes the proof. qed

3.2. DESCRIBING PAST 133

3.2.5 Completeness Proof

The basic idea of the completeness proof for TPAL+P is the same as the complete-

ness proof for TPAL. The canonical model is constructed from the set of maximally

consistent set as in Section 2.3.2. Then we prove the truth lemma stated as follows:

Lemma 3.2.9 (Truth Lemma) Let Hcan be the canonical model. For every for-

mula ϕ in TPAL+P and h ∈ Hcan such that len(h) > pd(ϕ),

ϕ ∈ λ(h) iff Hcan, h |= ϕ

Proof. We will only consider the past modality case. The other cases are given in

the same way as the proof of Lemma 2.3.7.) Let h = h′!θ for some len(h) ≥ pd(ϕ)+1,

where !θ ∈ PAL. Let ϕ be of the form P!χψ.

Assume then that P!χψ ∈ λ(h). By the definition of canonical model, 〈!θ〉P!χψ ∈

λ(h′). If !θ 6=!χ, then by P2, ⊥ ∈ λ(h′), which contradicts the consistency of λ(h′).

Thus, assume !θ =!χ. Then, by P1, we have ψ ∈ λ(h′). By the IH, Hcan, h′ |= ψ

(note len(h′) ≥ pd(ψ) + 1). Since h′!θ ∈ Hcan and !θ =!χ, the truth definition implies

that Hcan, h |= P!χψ.

For the other direction, assume that Hcan, h |= P!χψ. By truth definition, we have

!θ =!χ, and also H, h′ |= ψ. By the IH, we have ψ ∈ λ(h′). And by the construction of

the canonical model, we have 〈!θ〉> ∈ λ(h′). Thus, by P1, we have 〈!θ〉P!χψ ∈ λ(h′),

which by construction implies that P!χψ ∈ λ(h). qed

We can also prove the lemma corresponding to Lemma 2.3.8 in order to guarantees

that the canonical model is in the class F(PAL) of PAL-generated ETL models. Now,

we cannot conclude the completeness immediately from this, since we are not sure yet

that, given a formula of past-depth n, we have a maximal consistent set that contains

ϕ, which is assigned to a history long enough to apply the truth lemma. That is

where we need to appeal to the rule R(P).

134 CHAPTER 3. EXTENSIONS

Theorem 3.2.10 TPAL+P(X) is complete with respect to F(PAL).

Proof. Let ϕ be consistent. Then 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is consistent for some sequence of

!θ1, . . . , !θpd(ϕ) as specified in the rule R(P). For suppose otherwise. Then for every

such !θ1, . . . , !θpd(ϕ), 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is inconsistent and thus ` [!θ1] . . . [!θpd(ϕ)]¬ϕ.

By R(P), ` ¬ϕ. This contradicts the consistency of ϕ. Thus 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is

consistent for some !θ1 . . .!θpd(ϕ). Take such a formula 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ. Since the

formula is consistent, by Lindenbaum’s Lemma, we have a maximally consistent set

containing it. Furthermore, note that pd(θ) = 0. Thus, by the truth lemma, there is

some history h of length 1 such that

Hcan, h |= 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ

This gives us the result that Hcan, h!θ1 . . .!θpd(ϕ) |= ϕ. qed

3.3 Announcements about Announcements

Next we will discuss the extension of PAL-generated ETL models. In general, DEL-

generated ETL models are constructed from epistemic models based on DEL-protocols.

DEL-protocols consist of sets of finite sequences of (pointed) event models and event

models as defined in Chapter 1 (Definition 1.2.4) have preconditions expressed by

epistemic formulas. This restriction does not seem substantial in DEL, since every

DEL-formulas are equivalent to epistemic formulas via reduction axioms. However,

such a reduction is not available in our framework and thus the restriction in our

context can be an obstacle when we apply the framework to describe intelligent inter-

action. Indeed, why can we not model public announcements, say, about future truths

that obtain after public announcements? Why can preconditions of events depend on

future truths? In this section, we will tackle this problem in the context of TPAL.

3.3. ANNOUNCEMENTS ABOUT ANNOUNCEMENTS 135

To lift the assumption, we need to generalize the construction of PAL-generated ETL

models.

3.3.1 Higher-Order Public Announcements

Let us start by seeing difficulties in extending our model construction method beyond

epistemic formulas. Suppose we extend the notion of PAL-protocols so that they

can contain formulas with public announcements. For instance, let p be an sd -PAL

protocol on a given epistemic model M in this extended sense. Assume that the

protocol assigned by p at a given world w in M indeed contains !(〈!p〉〈!q〉>). To

determine whether we construct the node w!(〈!p〉〈!q〉>), that is, whether !(〈!p〉〈!q〉>)

is announceable, we need to know whether the formula is true at w. However, to

determine whether the formula is true at w, we need to know in advance whether p

is true at w and whether p allows !p at w. Moreover, we need to know whether q

is true at w!p and whether p allows !q after !p at w (if the node w!p is generated).

Unless these things are known in advance, we cannot determine whether !(〈!p〉〈!q〉>)

is announceable at w. As this example illustrates, once we lift the restriction and

allow formulas with public announcements in protocols, we cannot simply generate

ETL-trees straight up from the bottom epistemic model, as we did in the previous

chapters.

The main difficulty here can be summarized by the following points. First, if ϕ

contains announcement operators, thus making !ϕ a “higher-order” public announce-

ment about the “lower-order” public announcements contained in !ϕ, then we need

to know in advance about the announceability of the lower-order announcements in

order to determine the announceability of !ϕ. To determine whether !〈!p〉> is an-

nounceable, we need to know whether !p is announceable in the first place. Second,

!ϕ may ‘refer’ to the announceability of lower-order public announcements in the

future as well as the current announceability of lower-order public announcements.

136 CHAPTER 3. EXTENSIONS

In our example, to determine whether !〈!p〉〈!q〉> is announceable currently, we need

to know whether !p is currently announceable and whether !q will be announceable

after !p is announced. Therefore, we need to know in advance the announceability

of relevant sequences of announcements in order to determine the announceability of

!ϕ. This means that we need to know the structure of the tree above the current

node at least concerning the lower-order announcements mentioned in ϕ, whereas we

only needed to know the structure of the ‘current stage’ in the model construction

developed in the previous chapters.

Therefore, we need to generalize the construction of PAL-generated ETL models

to take into account higher order announcements. The key idea is to construct ETL

structures by induction on the orders of announcements occurring in the announce-

ment sequences. Having an epistemic model M and a protocol p, we first construct

ETL-trees from M by the above construction method, based on the initial segments

of the sequences given by p that consist only of epistemic formulas. That is, we begin

the construction by dealing with only the “first-order” announcements. Then we add

nodes to the resulted trees, based on the second-order announcements that refer to

the first-order announcements. This second construction process can be carried out,

since the truth values of the formulas we need to know to make the second-order an-

nouncements, i.e. the ones of first-order announcements, will have been determined

at this point after the first-order construction process. We then continue this way

by constructing nodes of second-order announcements after nodes for first-order an-

nouncements, until all first- and second-order announcements are taken care of. Then

we next goes on to the third-order announcement process and continue similarly. And

so forth. Below we make this idea more precise.

3.3. ANNOUNCEMENTS ABOUT ANNOUNCEMENTS 137

3.3.2 Generalization of PAL-Generated ETL Models

To extend PAL-generated ETL models, we need to extend the notion of protocols.

We start by specifying our language. Fix a set of agents A and a countable set of

propositional letters At.

Definition 3.3.1 (Language of TPAL+) The language L+
tpal of TPAL+ is the lan-

guage of PAL and, thus, the formulas in L+
tpal is inductively defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!ϕ〉ϕ

where p ∈ At and i ∈ A. The other operators are defined as mentioned in Defini-

tion 2.1.2. /

Note that we finally drop the restriction. ϕ in !ϕ can be now any PAL-formula and

contain public announcements. Next we redefine the notion of protocols and relevant

notations accordingly.

Definition 3.3.2 (PAL-Protocol Extended) Let PAL+ be the set i.e. {!ϕ | ϕ ∈

Ltpal}. A PAL-protocol is a set P ⊆ (PAL+)∗ closed under finite prefix. We denote

the set of PAL-protocols by Ptcl(PAL+). A state-dependent PAL-protocol (sd -PAL-

protocol) p on an epistemic model M is a function that assigns a PAL-protocol to

each world in M a PAL-protocol. We denote the class of sd -PAL-protocols in this

extended sense by PAL+. /

Next, we introduce the notion of orders.

Definition 3.3.3 (Order of Formulas) The order o(!ϕ) of a public announcement

!ϕ ∈ PAL+ is defined inductively as follows:

• o(!p) = 1 with p ∈ At

138 CHAPTER 3. EXTENSIONS

• o(!(ϕ ∧ ψ)) = max(o(!ϕ), o(!ψ))

• o(!¬ϕ) = o(!ϕ)

• o(![i]ϕ) = o(!ϕ)

• o(!(〈!ϕ〉ψ)) = max(o(!ϕ) + 1, o(!ψ)) /

For example, o(!〈!p〉>) = 2, o(!(〈!q〉〈!〈!p〉>〉>)) = 3 etc. The order of a given pub-

lic announcement indicates the greatest number of nested “!” operators. Given a

sequence σ = ϕ0 . . . ϕn−1 ∈ Σpal, we define the order o(σ) of σ by

o(σ) = (o(!ϕ0), . . . o(!ϕn−1)).

We denote the set of the orders of sequences by O.

Definition 3.3.4 (Lexicographic Ordering on Orders) We define the ordering

� on the set of orders O lexicographically as follows. For every pair of sequences in

PAL+, σ = σ0 . . . σn−1 and τ = τ0 . . . τm−1, o(σ)� o(τ) if

1. σ ≺ τ (σ is a proper initial segment of τ as defined above) or

2. There is some i ∈ N such that

• for all j ∈ N, j < i→ o(σj) = o(τj)), and

• o(σi) < o(τi). /

Finally we need some notations.

Definition 3.3.5 (Union of Models) Let F = {Hk}k∈I be a family of ETL-models

Hk = (Hk,∼k, Vk). The union
⋃
k∈I Hk of ETL-models in F is a triple (H,∼, V):

• H =
⋃
k∈I Hk

3.3. ANNOUNCEMENTS ABOUT ANNOUNCEMENTS 139

• ∼ (i) =
⋃
k∈I ∼k (i)

• For all p ∈ At, V (p) =
⋃
k∈I Vk(p). /

Recall that, given a sequence σ, we denote by σ(k) (0 ≤ k ≤ m) the initial segment

of σ of length k and by σk (1 ≤ k ≤ m) the k-th element of σ.

Definition 3.3.6 (σ-Generated Models) Let M = (W,∼, V) and p be an epis-

temic model and an sd -PAL protocol onM respectively. For every sequence σ ∈ PAL∗

and every order x ∈ O, we define the σ-generated model Hσ,p = (Hσ,p,∼σ,p, V σ,p) and

the order-x-fragment model Hp
x = (Hp

x ,∼p
x, V

p
x) by simultaneous induction as follows:

1. Hλ,p =M, Hp
λ =M

2. Hp
o(τ) =

⋃
{Hτ ′,p | o(τ ′)� o(τ)}

3. Hσ(n+1),p = Hp
o(σ(n+1))

∪ {wσ(n+1) | Hp
o(σ(n+1))

, wσ(n) |= σn+1 and σ(n+1) ∈ p(w)}

4. (wτ, vτ ′) ∈ ∼σ(n+1),p (i) iff (w, v) ∈ ∼ (i) and τ = τ ′

5. V σ(n+1),p(p) = {wτ ∈ Hσ(n+1),p | w ∈ V (p)} /

In Item 3 in the above definition guarantees, the precondition of the n + 1-th

public announcement σn+1 can properly be evaluated, since the construction in Item 2

guarantees thatHp
o(σ(n+1))

reflects the evaluations of all public announcements of lower-

order, which are necessary to evaluate the precondition of σn+1. Also the precondition

is evaluated in Hp
o(σ(n+1))

, which is an ETL model. Formulas of L+
tpal or Lpal are

interpreted as ETL-formulas as in TPAL. Note that the evaluation of preconditions

in Definition 2.1.3 for the construction of PAL-generated ETL models were evaluated

in epistemic models.

140 CHAPTER 3. EXTENSIONS

!q

!p !p

w v

!q

!p!〈!p〉〈!q〉> !p

w v

!p !q

!p!〈!p〉〈!q〉> !p

w v

Figure 3.7: Generalizing PAL-Generated ETL Models

Definition 3.3.7 (PAL-Generated ETL Models) An ETL-model Forest(M, p)

generated from an epistemic modelM = (W,∼, V) based on a sd -protocol p is defined

by:

Forest(M, p) :=
⋃
w∈W

⋃
σ∈p(w)

Hσ,p

We call a PAL-generated ETL model an ETL model generated this way. We denote

by F(PAL+) the class of PAL-generated ETL models. /

Example 3.3.8 (Example) Let M be an epistemic model consisting of two indis-

tinguishable points (for an agent) w, v, in which p is true at both w and v and

q is true only at w. Define a protocol p so that p(w) = {!p!q, !〈!p〉〈!q〉>} and

p(v) = {!p!q, !〈!p〉〈!q〉>}.

The following figures illustrate the construction process. The model on the left is

obtained by calculating the first-order public announcement. The model on the right

is obtained by calculating the second-order public announcements. The model on the

right is the ETL model generated from M by p as specified.

/

3.3. ANNOUNCEMENTS ABOUT ANNOUNCEMENTS 141

3.3.3 Representation Theorem

The construction of PAL-generated ETL models given above in Definition3.3.6 and

3.3.7 is the generalization of the construction given in Chapter 2 (Definition 2.1.3

and 2.1.3) in the sense that it applies to a wider class of protocols beyond the ones

consisting only of epistemic formulas. Indeed, by inspecting the definitions of both

constructions, we can easily observe the following.

Observation 3.3.9 For every ETL model, if it is isomorphic to a model in F(PAL),

then it is isomorphic to a model in F(PAL+). I.e. F(PAL) ⊆ F(PAL+).

Now the question becomes whether the inclusion is a proper one. The answer

turns out to be negative. It is straightforward to observe the following.

Observation 3.3.10 For every ETL model, if it is isomorphic to a model in F(PAL+),

then it satisfies propositional stability, synchronicity, perfect recall, and uniform no

miracles and the following properties:

• for all h, h′, he, h′e ∈ H, if h ∼i h′, then he ∼i h′e (all events are reflexive)

• for all h, h′ ∈ H, if he ∼i h′e′, then e = e′ (no different events are linked).

(For the definitions of the four properties, see also Section 1.5.2.) Recall that the prop-

erties were the properties that characterizes the class of PAL-generated ETL models,

as we saw in Theorem 1.5.10. Thus by the two observations and the representation

theorem, we obtain:

Theorem 3.3.11 For every ETL model, it is isomorphic to a model in F(PAL+) iff it

satisfies the properties specified in Observation 3.3.10. Therefore, we have F(PAL) =

F(PAL+).

142 CHAPTER 3. EXTENSIONS

This means that our new construction does not produce more ETL models than the

old construction does. Nonetheless, extending the notion of protocols beyond epis-

temic formulas has a conceptual advantage. When we apply our systems to describe

realistic situations of intelligent interaction, the possibilities of public announcements

about future truth must frequently be considered. Indeed, our new construction

method will be useful in philosophical applications of our systems, as we will see in

Part II.

3.3.4 Axiomatization

We may also ask whether we can axiomatize the class of PAL-generated ETL mod-

els by the new language L+
tpal. The answer to this question is positive. To obtain

the axiomatization, we only need to modify the axioms and inference rules in the

axiomatization TPAL so that they allow instances of formulas in TPAL+. Then the

completeness proof can be carried out in a way similar to the completeness proof of

TPAL, except for the lemma to make sure that the canonical model is in the intended

class of PAL-generated ETL models, i.e. F(PAL+).

In the completeness proof, the canonical model is constructed from the set of max-

imally consistent sets. We read off the temporal structures based on the information

contained in each maximally consistent set. In particular, we construct the set of

histories Hn and the function λn that assigns suitable maximally consistent sets to

the constructed histories. by simultaneous induction by

• Hn+1 = {h!θ | h ∈ Hn and 〈!θ〉> ∈ λn(h)}

• For each h = h′!θ ∈ Hn+1, λn+1(h) = {ϕ | 〈!θ〉ϕ ∈ λn(h′)}.

After proving the truth lemma based on this construction, we need to carry out the

argument to show that the model is in F(PAL). However, the argument in TPAL

3.4. DISCUSSIONS: EXTENSIONS IN TDEL 143

(Lemma 2.3.8) crucially depends on the fact that the protocols only contain epistemic

formulas. Therefore, to give an argument for TPAL+, we need to do away with the

assumption and work with our new construction. Some extra care must be taken for

this, but the argument can be given and the extended version of the axiomatization

TPAL can be proved to be complete with respect to F(PAL+). Denote the extended

axiomatization by TPAL+.

Theorem 3.3.12 TPAL+ is sound and (strongly) complete with respect to F(PAL+).

We will leave the details of the proof to Appendix 3.7.

3.4 Discussions: Extensions in TDEL

We have considered various extensions of TPAL in the previous sections. Can we give

similar extensions to TDEL? First we will discuss this question in terms of the two

kinds of language extensions in TDEL: the extensions of TDEL with the generalized

DEL-operator “Some event can happen after which. . . ” and the labelled past operator

“The event ε has happened before which. . . ”. After the language extensions in TDEL,

we will consider how to generalize the construction of DEL-generated ETL models.

3.4.1 Extending TDEL with Generalized Event Operators

We start with the generalized event operator “Some event can happen after which. . . ”.

By a similar consideration we gave about the generalized public announcement oper-

ators, two kinds of operators are motivated to distinguish single events and sequences

of events. Thus, let us introduce the following operators, ♦ and ♦∗. Fix an e-closed set

of pointed event model X and consider TDEL(X). Then, we define the two operators

144 CHAPTER 3. EXTENSIONS

in TDEL(X) as follows:

H, h |= ♦ϕ iff ∃ε ∈ X : hε is in H and H, hε |= ϕ.

H, h |= ♦∗ϕ iff ∃σ ∈ X∗ : hσ is in H and H, hσ |= ϕ.

The intended reading of ♦ϕ and ♦∗ are respectively “some (single) event can happen

after which. . . ” and “some sequence of event can happen after which”. The duals,

� and �∗, are defined in the standard way and their intended readings of �ϕ and

�∗ϕ are respectively “After any event, ϕ” and “After any sequence of events, ϕ”. We

denote the extension of TDEL(X) with by TADEL(X). (The name comes from the

fact that TPAL extends to TAPAL.)

Axiomatization

Can we apply the technique that we developed for TAPAL for TADEL(X)? One

natural thing to try is to extend the axiomatization of TDEL(X) with axioms and

inference rules similar to the ones introduced in TAPAL. The special part of the

completeness proof in TAPAL that is to show consistent sets can be expanded to

maximally consistent sets that are saturated with respect to ♦ and ♦∗. The argument

here is carried out in terms of the special rules R(�) and R(�∗).

R(�) If ` ϕ → [σ][!>0]ψ where >0 is a tautologous formula in Lel such that !>0

does not occur in ϕ or [σ]�ψ, then ` ϕ→ [σ]�ψ.

R(�∗) If ` ϕ→ [σ]�kψ for every k such that 0 ≤ k ≤ |ϕ|+1, then ` ϕ→ [!σ]�∗ψ.

Once the argument is taken care of, the truth lemma can be proved by using the

additional axioms A2-3:

A2 〈!χ〉ϕ→ ♦ϕ for any χ ∈ Lpal

3.4. DISCUSSIONS: EXTENSIONS IN TDEL 145

A3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ

The rest of the proof is the same as TPAL.

Now we can reasonably expect that, if similar axioms and inference rules are

available in TDEL(X), then we can give the completeness proof for TADEL(X) based

on the completeness argument for TDEL(X). First, the counterpart of A2 and A3

in TADEL(X) are

E2 〈ε〉ϕ→ ♦ϕ for any ε ∈ X and

E3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ.

Given the truth definition of ♦ and ♦∗, it is straightforward to see that E2 and E3

are sound in TDEL(X).

Extending R(�)

Next, let us consider the counterpart of R(�). Suppose ϕ ∧ 〈σ〉♦ψ is satisfied at

some history h. Then there is some public announcement !θ such that ψ is satisfied

at hσ!θ. The key idea of the soundness of R(�) was that we can create a new history

starting with hσ!>0 for a tautologous public announcement !>0 that does not occur

in the other part of the formula and make ψ satisfied at hσ!>0 without changing the

truth value of other formulas.

To apply this idea to TDEL(X), we need some definitions.

Definition 3.4.1 (Event Type) Two event models, E = (E,→, pre) and E ′ =

(E ′,→′, pre′), are of the same type, if (E,→) and (E ′,→′) are isomorphic. The event

type t(E) of an event model E is the class of all event models of the same type as E .

Given an event model E , denote the type of E by type(E). /

Definition 3.4.2 (Representative) An event model E = (E,→, pre) of an event

type t is a representative of t, if there is a tautologous formula ϕ in Lel such that

146 CHAPTER 3. EXTENSIONS

pre(e) = ϕ for all e ∈ E. Given an event type t and a tautologous formula ϕ, we

denote the representative of t with the tautologous precondition ϕ by r(t, ϕ). /

Recall that we identify isomorphic event model (Remark 1.2.11), r(t, ϕ) is consid-

ered to be a unique event model. Given that there are countably many tautologous

epistemic formulas, there are countably many r(t, ϕ) for a given t.

In TDEL(X), there might be other types of event models than public announce-

ments. Thus, to ‘witness’ the satisfiable formula ♦ψ, we need to choose a right type of

event models. Suppose that ϕ∧〈σ〉♦ϕ is satisfied in TDEL(X) at a history h in some

model. Then there is a pointed event model ε = (E , e) ∈ X such that ψ is true at hσε.

To proceed as in the soundness proof of R(�), we need to take a representative of t,

and replace ε with (r(type(εL), χ), eR) for some appropriate tautologous formula χ.

Therefore, we can expect that, if ϕ ∧ 〈σ〉♦ψ is satisfiable, then ϕ ∧ 〈σ〉〈(r(t, χ), e)〉ψ

is satisfiable where r(t, χ) does not occur in ϕ ∧ 〈σ〉♦ψ.

Based on this idea, the counterpart of R(�) in TADEL(X) can be expected to be

as follows. Let χ be a tautologous epistemic formula that does not occur in ϕ→ [σ]�ψ

or the precondition of events occurring in it.

RX(�) If ` ϕ→ [σ][r(type(εL), χ), εR]ψ for every ε ∈ X, then ` ϕ→ [σ]�ψ.

Clearly, we need some restrictions on the set X of pointed event models in

TADEL(X). First, RX(�) is an infinitary rule if X consists of infinitely many event

models. X must consists of a finite number of event types to obtain finite axiomati-

zation for TADEL(X). Second, appropriate representative event modelsA should be

in X. Otherwise, we cannot take r(type(εL), χ) within TDEL(X).

One natural restriction derived from these considerations is that X is a union of

finitely many event types. To state the restriction more precisely, let t be an event

type. Then let Et be the set of pointed event models (E , e) where E ∈ t. Then X

should be of the form
⋃n
i=1 Eti for some natural number n.

3.4. DISCUSSIONS: EXTENSIONS IN TDEL 147

Extending R(�∗)

Finally, what about R(�∗)? As in TAPAL, given the truth definition of ♦∗, it is

straightforward to see the following infinitary version of R(�) is sound in TADEL(X):

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Now the question is whether we can put a finite bound on n to make the rule finitary.

Recall the argument for the soundness of R(�∗) in TAPAL in Section 3.1.4. The

key idea was to ‘replace’ a sequence of public announcements with a single tautologous

public announcement. If ♦ϕ is satisfied at a history h, then there is a sequence σ that

ϕ is satisfied at hσ. σ here can be replace with a tautologous public announcement

!>0 to satisfy h!>0.

This argument can be carried out in TAPAL, since public announcements are a

kind of event models that correspond to model relativizations. A sequence of model

relativizations amounts to a model relativization. Thus the model transformation

that σ induces can be imitated by a single announcement !>0 by adjusting PAL-

protocols. However, in TADEL(X), we have different event types. To carry out the

soundness argument in TADEL(X), we need to guarantee that we can always find an

event model of a right event type to imitate the sequence of event models.

One way to guarantee this is to restrict the set of pointed event models X in

TDEL(X) to be closed under compositions. That is, if two event models, E1, E2, are

in X then E1×E2 must be in X. However this restriction does not seem to square well

with the restrictions that were suggested for R(�), as a brief consideration suggests

that the closure under composition can easily lead to infinity of event types except for

some special cases (the event type of public announcement is closed under composi-

tion, etc.). Thus, we have a dilemma to obtain the axiomatization of TADEL(X) by

extending TAPAL: on the one hand, we would like to have finitely many event types

to make RX(�)) a finitary rule; on the other, to make R′(�∗) finitary, we need to have

148 CHAPTER 3. EXTENSIONS

a set of event types closed under composition. It is an open question whether there

are natural conditions on X to carry out the completeness argument in TADEL(X)

as in TAPAL. We leave this question for future research.

3.4.2 Extending TDEL with Labelled Past Operators

Next we consider the labelled past operator. Fix an e-closed set of pointed event

model X and consider TDEL(X). Then, given a pointed event model ε ∈ X, we can

define the labelled-past operator Pε as follows:

H, h |= Pεϕ iff ∃ε ∈ X∃h′ : h = h′ε and H, h′ |= ϕ.

The intended reading of Pεϕ is respectively “The event ε has happened before which. . . ”.

The dual P̂ε is defined in the standard way and the intended reading of P̂εϕ is “Before

the event ε, ϕ.”4 We denote the extension of TDEL(X)+P.

Axiomatization

Can we extend TPAL+P to TDEL(X)+P? The special part of the completeness proof

in TPAL+P was to guarantee that, if ϕ is consistent, then there is some sequence

!θ1, . . . , !θpd(ϕ) such that 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is consistent. The argument was carried

out by the following rule.

R(P) If ` [!θ1] . . . [!θpd(ϕ)]ϕ for every !θ1, . . . , !θpd(ϕ) such that each !θi is in AOC(ϕ)

or in !T (ϕ), then ` ϕ, where !T (ϕ) is a set of pd(ϕ) tautologous public announce-

ments not in AOC(ϕ).

4This reading should be not taken as implying that ε has in fact happened. If the event ε did
not happen, we define P̂ε vacuously true. See also Section 3.2.1.

3.4. DISCUSSIONS: EXTENSIONS IN TDEL 149

The rest of the argument is the same as in TPAL in the presence of the additional

axioms:

P1 〈ε〉Pεϕ↔ 〈ε〉> ∧ ϕ

P2 〈ε〉Pε′ϕ→ ⊥ if ε 6= ε′

The soundness of P1 and P2 in TDEL(X)+P is clear given the truth definition

of Pε. Can we extend R(P)? The answer is positive. Let us first state the version of

R(P) in TDEL(X)+P. We need some definitions. Let ϕ be a formula in TDEL(X)+P.

Define the past-depth pd(ϕ) of ϕ as the highest number of nested occurrences of past-

operators. Also let denote the set of pointed event models that occur in ϕ by EOC(ϕ).

Given a set X of pointed event models, define type(X) := {type(εL) | ε ∈ X}. (the

set of all event types in X.)

Let ϕ be a formula in TDEL(X)+P. Given an event type t, take a set of pd(ϕ)

distinct representatives of t that are not in EOC(ϕ), and let Tt(ϕ) be the set of all

pointed event models of the form (E , e) such that E is one of the representatives.

Then the following is the counterpart of R(P) in TDEL(X):

RX(P) If ` [ε1] . . . [εpd(ϕ)]ϕ for every ε1, . . . , εpd(ϕ) such that each εi is in EOC(ϕ) or

in TX(ϕ), then ` ϕ, where TX(ϕ) is the set
⋃
t∈type(X) Tt(ϕ).

This rule generalizes RX(P) by taking representatives for every types in X. We

defined the set TX(ϕ), since we may have distinct event types in TDEL(X)+P and

we have to take enough (as many as d(ϕ)) representatives for each event type. Thus,

RX(P) is an infinitary rule, if there are infinitely many types in X. Also, we need

to guarantee that representatives of event types are in X. These considerations, as

in the case of TADEL(X), suggest the restrictions on the set X that X is a union of

finite event types.

Now it suffices to show the following for the soundness of RX(P).

150 CHAPTER 3. EXTENSIONS

Lemma 3.4.3 If ϕ is satisfiable, then 〈!ε1〉 . . . 〈!εpd(ϕ)〉ϕ is satisfiable for some !ε1, . . . , !εpd(ϕ)

such that each εi is in EOC(ϕ) or in TX(ϕ).

This can be proved by the argument for the soundness of R(P). We had two key

ingredients in the argument. First, we needed to normalize the model that satisfies ϕ.

This part of the argument can be taken care of also in TDEL(X), since the normaliza-

tion theorem for TDEL can be obtained, as stated in Section 2.6.1 (Theorem 2.6.1).

Based on the normalization theorem, it is straightforward to obtain the normalization

theorem for TDEL(X)+P by the argument in the above normalization theorem for

TPAL+P (Proposition 3.2.5). Second, we needed to ‘lift’ histories to obtain histories

that are long enough. This part of the argument depends on tautologous public an-

nouncements. Thus to carry out the same argument in TDEL(X)+P, we require the

set of public announcements PAL to be included in the set of events X.

In sum, the soundness rule can be proved with the restriction that X is a finite

union of finite event types and X includes the set of pubic announcements. Based on

RX(P), we can carry out the completeness argument and provide the axiomatization

for TDEL(X)+P. The details of the completeness argument in TDEL(X)+P are

provided in Hoshi and Yap [42].

3.4.3 Events with Future Preconditions

Next, we will discuss the extension of TDEL so that the event operators containing

event operators are allowed. There are two main difficulties in extending TDEL

based on the above methods: the problem of infinite regress and the problem of order

incompatibility.

3.4. DISCUSSIONS: EXTENSIONS IN TDEL 151

The Problem of Infinite Regress

The first problem we deal with is the one pertinent to DEL itself. We call the problem

the problem of infinite regress. It arises when we allow arbitrary DEL-formulas to be

preconditions of events. For instance, let E be the event model consisting of a single

point e. Suppose the precondition of e is 〈E , e〉>. Then problem is that we encounter

“infinite regress”, when we try to determine, say, whether the formula 〈E , e〉> is true

at a given point. To determine the truth value, we have to determine whether the

precondition of e is true. However the precondition is again 〈E , e〉>. This way, we

can never determine the truth value of the formula.

The problem is not limited to this specific example. Indeed, we can generate

infinite regress, which involve multiple event models or even infinitely many event

models. For instance, take two event models, E1 and E2, that contain events, e1

and e2, respectively. Suppose preE1(e1) = 〈e2〉> and preE2(e2) = 〈e1〉>. To determine

whether 〈e1〉> is true at a given point, we need to determine whether the precondition

of e1, i.e. 〈e2〉>, is true. However to determine whether 〈e2〉> is true, we need to

determine the precondition of e2, i.e. 〈e1〉> is true. And so forth. This way, we can

generate various examples of infinite regress and all those cases must be avoided when

we allow event operators in preconditions of events.

The main idea to avoid the problem is to delimit the legal classes of pointed event

models by some appropriate properties on the set of event models X in TDEL(X).

One natural property suggests itself in view of the problem of infinite regress. An

event e is well-founded in a set of pointed models events X if

• the precondition of e is epistemic formula, or

• all events occurring in e are in X and well-founded.

A set of pointed event models X is well-founded if all events in X are well-founded

in X. It is straightforward to see that the problem of infinite regress does not arise,

152 CHAPTER 3. EXTENSIONS

if the set of event models X in TDEL(X) is well-founded.

The Problem of Order Incompatibility

The other problem is the problem of order incompatibility. This problem can be

illustrated by the following example. LetM be an epistemic model consisting of two

indistinguishable points (for an agent i) w, v, in which p is true at w but not at v.

By allowing the formulas containing event operators as preconditions, let E be the

event model consisting of indistinguishable points (for an agent i), e1 and e2, whose

preconditions are defined respectively by > and 〈!>〉〈!>〉>. Then, define a sd -DEL-

protocol p so that p(w) = {(E , e1)![i]A} and p(v) = {(E , e2), !>!>} (where !ϕ denotes

the public announcement of ϕ as usual).

If we faithfully adopt the method we adopted for TPAL+, we start constructing

an ETL-models from the events with epistemic preconditions. This model obtained

by the process is represented one the left side of Figure 3.4.3. Once this construction

process is done, the next construction process would be to consider events of higher-

order. In our current example, the precondition of e2 contains public announcements

inside and thus e2 is treated at this stage. The model obtained by this process is

represented on the right hand side of Figure 3.4.3. (Since 〈!>〉〈!>〉>, which is the

precondition of e2, is true at v in the model on the left, we create node v(E , e2) as in the

model on the right.) However, note that, in this model, even though there is the node

w(E , e1)![i]p, [i]p is not any more true at w(E , e1), since it is now indistinguishable

from v!>. Thus, this model will violates the truthfulness axiom 〈E , e〉> → preE(e).

What this problem shows is that the part of DEL-generated ETL models con-

structed by treating lower-order events can be incompatible with the part of DEL-

generated ETL models constructed by treating higher-order events. In the presence

of this problem, the construction given in TPAL+ cannot straightforwardly applied

to the general case of TDEL. We will leave the question about how to give a proper

3.5. CONCLUSION AND DISCUSSION 153

!>[i]p

e1 !>

!>[i]p

e1 e2 !>

Figure 3.8: Extending TDEL 1

construction in TDEL for future research.

3.5 Conclusion and Discussion

We have considered two kinds of extensions of TPAL in this chapter. One kind was

to extend the language of TPAL with operators describing temporal structures of

our models. We considered the two kinds of temporal operators, generalized public

announcement operators and labelled past operators, and gave axiomatizations for

both extensions, TADEL(X) and TDEL(X)+P. Then we considered the extension

of PAL-generated ETL models and generalized our construction method to allow

public announcements containing public announcement operators. We have seen that,

although the new construction method provides possible advantage in applications of

our framework, it produces the same class of ETL models as the old construction

method does. Finally, we discussed whether and how the methods to extend TPAL

can be applied to TDEL. We saw some problems to be investigated for future research.

We conclude this chapter by listing further open questions:

Complexity Are TAPAL and TPAL+P decidable? If so, what are their complex-

ities? For instance, APAL, the extension of PAL with the generalized public

announcement operator is proved to be undecidable in [25]. What about TAPAL

in the view of the result?

Common Knowledge Can we incorporate the common knowledge operator to TAPAL

154 CHAPTER 3. EXTENSIONS

and TPAL+P? In the presence of the undecidability result in [49], would TAPAL

plus common knowledge be axiomatizable?

Combination Can we combine TAPAL and TPAL+P? We consider the generalized

public announcement operator and labelled past operator separately. Can we

have both operators together in one system?

Extensions to TDEL Can we extend TDEL in the ways that TPAL was extended

in this chapter? (as discussed in Section 3.4)

3.6 Appendix 1: Soundness of TAPAL

We provide details for the soundness of the axiomatization TAPAL. In particular we

give the soundness proof of the rules R(�) and R(�∗).

3.6.1 Grafting

First, we need to formalize the model transformation of grafting . Given a sequence of

public announcements σ, let AOC(σ) be the set of public announcement that occur

in σ, i.e.

AOC(σ) = AOC(σ1) ∪ · · · ∪ AOC(σlen(σ)).

Given a protocol p onM, let AOC(p) be the set of public announcements that occur

in p, i.e.

AOC(p) =
⋃

{σ|∃w∈Dom(M):σ∈p(w)}

AOC(σ).

Definition 3.6.1 (Grafting) The model H[στ 7→σ!>0] obtained by grafting H with re-

spect to στ 7→ σ!>0 is a triple (H [στ 7→σ!>0],∼[στ 7→σ!>0], V [στ 7→σ!>0]) defined by:

• H [στ 7→σ!>0] := H ∪ {wσ!>0υ | ∃υ ∈ PAL∗ : wστυ ∈ H and w in M}

3.6. APPENDIX 1: SOUNDNESS OF TAPAL 155

• (h, h′) ∈∼[στ 7→σ!>0] (i) iff

– (h, h′) ∈∼ (i), or

– h = wσ!>0υ, h′ = vσ!>0υ
′ and (στυ, vστυ′) ∈∼ (i).

• h ∈ V [στ 7→σ!>0](p) iff

– h ∈ V (p)

– h = wσ!>0υ and wστυ ∈ V (p). /

The idea of grafting is as discussed in Section3.1.4. Given a sequence στ , we

“take branches” in the ETL-model above στ in H. Then we concatenate the “new”

tautologous formula !>0 at the bottom of the branches and “graft” the branches to

the corresponding nodes of the form wσ with w in the base epistemic model.

Observation 3.6.2 Let G = H[στ 7→σ!>0]. Then

G = Forest(M, pG,λ<)

where λ is the empty sequence. (For the definition of pG,λ<, see Definition 2.2.11) /

Proof. By the similar reasoning given to obtain Observation 2.2.12. qed

Proposition 3.6.3 (Preservation at Grafted Branches) For every ϕ ∈ Ltapal,

H, wστ |= ϕ ⇔ H[στ 7→σ!>0], wσ!>0 |= ϕ

/

Proof. The proof is straightforward by Proposition 3.1.6 and the construction of

H[στ 7→σ!>0]. qed

156 CHAPTER 3. EXTENSIONS

The proposition gives a truth-preservation result concerning grafted models, i.e.

the truth of formulas are preserved at the bottom of newly grafted branches. However,

grafting does not preserve truth in general. We must be careful when transforming

models by grafting to preserve the truth of formulas of our interest. We will see more

on this below when we prove the soundness theorems.

3.6.2 Soundness of R(�)

The intuition behind the soundness proof is as described in Section 3.1.4. We start

by observing that the normalization result can be obtained in TAPAL.

Proposition 3.6.4 (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let X be a

finite subset of Lel. Furthermore, let ϕ0, ϕ1 . . . be an enumeration of the formulas in

Lel\X without repetition, and >0,>1, . . . be an enumeration of tautologous formulas

in Lel\X without repetition. Then, for every h and TAPAL-formula ϕ such that

AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . .], h[!>0/!ϕ0, !>1/!ϕ1, . . .] |= ϕ

/

Proof. Straightforward induction on ϕ. See also Proposition 2.2.14. qed

Next, the following fact stating that grafting with respect to στ 7→ σ!>0 where

len(τ) = 1 preserves the truth of TAPAL-formulas.

Lemma 3.6.5 Grafting with len(τ) = 1 Let p be an sd-protocol on M = (W,∼, V).

Let H = Forest(M, p) and wτσ!ψ in H where w ∈ W . For every ϕ, if a tautologous

formula > ∈ PAL∗ is not in AOC(ϕ) ∪ AOC(p), then

H, wτ |= ϕ ⇔ H[τσ!ψ 7→τσ!>0], wτ |= ϕ.

3.6. APPENDIX 1: SOUNDNESS OF TAPAL 157

Proof. Straightforward by induction on ϕ. qed

Theorem 3.6.6 (Soundness of R(�)) If ϕ∧ 〈σ〉♦ψ is satisfiable in F(PAL), then

ϕ ∧ 〈σ〉〈!>0〉ψ with !>0 6∈ AOC(ϕ) ∪ AOC(σ) ∪ AOC(ψ) is satisfiable in F(PAL). /

Proof. Assume that ϕ∧〈σ〉♦ψ is satisfiable. Thus, let Forest(M, p), h |= ϕ∧〈σ〉♦ψ.

This implies Forest(M, p), h |= ϕ ∧ 〈σ〉〈α〉ψ for some α ∈ PAL. Now take

X := AOC(ϕ ∧ 〈σ〉〈α〉ψ).

Also let Taut be the set of tautologous formulas in Lel. Take Taut′ := Taut\X. Then

enumerate the elements in Taut′ and let >′0,>′1, . . . be the result of the enumeration.

Also take an enumeration of Lpal\X without repetition so that >′0 comes as the first

element. We write the enumeration as >′0, ϕ′1, ϕ′2, Then apply Proposition 3.6.4

by taking the following parameters:

• X := AOC(ϕ ∧ 〈α〉ψ)

• ϕ0 := >′0, ϕ1 := ϕ′1, . . . , ϕi := >′i, . . .

• >0 := >′1,>1 := >′2, . . . ,>i := >′i+1,

Then, by this application of Proposition 3.6.4 together with Observation 2.2.12, we

obtain

Forest(M, p′), h′ |= ϕ ∧ 〈σ〉〈α〉ψ

for some p′ such that !>′0 6∈ AOC(p′). Now, since this implies Forest(M, p′), h′σα |= ψ,

we can apply Lemma 3.6.5 (or Proposition 3.6.3) to obtain

Forest(M, p′)[τσα 7→τσ!>′0], h′σ!>′0 |= ψ

158 CHAPTER 3. EXTENSIONS

Similarly, by applying Lemma 3.6.5 to Forest(M, p′), h′ |= ϕ, we can obtain

Forest(M, p′)[τσα 7→τσ!>′0], h′ |= ϕ.

By Observation 3.6.2, the model Forest(M, p′)[τσα 7→τσ!>0] is in F(PAL) and, therefore,

ϕ ∧ 〈σ〉〈!>0〉ψ is satisfiable in F(PAL). qed

Corollary 3.6.7 Let all ϕ, ψ ∈ Ltapal and σ ∈ PAL∗. Also let p,>0 be a propositional

letter and a tautologous formula in Lel such that !p, !>0 6∈ AOC(ϕ) ∪ AOC(ψ) ∪

AOC(σ). Then

` ϕ→ [σ][!p]ψ ⇔ ` ϕ→ [σ][!>0]ψ ⇔ ` ϕ→ [σ]�ϕ

/

Proof. This follows immediate from the soundness of the rule R′(�) given in [41]

and Theorem 3.6.6 via the semantic definition of �. qed

3.6.3 The Soundness of R(�∗)

Next, we deal with R(�∗). We start by proving the observation discussed in Sec-

tion 3.1.4.

Proposition 3.6.8 (Reduction of ♦∗ to ♦) For every ϕ ∈ Ltapal, if ♦∗ϕ is satis-

fiable in F(PAL), then ♦nϕ is satisfiable in F(PAL) for n = 0 or n = 1.

Proof. If H, h |= ♦∗ϕ with h = wτ , then there is some σ ∈ Σ∗pal such that H, h |=

〈σ〉ϕ. If σ is empty, we are done. Thus, assume that σ is not empty. By the method

used in the proof of Theorem 3.6.6, obtain a tautologous formula >0, a model H′,

3.6. APPENDIX 1: SOUNDNESS OF TAPAL 159

and a history h′ in H′ such that >0 does not occur in H′ and H′, h′ |= ♦∗ϕ. Then by

a similar argument given in the proof of Theorem 3.6.6, we obtain

(H′)[τσ 7→τ !>0], h′!>0 |= ϕ.

This implies the satisfiability of ♦ϕ. qed

Corollary 3.6.9 For every ϕ ∈ Ltapal,

` �ϕ ⇔ ` �∗ϕ.

/

Next we define the notion of initial box iteration to indicate the occurrence of �

that must be taken care of in the soundness proof of R(�).

Observation 3.6.10 Every TAPAL-formula is equivalent to some formula of TAPAL

built up by the following inductive definition:

ϕ ::= > | p | ¬p | ϕ ∧ ϕ | ϕ ∧ ϕ | 〈i〉ϕ | [i]ϕ | 〈!A〉ϕ | [!θ]ϕ | ♦ϕ | �ϕ |♦∗ϕ | �∗ϕ.

where p ∈ At, i ∈ A and θ ∈ Lpal.

Proof. Immediate by the definitions of the dual operators and the standard boolean

equivalences. qed

Thus, we can interchangeably use the inductive definition in Definition 3.1.1 and the

one given here.

Definition 3.6.11 (Initial Box Iteration) The initial box iteration ibi(ϕ) of a

TAPAL-formula ϕ is defined inductively as follows:

160 CHAPTER 3. EXTENSIONS

• ibi(p) = ibi(¬p) = 0 for p propositional

• ibi(ϕ ∧ ψ) = ibi(ϕ ∨ ψ) = max(ibi(ϕ), ibi(ψ))

• ibi(〈i〉ϕ) = ibi([i]ϕ) = ibi(ϕ)

• ibi(〈!A〉ϕ) = ibi([!A]ϕ) = 0

• ibi(♦ϕ) = 0

• ibi(�) = ibi(ϕ) + 1

• ibi(♦∗ϕ) = ibi(�∗ϕ) = ibi(ϕ) /

Now we explain the basic idea of the soundness proof for R(�∗) below. Suppose

ϕ ∧ 〈σ〉♦∗ψ is true at wτ in H (w in the base epistemic model M). Then, ψ is true

at wτσυ for some υ. Now we graft the model H with respect to τσυ0 7→ τσ!>0. This

will preserve the truth of ϕ ∧ 〈σ〉♦∗ψ by Lemma 3.6.5. After this, we again graft at

τσ!>0 in the similar way, and repeat grafting that way as many times as ibi(ϕ), i.e.

the number of the �-operators that must be taken care of. Once we graft ibi(ϕ) times,

we finally apply the grafting method for ♦∗-operator as we did in Proposition 3.6.8.

This process of iterated grafting preserves the truth of ϕ ∧ 〈σ〉♦∗ψ and thus we can

put the desired bound k for the satisfiability of the formula ϕ ∧ 〈σ〉♦kψ given the

satisfiability of the formula ϕ ∧ 〈σ〉♦∗ψ. Below we make this idea more precise.

Lemma 3.6.12 (Grafting for �) Let p be an sd-PAL-protocol on M = (W,∼, V)

and ϕ a TAPAL-formula. Let wσ ∈ p(w). Put H = Forest(H, p) and ibi(ϕ) = m.

Also let τ be a sequence of TAPAL-formula such that len(τ) ≥ m. Finally let >0 6∈

AOC(ϕ) ∪ AOC(p). Then, for every υ ∈ Σ∗pal and w ∈ W , if wστυ is in H,

H, wσ |= ϕ ⇒ Hστυ 7→στ !>0 , wσ |= ϕ.

3.6. APPENDIX 1: SOUNDNESS OF TAPAL 161

Proof. The proof can be given by straightforward induction on ϕ in terms of the

equivalent formulation of the formulas in TAPAL as in Observation 3.6.10. qed

Theorem 3.6.13 If ϕ∧〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ∧〈σ〉♦kψ is satisfiable

in F(PAL+) for some k such that 0 ≤ k ≤ ibi(ϕ)−̇len(σ) + 1, where a−̇b = a − b if

a− b > 0; a−̇b = 0 otherwise.

Proof. Let H = Forest(M, p) and wτ in H with w in M. Assume that H, wτ |=

ϕ ∧ 〈σ〉♦∗ψ. By the semantics of ♦∗, there is some υ = υ0 . . . υn−1 such that

H, wτ |= ϕ ∧ 〈σ〉〈υ〉ψ. (3.1)

If ibi(ϕ)−̇len(σ) ≥ len(υ), we are done since we have H, wτ |= ϕ ∧ 〈σ〉♦kψ for some

k ≤ ibi(ϕ)−̇len(σ) + 1.

Thus suppose ibi(ϕ)−̇len(σ) < len(υ). Let a = len(σ) and b = ibi(ϕ). Then take a

sequence of distinct tautologous formulas in Lpal, >0, . . . ,>[(b−a)−1]+1. By a similar ar-

gument given in the proof of Theorem 3.6.6, we can assume that >0, . . . ,>[(b−a)−1]+1 6∈

AOC(p). Then, define

H′ = (. . . (H[wτσυ0 7→wτσ!>0]) . . .)[wτσ!>0...!>(b−a)−2υ(b−a)−1 7→wτσ!>0...!>(b−a)−2!>(b−a)−1]

By repeatedly applying Lemma 3.6.5, we have

H′, wτ |= ϕ (3.2)

Also since (3.1) implies

H′, wτσυ0 . . . υ(b−a)−1 |= 〈υ(b−1) . . . υn−1〉ψ,

162 CHAPTER 3. EXTENSIONS

by repeatedly applying Lemma 3.6.3, we have

H′, wτσ!>0 . . .!>(b−a)−1 |= 〈υ(b−a) . . . υn−1〉ψ.

and thus H′, wτσ!>0 . . .!>(b−a)−1 |= ♦∗ψ. Here consider the model

H′′ := (H′)[wτ !>0...!>(b−a)−1υb−a...υn−1 7→wτ !>0...!>(b−a)−1!>b−a]

By the argument given in the proof of Proposition 3.6.8, this implies

H′′, wτ !>0 . . .!>(b−a)−1!>b−a |= ψ.

This gives us

H′′, wτ |= ♦b−a+1ψ.

In addition, (3.2) together with Lemma 3.6.12 implies

H′′, wτ |= ϕ.

Therefore, we have ϕ ∧ ♦b−a+1 is satisfied in H′′, which is clearly in F(PAL) by

construction (and Observation 2.2.12 and 3.6.2). qed

Corollary 3.6.14 (Soundness of R(�∗)) R(�∗) is sound with respect to the class

F(PAL).

Proof. Immediate from the above theorem and the fact that

ibi(ϕ)−̇len(σ) + 1 ≤ ibi(ϕ) + 1 ≤ |ϕ|+ 1.

qed

3.7. APPENDIX 2: COMPLETENESS OF TPAL OVER F(PAL+) 163

3.7 Appendix 2: Completeness of TPAL over F(PAL+)

The axiomatization TPAL+ of TPAL+ consists of the axiom schemas and inference

rules in TPAL. In TPAL+, the schemas and rules can be instantiated by any formula

in TPAL+. We refer to the schemas and inference rules in TPAL+ by their names

in TPAL. The idea of the completeness proof is the same as in TPAL. The canonical

model is constructed and the truth lemma is proved in a similar way. A special

care must be taken in order to prove that the canonical model in TPAL+ is in the

class F(PAL+). For this, we first need to prove some properties of PAL-generated

models. Given two sequences σ and τ , we denote by στ the sequence obtained by

concatenating σ and τ in order.

Proposition 3.7.1 Given an epistemic model M and p∈ PAL+ on M = (W,∼, V),

define Hp
x for every x ∈ N∗ as defined in 3.3.6. Let y, z ∈ O, n ≥ 1. Further, suppose

yn� z. For every h ∈ Hp
yn and every ϕ ∈ L+

tpal with o(ϕ) ≤ n,

Hp
yn, h |= ϕ⇔ Hp

z , h |= ϕ.

Proof. First, observe that, by Definition 3.3.6, h ∈ Hp
yn implies that h ∈ Hp

z (by

the assumption that yn � z). Thus, on the assumption that h ∈ Hp
yn, we have

h ∈ Hp
yn ⇔ h ∈ Hp

z . Denote this fact by (i). We show the claim by induction on

ϕ. The base and boolean cases are clear. Suppose ϕ is of the form [i]ϕ. Assume

LHS. Let (h, h′) ∈∼p
yn (i). Then, by IH, Hp

z , h
′ |= ψ. Here, by the construction in

Definition 3.3.6 and the fact (i), it follows that (h, h′) ∈ ∼p
yn (i) ⇔ (h, h′) ∈ ∼p

z (i).

Thus we have Hp
z , h |= [i]ψ. The other way is similar.

Next suppose ϕ is of the form 〈!θ〉ψ. First, LHS is equivalent to Hp
yn, h!θ |= ψ.

Furthermore, since o(!ϕ) ≤ n, we have o(!θ) ≤ n by the definition of o. By this fact

and the construction in Definition 3.3.6, h ∈ Hp
yn implies that h!θ ∈ Hp

yn ⇔ h!θ ∈ Hp
z

164 CHAPTER 3. EXTENSIONS

(by the same reasoning as for the fact (i)). Thus, we can apply IH and obtain

Hp
yn, h!θ |= ψ ⇔ Hp

z , h!θ |= ψ. This gives us the equivalence between LHS and RHS.

qed

Let M0 = (W0,∼0, V0) be the base epistemic model, from which the canonical

ETL-model is constructed. Also, let G = (G,≈, U) be the canonical model. Define

p0 on G so that p0(w) = {σ|wσ ∈ G} for all w ∈ W0. Given M0 and p0, generate

Hσ,p0 and Hp0
x for a sequence σ of public announcements (σ ∈ (PAL+)∗ and x ∈ O, as

defined in Definition 3.3.6. For simplicity, we write Hσ and Hx respectively for Hσ,p0

and Hp0
x . Also let H = (H,∼, V) = Forest(M0, p0).

Proposition 3.7.2 Let w ∈ W0 and σ ∈ (PAL+)∗. Assume vσ ∈ G ⇔ vσ ∈ Hσ for

every v ∈ W0 (Denote by “Assumption 1”). Then, for every ϕ ∈ L+
tpal,

G, wσ |= ϕ⇔ Ho(σ)o(!ϕ), wσ |= ϕ.

Proof. We go by induction on ϕ. The base and boolean cases are straightforward.

Suppose that ϕ is of the form [i]ψ. Assume G, wσ |= [i]ψ. Let w′ be such that

(w,w′) ∈∼0 (i). Then we have (wσ,w′σ) ∈≈ (i) by construction, and thus G, w′σ |=

ψ. Thus, by IH, Ho(σ)o(!ϕ), w
′σ |= ψ. Put Ho(σ)o(!ψ) = H′ = (H ′,∼′, V ′). Here,

note, for every u ∈ W0, uσ ∈ Hσ ⇔ uσ ∈ H ′, by the construction in Definition 3.3.6.

Therefore, Assumption 1 implies that, for any u, (wσ, uσ) ∈∼′ (i)⇔ (wσ, uσ) ∈≈ (i).

This gives us H′, wσ |= [i]ψ. Here H′ = Ho(σ)o(!ψ) = Ho(σ)o(![i]ψ), since o(!ψ) = o(![i]ψ)

by the definition of o. Thus, we obtain the LHS-RHS direction. The other direction

is similar.

Next, suppose ϕ is of the form 〈!θ〉ψ. First, we claim that Assumption 1 implies

vσ!θ ∈ G⇔ vσ!θ ∈ Hσ!θ for all v ∈ W0.

3.7. APPENDIX 2: COMPLETENESS OF TPAL OVER F(PAL+) 165

Proof of the claim: vσ!θ ∈ G implies 〈!θ〉> ∈ λ(wσ), and by A1, θ ∈ λ(wσ). By truth

lemma, we have G, vσ |= θ. Thus, by IH, Ho(σ)o(!θ), vσ |= θ. Since we have σ!θ ∈ p0(v)

by the construction of p0, we have vσ!θ ∈ Hσ!θ. The other direction is similar.

Now, assume the LHS of the biconditional. It implies that G, wσ!θ |= ψ. By

the claim, we can apply IH and obtain Ho(σ!θ)o(!ψ), wσ!θ |= ψ. Here, note that

o(σ!θ)o(!ψ) = o(σ)o(!θ)o(!ψ) � o(σ)o(!ϕ) since o(!θ), o(!ψ) < o(!〈!θ〉ψ). Thus, ap-

plying Proposition 3.7.1, we obtain Ho(σ)o(!〈!θ〉ψ), wσ!θ |= ψ. Therefore, we have

Ho(σ)o(!〈!θ〉ψ), wσ |= 〈!θ〉ψ, as desired. The RHS-LHS direction is similar. qed

Lemma 3.7.3 (Canonicity) The canonical model G is in F(PAL).

Proof. It suffices to show the following claim:

Claim 1: For every w ∈ W0 and every σ ∈ (PAL+)∗, wσ ∈ G⇔ wσ ∈ Hσ.

For this implies G = H and then, by inspecting the constructions of PAL-generated

ETL-models and the canonical model, we see that G = H.

We go by complete induction on the order of σ. The base case (o(σ) = λ) is clear by

the construction of the canonical model and Definition 3.3.6. Assume that the claim

holds for every τ such that o(τ)� o(σ). Let σ = σ1 . . . σk. Suppose that wσ1 . . . σk ∈

G. This implies G, wσ1 . . . σk−1 |= σk (by truth lemma) and σ1 . . . σk ∈ p0(w). Also

IH implies that, for every v ∈ W0, wσ1 . . . σk−1 ∈ G ⇔ wσ1 . . . σk−1 ∈ Hσ1...σk−1 . By

the construction in Definition 3.3.6, this is equivalent to:

For every v ∈ W0, wσ1 . . . σk−1 ∈ G⇔ wσ1 . . . σk−1 ∈ Ho(σ1...σk−1).

Thus, we can apply Proposition 3.7.2 and obtain Ho(σ1...σk−1)o(σk), wσ1 . . . σk−1 |= σk.

Given σ1 . . . σk ∈ p0(w), we have wσ1 . . . σk ∈ Hσ1...σk by Definition 3.3.6. The other

way is similar. qed

Part II

Applications

166

Chapter 4

Knowability Paradox

In Part II, we have developed a formal framework that represents both epistemic dy-

namics and protocol information. We will now give applications of the formal system

to some philosophical problems, in which relevant epistemic concepts can be seen as

involving aspects of epistemic dynamics and protocol information. By formalizing

the epistemic concepts in our system, we will try to throw new light on the philo-

sophical problems. In giving philosophical applications of our framework, we hope

not only that those examples illustrate that our framework provides a powerful tool

for conceptual analysis, but also that our attempts will contribute to the interaction

between philosophical investigation and formal approaches in epistemology. Our first

application concerns the knowability paradox .

Fitch’s argument, If there is some unknown truth, then there is some unknow-

able truth ([23]), poses a problem for recent verificationist accounts of semantic anti-

realism. In claiming that the meaningfulness of statements consists in the existence of

their verification procedures, these accounts seem to be committed to the knowability

thesis, Every truth is knowable. For if a true statement has a verification procedure,

the procedure will provide a way through which the truth of the statement can come

167

168 CHAPTER 4. KNOWABILITY PARADOX

to be known. However, this thesis implies, via Fitch’s argument, the counterintuitive

claim every truth is known. This problem has come to be known as Fitch’s paradox .

Although various kinds of accounts have been produced to deal with Fitch’s paradox,

each account has been at least controversial in some relevant respects. The main pur-

pose of this chapter is to propose an alternative account that avoids the problematic

features of the previous approaches.

We achieve this goal by undertaking two tasks. The first task will be to show

that a verificationist account does not have to be committed to the formulation of

the knowability thesis.1 We will do this by providing a philosophical framework that

does not imply the knowability thesis, while preserving the verificationist thesis of

anti-realist semantic accounts. Consequently, our approach will avoid the charges

against some of the previous accounts that they are not motivated by verificationism.

Our verificationist framework will introduce two notions concerning verification

procedures: successful executability and self-retainingness . First, if there is a verifica-

tion procedure, an epistemic agent may execute the procedure by performing relevant

actions based on it. However, in certain cases, even if a given statement is true, there

are some critical constraints that preclude the successful executions of its procedure

by the epistemic agent. Thus the truth of a given statement does not imply the suc-

cessful executability of its verification procedure and does not necessarily provide us

with a way through which we can come to know the truth of the statement. Second,

even if the verification procedure of a given true statement is successfully executable,

this still does not guarantee the knowability of the statement. We say a statement

is self-retaining if its verification procedure, whenever it is successfully executable,

can be successfully executed without changing the truth value of the statement. If

1An argument against such a commitment has been recently expressed in the verificationist
account by Hand in [30]. Our approach shares the basic insights with his account, but is still
distinct from his approach in several respects. We will compare our approach with his account. See
Section 4.2.

169

a statement is not self-retaining, it is not knowable since it may become false after

the successful execution of its verification procedure. Therefore, in our framework,

the truth of a given statement does not imply its knowability, because its verification

procedure may not be successfully executable or it may not be self-retaining.

Without implying the knowability thesis, the above philosophical account also

blocks another problem discussed as a variation of Fitch’s paradox. That is, every

truth is knowable implies the necessary falsity of statements such as “there are no

epistemic beings” If it is true then it could never be known due to the absence of

epistemic beings in the situation, but then verificationism requires the necessary ex-

istence of an epistemic being to avoid inconsistency. This puzzle is known as the

idealism problem ([57, 31, 30]). By having the distinction between successful exe-

cutability and self-retainingness, our account can identify the different sources of the

problems for Fitch’s paradox and the idealism problem: Fitch’s paradox is due to the

existence of non-self-retaining statements; the idealism problem arises since the ver-

ification procedure of the statement in question is not successfully executable when

the statement is true.

After the presentation of the philosophical account, our second task will be to

formalize the key notions in the framework developed in Part II. In particular, we

will use the system TAPAL developed in Chapter 3. First, we will interpret the

successful execution of a verification procedure of a statement ϕ as an epistemic

processes of eliminating the possibility that ϕ is false. This way we can formalize

successful executions as public announcements. Given this interpretation, the notion

of successful executability can be captured by appealing to protocols, since it concerns

whether the relevant epistemic process, successfully executing verification procedures,

can happen. Finally the notion of self-retainingness is a notion that involves an aspect

of epistemic dynamics, since it depends on the informational states after successfully

executing verification procedures. The language of TAPAL is suitable for expressing

170 CHAPTER 4. KNOWABILITY PARADOX

such a dynamics of agents’ informational states.

There are two things that we can achieve through the formalization of our philo-

sophical account. First the formalized account will enable us to avoid the concern

raised against some of the previous accounts against the knowability paradoxes. That

is, there is no guarantee that they are free of counterexamples. In our formalized ac-

count, we will be able to state a new formulation of the knowability thesis as a

provable fact in TAPAL: a statement is knowable if it is successfully executable and

self-retaining. Second, we will show that the framework of TAPAL provides a fine-

grained logical analysis concerning alternative formulations of the knowability thesis.

We can show that some formulations apparently similar to our new knowability the-

sis are in fact stronger and thus generate more theoretical burdens on verificationist

accounts when the formulations are endorsed.

We proceed as follows. We will start by reviewing Fitch’s paradox and the ide-

alism problem and give a quick summary of the previously proposed accounts and

their problems (Section 4.1). We will then provide our verificationist framework by

clarifying and motivating the notions of successful executability and self-retainingness

(Section 4.2). Next, we will move on to formalize the notions by interpreting TAPAL

and give a new formalization of the knowability thesis (Section 4.3). Having the for-

malization, we will give a logical analysis on the new knowability thesis (Section 4.4)

and discuss possible objections against our approach (Section 4.5).

4.1. THE PARADOXES OF KNOWABILITY AND PREVIOUS SOLUTIONS 171

4.1 The Paradoxes of Knowability and Previous

Solutions

In this section, we will first review Fitch’s paradox and its variation, the idealism

problem. Then we will give a short survey of the previous accounts on Fitch’s para-

dox. In particular, we will see the approaches based on logical revisions , semantics

reformulation, syntactic restriction and dynamic epistemic logic. Since the purpose

of the expositions is to motivate our project, we will only get to the main ideas of the

previous accounts. For a more comprehensive survey of the literature, see [14].

4.1.1 Paradoxes

Fitch gives an argument to show that if there is some unknown truth, then there

is some unknowable truth ([23]). This argument can be formulated as follows. Let

♦ϕ read as “it is possible that ϕ” and Kϕ as “ϕ is known (by somebody at some

time)”. Suppose that ϕ is unknown. Then ϕ∧¬Kϕ must be true. However, suppose

K(ϕ∧¬Kϕ). From the two principles, K(ϕ∧ψ) ` Kϕ∧Kψ and Kϕ ` ϕ, it follows

that Kϕ ∧ ¬Kϕ, which is a contradiction. Thus we obtain ` ¬K(ϕ ∧ ¬Kϕ). Here,

by the necessitation rule (if ` ϕ, then ` �ϕ, where � is the dual of ♦, i.e. (¬♦¬),

and thus reads as “it is necessary that...”), it follows that ` �¬K(ϕ ∧ ¬Kϕ), which

by duality (�¬ϕ↔ ¬♦ϕ) implies

` ¬♦K(ϕ ∧ ¬Kϕ). (4.1)

Thus, for all ϕ, if ϕ is an unknown truth, then the fact that ϕ is an unknown truth

is an unknowable truth.

This argument was brought into a wide philosophical discussion by Hart and

McGinn in [34], where they applied it to derive the counterintuitive claim that every

172 CHAPTER 4. KNOWABILITY PARADOX

truth is known, from the verificationist knowability thesis every truth is knowable.

The argument is characterized in the following way. First, the knowability thesis can

be schematically represented as

ϕ→ ♦Kϕ (4.2)

By instantiating this with ψ ∧ ¬Kψ, we obtain

(ψ ∧ ¬Kψ)→ ♦K(ψ ∧ ¬Kψ). (4.3)

On the other hand, Fitch’s argument yields the negation of the consequent, i.e. (4.1)

above. Therefore, we have ¬(ψ ∧ ¬Kψ). This implies ψ → Kψ (in classical logic).

This is counterintuitive since it reads as every truth is known. This problem has

received a wide attention and come to be known as Fitch’s paradox . How can verifi-

cationism survive Fitch’s paradox?

Another problem that has been discussed as a variation of Fitch’s paradox is the

idealism problem ([57, 31, 30]). If the knowability thesis is a consequence of the

general principle, the meaningfulness of statements consists in the existence of their

verification procedures, it must concern not only the actual truth but also the possible

truth. For if the principle is a correct semantic principle, then whatever statement

turns out to be true in a given possible situation, its verification procedure would give

us a way in which we can come to know its truth. Assuming that this is the case,

consider the statement there is no epistemic being. If this statement is true in some

counterfactual circumstance, it would have to be knowable by the knowability thesis.

However, in such a circumstance, there would be no epistemic being by assumption,

so it is questionable how anything could possibly be known. Thus, if the statement

is possibly true, the statement would be a counterexample against the knowability

thesis. Thus to keep consistency, verificationism must maintain the necessary falsity

4.1. THE PARADOXES OF KNOWABILITY AND PREVIOUS SOLUTIONS 173

of the statement and, as a consequence, the necessary existence of some epistemic

beings. How can verificationists avoid such a commitment to the necessary existence

of epistemic beings?

4.1.2 Logical Revision

Logical revision approaches attempt to block some of the logical inferences used in the

argument of Fitch’s paradox by revising the base logic. Here are the list of inferences

in the above argument that have been considered for logical revisions:

• Epistemic Logic: Kϕ ` ϕ (factivity) and K(ϕ ∧ ψ) ` Kϕ ∧Kψ (distribution)

• Intuitionistic Logic: the classical step from ¬(ψ ∧ ¬Kψ) to ψ → Kψ, (e.g.

[76, 79, 80])

• Paraconsistent Logic: Reductio to obtain ` ¬K(ϕ ∧ ¬Kϕ). ([8])

Each of these approaches has been criticized. First, for the epistemic logic revision,

it has been shown that the same effect as Fitch’s paradox can be derived without

these two rules (e.g. [57, 58, 81]). Second, for the intuitionistic logic revision, it

has been pointed out that intuitionistic logic derives some other counterintuitive

epistemic claims ([52]). Although the implausibility of some of the consequences has

been explained away on the intuitionistic interpretation ([79, 80] etc.), it is unclear

whether those intuitionistic reinterpretations are not ad hoc ([45]). Thus there is no

reason to think that all the consequences of the knowability thesis can be suitably

explained. Third, for the paraconsistent logic revision, it is highly controversial how

the adoption of paraconsistent logic can be fully motivated on verificationist grounds.

We can admit that the solution blocks Fitch’s paradox, but the solution is not be

satisfactory if we seek a verificationist account that avoids the paradox.

174 CHAPTER 4. KNOWABILITY PARADOX

4.1.3 Semantic Reformulation

Another approach is to reformulate the knowability thesis based on some semantic

intuition. A prime example of such an account is given by Edgington [20]. She

reformulates the knowability principle by:

ENT ∀s(In(ϕ, s)→ ∃s′In(K(In(ϕ, s)), s′))

where this reads as “For all situation s, if ϕ is true at s, then there is some situation

s′ such that it is known in s′ that ϕ is true in s.” Let ϕ be p ∧ ¬Kp in the above

schema. Then there seems to be nothing paradoxical about In(K(In(p∧¬Kp, s)), s′)

for a pair of distinct situations, s distinct from s′. Thus the schema avoids Fitch’s

paradox.

However, it has been questioned whether a detailed semantic account along this

line can be developed in a philosophically satisfactory way. First, it is unclear whether

one can always specify, to an adequate degree, a situation s′ distinct from the situation

s ([78, 81]). Second, some questions have been raised about whether the proposed

reformulation works for more complicated scenarios ([77]).

4.1.4 Syntactic Restriction

As we saw above, the knowability paradox (and its variation) arises from statements

of certain forms. In the light of this, some have proposed to syntactically restrict the

class of formulas to which the knowability thesis applies. Tennant provides an account

based on this approach ([57, 58, 60]). Call a statement p cartesian if Kp 6` ⊥, i.e. Kp

is not provably inconsistent. Then the following restricted form of the knowability

principle avoids Fitch’s paradox:

TKT ϕ→ ♦Kϕ where ϕ is cartesian.

4.1. THE PARADOXES OF KNOWABILITY AND PREVIOUS SOLUTIONS 175

For as we saw in Fitch’s argument, K(p ∧ ¬Kp) proves a contradiction and thus the

statement in question p ∧ ¬Kp is not cartesian. Dummett [19] also presents another

way of restricting the knowability principle syntactically.

Accounts of this kind have been objected to on the following respects. First, the

proposed syntactic restrictions seem ad hoc. To be taken as a verificationist response

to Fitch’s paradox, the restrictions must be motivated on some verificationist basis

([31, 30]). Second, although the accounts may as well avoid the knowability paradox,

they do not exclude the possibility of counterexamples. Indeed, Williamson presents

some problematic cases for TKT in [82]. Although Tennant replies to Williamson’s

putative counterexample in [59], the worry about possible counterexamples still re-

mains unless the syntactic restrictions are grounded in some principled way.

4.1.5 Dynamic Epistemic Logic

Fitch’s paradox has also been analyzed within the framework of dynamic epistemic

logic. Van Benthem ([63]) explains how the type of formulas in Fitch’s paradox fail

to satisfy the knowability thesis in the dynamic setting where the agents’ epistemic

states change as they obtain new information. Appealing to public announcement

logic (PAL, [53, 27, 74]), i.e. the extension of epistemic logic with the operator 〈ϕ〉,

where 〈ϕ〉ψ reads as “The announcement that ϕ can be made after which ψ is true”,

he analyzes different versions of the knowability principle. Also Balbiani et al ([5])

take the dynamic epistemic logic approach further and formally study the question

what kinds of formulas satisfy the knowability schema.

The approach that we will take below sits in this dynamic epistemic logic tradition.

We hope that the current paper contributes to the relevant literature on the following

points. First, the studies given in the tradition, for better or worse, have not paid

enough attention to the philosophical aspect of Fitch’s paradox: i.e. the paradox

176 CHAPTER 4. KNOWABILITY PARADOX

has been raised as an objection against the verificationist account of semantic anti-

realism. In fully considering this aspect, the current paper adds another serious

philosophical application of dynamic epistemic logic to the relevant literature. Second,

our framework as such will be able to deal with the idealism problem, which has not

been analyzed in the tradition. The framework of TAPAL allows us to capture the

relevant aspects of the problem.

4.2 Verificationism without the Knowability The-

sis

As we have seen, the previous accounts have been considered as problematic or at

least controversial. Thus, in proposing an alternative, we have to take into account

the objections raised against those accounts. For this reason, we will first emphasize

the following features of the account that we will propose below. Our account:

• preserves the relevant principles of the knowledge operator and the classical

propositional logic.

• does not appeal to a semantic framework that has not been fully developed.

For instance, we do not invoke references to the possible situations in which the

relevant knowledge is realized, etc.

• precludes the possibility of counterexamples. As we will see below, our formu-

lation of the knowability thesis is provable in the logical framework that we will

adopt.

• avoids the charges of being ad hoc or not motivated by verificationism. We

provide an account that maintains the verificationist semantic thesis and explain

the failure of the knowability thesis systematically.

4.2. VERIFICATIONISM WITHOUT THE KNOWABILITY THESIS 177

Our main idea to achieve this goal is to show that verificationism can be held

without any commitment to the knowability thesis formulated by KT. Let us start by

seeing the argument that derives KT from the verificationist assumption:

1. Every meaningful statement has an verification procedure.

2. If a true statement has an verification procedure, then the statement is know-

able.

3. Therefore, every true statement is knowable.

Our task is to deny the second premise, while preserving the first premise, which is

the statement of the verificationist anti-realist semantics.

4.2.1 Proposal

To do so, we introduce two notions concerning statements and their verification pro-

cedures: successful executability and self-retainingness. We start out by character-

izing the notion of verification procedures . According to the verificationist semantic

anti-realism, every meaningful statement has a canonical method of verifying the

statement. For instance, the statement “It is raining outside”, being meaningful, has

its canonical method of verification, e.g. direct observations, etc. Such a method of

verification is called a verification procedure.

We will make some assumptions about this notion in relation to the way the world

is. First, if we go outside and make a direct observation, that will tell us whether it

is raining or not. Generally, we may assume that, given a statement, its verification

procedure will present some noticeable signs to us in one way or another concerning

the result of performing it. In particular, we may assume that they will present some

signs to us about the result at least when the statement is true, whereas it does not

have to when it is not. Second, if it is raining outside, the direct observation would

178 CHAPTER 4. KNOWABILITY PARADOX

tell us that it is raining; if not, it would not. Verification procedures must be at least

constrained this way in terms of the way the world is. Based on this consideration,

we assume that the signs that would be revealed by a verification procedure must

be determined by the way the world is when the procedure is performed, indepen-

dently of who performs it, whether it is in fact performed by some epistemic agents,

etc. To describe this assumed “sign-determination” relationship between verification

procedures and the world, we say that the procedure yields the value success, if the

corresponding statement is true. In these terms, we can recapitulate our assump-

tions as follows: the signs that verification procedures would present to us are solely

determined by the way the world is and verification procedures yield the value success

whenever the corresponding statements are true.

On the other hand, the notion of executability concerns the relationship between

verification procedures and epistemic agents. Verification procedures must be such

that epistemic agents can take instructions from them in one way or another and

perform actions according to the instructions. If the verification procedure of “It is

raining outside” is to make a direct observation, I go outside and observe the situ-

ation outside. To describe such an activity made by epistemic agents following the

procedure, we say an agent executes a verification procedure. When an agent exe-

cutes a verification procedure and the procedure yields the value success, we say the

agent successfully executes the verification procedure. Furthermore, we say that a

verification procedure is executable if some agent can execute the procedure. Simi-

larly, a verification procedure is successfully executable if some agent can successfully

execute it. Here, as one may object, we have only loosely defined the notion of (suc-

cessful) executability, since we keep open the reading of the “can” in the definition.

However, this is enough for our purpose, since we only deal with the extreme case of

unexecutability, i.e. the idealism problem, as we will see in a moment. We may leave

further refinement of this point up to particular verificationist accounts.

4.2. VERIFICATIONISM WITHOUT THE KNOWABILITY THESIS 179

Having introduced these notions, we claim that, even if a statement is true (thus

its verification procedure yields the value success), the procedure might not be suc-

cessfully executable. Indeed, the peculiarity of the statement “there is no epistemic

being” in the idealism problem presents an extreme case in point. Suppose, as we

should in the idealism problem, that the statement “there is no epistemic being” is

meaningful. In the actual world, the verification procedure of this statement is exe-

cutable but not successfully executable, since the statement is supposedly false. On

the other hand, in all possible situations in which this statement is true, the success-

ful executability of any verification procedures is logically impossible, since there is

no epistemic being in the situation. Therefore, in general, the truth of a statement

does not imply the successful executability of its verification procedure, let alone the

knowability of its truth.

Next, note that the notions introduced so far describe verification procedures (and

the relevant items) independently of the dynamism of agents’ epistemic states. When

we bring this fact into the picture, another kind of knowability failure is elucidated.

When epistemic agents execute verification procedures, they may obtain new informa-

tion by performing the relevant actions. In some cases, the execution of a verification

procedure changes the epistemic states of relevant agents to the extent that it changes

the truth value of the corresponding statement. If some true statement becomes false

by an execution of its procedure, then the statement cannot possibly be known sim-

ply because it is false. The prime example of such statements is a statement of the

form “p∧¬Kp.” Assume that this statement is true and its verification procedure is

executable. When the procedure is executed by some agent, the procedure must yield

the value success by our stipulations. However, after the successful execution of the

procedure, the truth of p must now be known (by the agent who successfully executed

the procedure), which makes the whole statement false! Thus statements of the form

180 CHAPTER 4. KNOWABILITY PARADOX

“p∧¬Kp”, if true, change their truth value after the successful execution of the cor-

responding verification procedures. To capture such a property of statements, we say

a statement is self-retaining if, whenever its procedure is successfully executable, it is

successfully executable without changing the truth value of the statement. Therefore,

even if a true statement is not self-retaining, it may not be knowable even when its

verification procedure is successfully executable.

Thus, we have highlighted the two reasons that the knowability of a true statement

fails. First, its verification procedure may not be successfully executable. There may

be some serious constraints that prevent the procedure from its successfully execution.

Second, even if successful executability is guaranteed, the statement may still not be

knowable, since the statement may not be self-retaining. Hence, the assumption 2

fails in the above argument for the knowability thesis. We claim that verificationism

need not be committed to the knowability thesis.

4.2.2 Hand’s Verificationist Account

Before we move on to formalize our framework, we shall mention the verificationist

account proposed by Hand in [30], which is similar to our present approach. Hand

argues, verificationism is never committed to the knowability thesis and thus Fitch’s

paradox as well as the idealism problem does not present a serious challenge raise

to verificationism per se. To establish this, he makes the distinction between verifi-

cation procedures and the performance of them. The bare existence of verification

procedures does not guarantee that qualified epistemic agents can perform them and

come to know that the corresponding statements are true. Fitch’s paradox and the

idealism problem reveal that there are statements such that the performability of

their procedures is precluded by the truth of the very statements. Such statements

are not knowable because of the violation of performability, but this is not a problem

4.3. TAPAL: VERIFICATIONISTIC INTERPRETATION 181

for verificationism, since it does not claim that every truth is knowable, but instead

that every truth is epistemic in the sense that every true statement has an verification

procedure.

On the one hand, the similarity between Hand’s verificationist account and ours

confirms that our account is much in the spirit of verificationist approaches. His

distinction roughly corresponds to our distinction between verification procedures

and successful executability plus self-retainingness. On the other hand, our present

account has several advantages. First, our account will present the relevant notions

in a precise manner and provide an explicit verificationist knowability thesis in a

more concrete form than just saying every truth is epistemic. This is the task we

undertake in the next section. Second and more importantly, our framework captures

an essential distinction between the sources of the problems for the idealism problem

and Fitch’s paradox. In our terms, the source of the problem in the former is that the

relevant statement is never successfully executable. Thus the problem arises when we

equivocate between the truth of a statement and the successful executability of its

verification procedure. Fitch’s paradox results from the existence of statements that

are not self-retaining. It becomes a problem when we do not consider the dynamic

property of agents epistemic states. Hand’s account based on performability does not

provide a way to pin down the distinct sources of these problems.

4.3 TAPAL: Verificationistic Interpretation

Now to make our account more precise, we will attempt to formalize the philosophical

framework proposed above. For this purpose, we will use the system of TAPAL

developed in Chapter 3. Below we will give verificationistic interpretation to the

system and represent the key notions of our philosophical account.

182 CHAPTER 4. KNOWABILITY PARADOX

4.3.1 Interpreting TAPAL

TAPAL extends TPAL with the generalized operator ♦ and ♦∗. For our current

purpose below, we will only use the operator ♦. Also, for our purpose, we will restrict

our attention to the single agent case and denote the epistemic operator by K. Let us

start by giving verificationist interpretations of the operators in TAPAL. We provide

the list of intended readings of the operators.

1. Kϕ: “ϕ is known (by somebody at some time).”

2. 〈!θ〉ϕ: “The verification procedure of θ can be successfully executed, after which

ϕ is true.” We say “The successful execution !θ can be made after which ϕ is

true.” for short.

3. ♦ϕ: “The verification procedure of some statement can be successfully executed,

after which ϕ is true.” We say “Some successful execution can be made after

which ϕ is true.” for short.

4. [!θ]ϕ: “After the successful execution of the verification procedure of θ, ϕ is

true.” We say “After the successful execution !θ, ϕ is true.” for short.

5. �ϕ “For every statement, after the successful execution of its verification, ϕ is

true.” We say “After every successful execution, ϕ is true.” for short.

Also we assume that propositional letters refer to atomic propositions about the

world, whose truth values are determined independently of the epistemic state of

agents. Given that our purpose is to analyze the relevant epistemic concepts, such as

knowledge, verification procedures, etc., we take this familiar assumption to mark off

the objects of our analysis from unanalyzable atomic propositions.

Given these readings, let us consider how to express the notions in our philosoph-

ical framework. First, for every formula ϕ, the intended reading of ϕ is “ϕ is true”.

4.3. TAPAL: VERIFICATIONISTIC INTERPRETATION 183

In our philosophical framework, this is equivalent to “The verification procedure of

ϕ yields the value success.” Also, “〈!θ〉>” reads as “The verification procedure of θ

can be successfully executed after which > is true.” Since > is always true, we can

interpret the formula as saying “the verification procedure of θ is successfully exe-

cutable.” Furthermore, that a given formula ϕ is self-retaining can be expressed by an

implication “The successful executability of ϕ implies that the successful execution of

ϕ can be made after which ϕ is true.” The antecedent is formalized as 〈!ϕ〉>, as we

have seen, and the consequent, 〈!ϕ〉ϕ. ϕ is self-retaining is put as “〈!ϕ〉> ` 〈!ϕ〉ϕ”.

Finally, we interpret “ϕ is knowable” as meaning something like “as we learn things,

we could come to know ϕ”. When we learn some true statements, we learn them by

checking in one way or another whether they are true or not. That is, in our terms, we

learn them by successfully executing their verification procedures. Thus, given that

“♦Kϕ” reads as “Some successful execution can be made after which ϕ is known”,

we interpret “♦Kϕ” as “ϕ is knowable.”

4.3.2 Intended Semantics

Next we will interpret the intended semantics for TAPAL in verificationist terms.

Recall that the models of TAPAL are PAL-generated ETL models. (Definition 2.1.3

and 2.1.4) PAL-generated ETL models, constructed from epistemic models based on

PAL-protocols, represent possible temporal evolutions of agents’ informational states

over sequences of public announcements permitted by PAL-protocols. We give the

following interpretation to the models of TAPAL for our current application.

First epistemic models represent agents’ states of knowledge and encode what

agents know. Models of TAPAL thus describe dynamics of agents’ state of knowledge

over time. Second, we interpret the successful execution of the verification procedure

of a statement ϕ as an epistemic processes of eliminating the possibility that ϕ is false.

This way we can formalize the successful execution of ϕ by the public announcement

184 CHAPTER 4. KNOWABILITY PARADOX

!ϕ. Third, we capture the executability of verification procedures by PAL-protocols.

The notion of executability concerns protocol information about whether the rele-

vant epistemic process, execution of verification procedures, can happen. Thus we

interpret PAL-protocols as the sequences of executable (not necessarily successfully)

verification procedures at a given state. Consequently, if the verification procedure

of ϕ is executable according to a given protocol and ϕ is true, then ϕ is successfully

executable. Each node in a given PAL-generated ETL model represents a state after

sequences of successful executions.

To get familiarized with these interpretations, let us review the construction of

PAL-generated ETL models with the verificationist readings. Consider the model

consisting of two states w and v that are indistinguishable for a given agent. Suppose

p, q, r are true at w, while p, r are true and q is false at v. Given this model, we

assign protocols to each state so that the protocol at w is {!p!q, !r} and the one

at v is {!p!q}. The PAL-generated ETL model obtained from the epistemic model

based on the protocol is visualized in Figure 4.1. The construction of the model

with our verificationist interpretation can be illustrated as follows. First having p

true and executable at w, we generate the node w!p, which is the node to which the

!p-arrow from w points. Similarly we construct v!p above v. In addition, since w and

v are indistinguishable and p is successfully executable at both worlds, they must

be indistinguishable too. Thus, we connect w!p and v!p by the indistinguishability

relation. These two states represent the epistemic state after the successful execution

!p. Next, !q is executable at w!p and v!p, since w and v have the sequence !p!q.

This time, !q is successfully executable only at w!p. (Remember the truth value of

propositional letters are persistent over executions.) Thus, we only generate w!p!q

but not v!p!q. As a result, w!p!q singly constitutes the new epistemic state after the

sequence !p!q of successful executions. Finishing up the sequence !p!q, we finally work

on the sequence !r. We generate w!r since !r is successfully executable, but do not

4.3. TAPAL: VERIFICATIONISTIC INTERPRETATION 185

!q

!p!r !p

w v
p, q, r p,¬q, r
{!p!q, !r} {!p!q}

Figure 4.1: TAPAL with Verificationist Interpretations

generate the node v!r since !r is not successfully executable at v, though true.

As we saw in Chapter 3, PAL-generated ETL models are in general triples of the

form (H,∼, V), where H is a set of trees of the above form, ∼ is the indistinguishabil-

ity relation on the nodes in H, and V is a propositional valuation at each node of the

trees in H. The semantics of the formulas in TAPAL is as defined in Definition 3.1.2.

Here we only give the definition for the operators, K, 〈ϕ〉 and ♦. Let H = (H,∼, V)

and h be a node in H:

• H, h |= Kϕ iff for all h′ in H, if h ∼ h′, then H, h′ |= ϕ.

• H, h |= 〈!θ〉ϕ iff h!θ ∈ H and H, h!θ |= ϕ.

• H, h |= ♦ϕ iff there is some ψ such that h!θ ∈ H and H, hθ |= ϕ.

Given the interpretation of our models, it is straightforward to see how the definition

for the successful execution operator 〈!θ〉 captures the intended meaning of the op-

erator: at the history h, 〈!θ〉ϕ is true when ψ is true at h!θ, i.e., after the successful

execution theta at h. Similarly for ♦.

186 CHAPTER 4. KNOWABILITY PARADOX

4.3.3 Deductive System

Next we will now interpret the axiomatization TAPAL (Definition 3.1.9) and justify it

based on our verificationist interpretation. We will focus on the relevant part of the

axiomatization. Consider the following axioms and rules in TAPAL: Axioms

R1 〈!θ〉p↔ 〈!θ〉> ∧ p, where p is propositional.

R2 〈!θ〉¬ϕ↔ 〈!θ〉> ∧ ¬〈!θ〉ϕ

R3 〈!θ〉Kϕ↔ 〈!θ〉> ∧K(〈!θ〉> → 〈!θ〉ϕ)

A1 〈!θ〉> → θ

A2 〈!θ〉ϕ→ ♦ϕ

R1 reflects our assumption concerning propositional letters, i.e. they refer to atomic

propositions about the world whose truths are determined independent of the epis-

temic state of agents. By this assumption, the truth of atomic propositions is persis-

tent over any execution of a verification procedure. Thus, the equivalence states: if

p is true, it is true after the successful execution of any verification procedure, and

vice versa. R2 simply follows from the usual meaning of negation, given the reading

of the relevant operators: The successful execution of θ can be made after which ϕ

is false iff the successful execution of θ can be made and it is not that ϕ becomes

true after the successful execution of θ. R3 presents the key observation in dynamic

epistemic logic: if an agent comes to know ψ after the successful execution of ϕ, then

(i) ϕ can be successfully executed and (ii) the agent knows (before the successful

execution) that if ϕ is successfully executed, then ψ is true after the execution; and

vice versa. Accepting this principle amounts to assuming two well-known principles

concerning the relationship between agents and successful executions: perfect recall

and no miracles. In Section 4.5.1, we will argue that these two principles are safe to

4.4. LOGICAL ANALYSIS OF THE KNOWABILITY THESIS 187

assume in our present context of discussing the knowability paradoxes. A1 captures

the idea that the successful executability of a verification procedure implies that the

verification procedure yields the value success, i.e. the corresponding statement is

true. Note that the implication is only one way, since the truth of a statement does

not imply its successful executability in our verificationist framework. A2 captures

the reading of ♦: if ϕ is the case after the successful execution !θ, then ϕ is the case

after some successful execution.

4.4 Logical Analysis of the Knowability Thesis

Having interpreted TAPAL in verificationistic terms, we are now ready to give a

logical analysis about the verificationist knowability thesis. First we will give a new

formulation of the knowability thesis as a probable fact in the interpreted system and

see how it avoids Fitch’s paradox and the idealism problem. Then, we will make

a fine-grained comparison between the new knowability thesis and its alternative

formulations.

4.4.1 New Knowability Thesis

The following statement is provable in TAPAL: for every formula ϕ, if ϕ is self-

retaining and the verification procedure of ϕ is successfully executable, then ϕ is

knowable, which can be formally put as:

NKT If ` [!ϕ]ϕ, then ` 〈!ϕ〉> → ♦Kϕ.

188 CHAPTER 4. KNOWABILITY PARADOX

First, it must be noted that ` [!ϕ]ϕ is equivalent to 〈ϕ〉> ` 〈ϕ〉ϕ, and thus states that

ϕ is a self-retaining statement.2 With this equivalence, it can be now straightforwardly

seen that NKT formulates the thesis we stated. Now we prove NKT:

Proof. Assume ` [!ϕ]ϕ. By the above proof, this is equivalent to ` 〈!ϕ〉> → 〈!ϕ〉ϕ.

By epistemic logic, ` K(〈!ϕ〉> → 〈!ϕ〉ϕ). Now assume (toward the derivation of

♦Kϕ) that 〈!ϕ〉>. Then we have 〈!ϕ〉> ∧ K(〈!ϕ〉> → 〈!ϕ〉ϕ). By R3, We have

〈!ϕ〉Kϕ. By A2, we have ♦Kϕ. Thus, ` 〈!ϕ〉> → ♦Kϕ. qed

This result underscores the discussion concerning the notions of successful exe-

cution and self-retainingness in Section 4.2. There we explained the failure of the

knowability thesis Every truth is knowable by pointing out that the verification pro-

cedure of a true statement may not be successfully executable or the statement may

not be self-retaining. The current result now shows that successful executability and

self-retainingness are sufficient for knowability.

Since this characterizes what our philosophical framework maintains concerning

knowability in contrast with the original knowability thesis, we adopt the above for-

mulation, NKT, as a new verificationist knowability thesis. Since it is a provable fact

in our deductive system, one can find no counterexample, insofar as one accepts our

verificationist framework, or more precisely, the theoretical commitment concerning

the relevant notions that is made by accepting the principles in TAPAL.

2This can be shown by:

〈!ϕ〉> ` 〈!ϕ〉ϕ ⇔ ` 〈!ϕ〉> → 〈!ϕ〉ϕ
⇔ ` ¬(〈!ϕ〉> ∧ ¬〈!ϕ〉ϕ) (by propositional logic)
⇔ ` ¬〈!ϕ〉¬ϕ (by R2)
⇔ ` [!ϕ]ϕ (by duality)

4.4. LOGICAL ANALYSIS OF THE KNOWABILITY THESIS 189

!ϕ

w v
p ¬p

Figure 4.2: Counterexample against ` [!ϕ]ϕ

4.4.2 Fitch’s Paradox and the Idealism Problem

NKT blocks Fitch’s paradox, simply because [!ϕ]ϕ is not derivable in TAPAL where

ϕ := p∧¬Kp. Such a ϕ vacuously satisfies NKT by falsifying the antecedent. In the

presence of Theorem 3.1.20, this can be shown by giving a model that satisfies its

negation ¬[!ϕ]ϕ, equivalently 〈!ϕ〉¬ϕ. An example of such a model is given as follows.

LetM be a model consisting of two indistinguishable states w, v where p is true at w

but not at v. Assign {!ϕ} to both w and v. Then the corresponding PAL-generated

ETL model H := Forest(M, p) is visualized in Figure 4.2. In the model, we have

H, w!ϕ |= p, since M, w |= p. Thus, since there is no indistinguishable node from

w!ϕ except for itself, H, w!ϕ |= Kp. This implies H, w!ϕ |= ¬(p ∧ ¬Kp). By the

semantic definition of 〈!ϕ〉, we obtain H, w 6|= 〈!ϕ〉¬ϕ.

Also, the idealism problem does not arise for NKT. To see this, let p be “there is

no epistemic being”. Given the meaning of p, we have at least:

p→ ¬♦>.

For this says that if there is no epistemic being, then there will be no successful

executions. Now assume that p is successfully executable, so 〈!p〉>. Then it implies p

by A1. By the above implication, we immediately obtain ¬♦>. On the other hand,

by instantiating A2, we obtain 〈!p〉> → ♦>. With our assumption, it follows from

190 CHAPTER 4. KNOWABILITY PARADOX

this that ♦>. Therefore, our assumption leads to contradiction 〈!p〉> ` ⊥. Thus,

p satisfies NKT vacuously by falsifying 〈!p〉>. Thus it does not commit us to the

knowability of p.

Moreover, it is worth noting that the formula ¬♦> is consistent in TAPAL. Given

an epistemic modelM, set a state w and assign the empty set to w. Then, we see ¬♦>

must be true at w (since the formula says that there is no successful execution). This

shows that our theoretical commitment in TAPAL does not preclude the possibility

of “there is no epistemic being” being true.

4.4.3 Comparison with Alternatives

We adopted NKT as the new knowability principle for verificationism. To elucidate

what it says, we will compare it to other plausible knowability statements. Partic-

ularly, we will consider two alternative principles, LKT and WKT. We first list all

three principles:

NKT For all ϕ, If ` [!ϕ]ϕ, then ` 〈!ϕ〉> → ♦Kϕ

LKT For all ϕ, ` 〈!ϕ〉ϕ→ ♦Kϕ.

WKT For all ϕ, if 〈!ϕ〉ϕ 6` ⊥, then ` 〈!ϕ〉> → ♦Kϕ.

These principles look very similar. With the intended interpretation of TAPAL,

we could express these principles in slightly different ways. First, NKT says “For

every statement, if it is self-retaining, then it is knowable on the condition that its

verification procedure is in fact successfully executable.” Second, LKT says “For every

statement, if the successful execution of its verification procedure can be made after

which it does not change its truth value, then it is knowable.” Third, WKT says “For

every statement, if the assumption that it does not change its truth value after the

successful execution of its verification procedure does not lead to contradiction, then

4.4. LOGICAL ANALYSIS OF THE KNOWABILITY THESIS 191

the statement is knowable on the condition that it is in fact successfully executable.”

However, it seems very unclear how much difference, if any, is being made explicit by

these English translations.

Moreover, as we look into the properties of these principles, we find further simi-

larities. First, all the formulations are consistent with TAPAL in the sense that, even

if we stipulate one of the principles in TAPAL, the system will remain consistent.

The consistency of NKT is immediate by the fact that it can be proved in TAPAL

and the consistency of LKT and WKT is given by constructing models that satisfy

them. There are many non-trivial models that satisfy these principles, but, for sim-

plicity, we can simply take empty protocols assigned to each state of a given epistemic

model to satisfy these principle. For such a model will vacuously satisfy the stipu-

lated conditionals. Second, the three formulations are also similar in the sense that

they all avoid Fitch’s paradox and the idealism problem. We have already seen how

NKT avoids the problems above. To see how LKT and WKT avoid Fitch’s paradox,

note that, with ϕ := p ∧ ¬Kp, we can prove that 〈ϕ〉ϕ ` ⊥. 3 This makes such a

ϕ vacuously satisfy LKT and WKT. For the idealism problem, set the propositional

letter p as is done in the above argument for NKT. Then we have 〈!p〉> ` ⊥. This

again makes p satisfy LKT and WKT vacuously.

Despite these similarities, LKT and WKT are different from NKT. Let an epis-

temic model consist of w, v, u, which are indistinguishable to each other. Further let

p, q be true at w, ¬p, q, at v, and ¬p,¬q, at u. Assign to all w, v, u the protocol

{!ψ} with ψ := p ∨ ¬Kq. The resulting PAL-generated ETL model H can be visu-

alized in Figure 4.3. In the model, we have H, w |= 〈!ψ〉ψ but H, v |= 〈!ψ〉¬ψ. This

gives H, w |= 〈!ψ〉¬Kψ. Given that !ψ is the only permissible execution, H, w |=

3By A1 and propositional reasoning, 〈!ϕ〉> ` p. This implies propositionally ` 〈!ϕ〉> → 〈!ϕ〉>∧p.
By R1, ` 〈!ϕ〉> → 〈!ϕ〉p. Thus by epistemic logic, we have ` K(〈!ϕ〉> → 〈!ϕ〉p). On the other
hand, by standard modal reasoning, 〈!ϕ〉ϕ ` 〈!ϕ〉¬Kp. By R3 with some propositional reasoning,
we obtain 〈!ϕ〉ϕ ` ¬K(〈!ϕ〉> → 〈!ϕ〉p). Thus, 〈!ϕ〉ϕ ` ⊥.

192 CHAPTER 4. KNOWABILITY PARADOX

!ψ !ψ

w v
p, q ¬p, q ¬p,¬q

u

{!ψ}{!ψ} {!ψ}

Figure 4.3: Counterexample to LKT and WKT

〈!ψ〉>∧¬♦Kψ. This yields a counterexample to LKT. Also, since H, w |= 〈!ψ〉ψ, we

have 〈!ψ〉ψ 6` ⊥. Thus, this model violates WKT too.

The above arguments show that LKT and WKT imply NKT but not vice versa.

For the arguments show that the classes of the models that satisfy LKT and WKT

are proper subclasses of the class of models that satisfy NKT, i.e. the class of all PAL-

generated ETL models. Therefore, we can say that LKT and WKT require stronger

theoretical commitments than NKT does. NKT, being a provable fact in TAPAL,

does not constrain the models beyond the general semantic constraints of the TAPAL

framework. For instance, it is completely neutral over the permissible structures of

protocols, the structures of epistemic models, etc. Unless we find some independent

philosophical reasons that force us to restrict ourselves to particular structures of

the models, we should allow as little theoretical commitment as possible concerning

the knowability principle by adopting NKT, and leave more logical possibilities for

individual accounts of verificationist semantic anti-realism. This is the reason that

we have adopted NKT as the verificationist knowability commitment in this paper.

4.5 Objections and Discussions

Having presented our account concerning Fitch’s paradox, we will now discuss some

of the possible objections against our account.

4.5. OBJECTIONS AND DISCUSSIONS 193

4.5.1 The axiom R3: perfect recall and no miracle

Objection. First, in the deductive system of TAPAL, how can the axiom R3,

〈!ϕ〉Kψ ↔ 〈!ϕ〉> ∧K(〈!ϕ〉> → 〈!ϕ〉ψ)

be justified in the proposed verificationist framework? Unless it is well-motivated,

verificationists will not accept the deductive system even if they accept the proposed

framework.

Reply. As mentioned in Section 4.3.3, accepting the axiom R3 requires us to assume

the well-known properties, perfect recall and no miracles. In our context, these prop-

erties concern agents and successful executions. The main idea of perfect recall is that

agents do not forget about epistemic states in the past. The main idea of no miracles

is that each successful execution of a fixed statement produces the same effects on

the agents epistemic state, that is, one successful execution of a statement does not

miraculously produce the information that other successful executions of the same

statement do not produce.

One of these two properties justifies each direction of the biconditional. Perfect

recall justifies the right-to-left direction. Given that an agent knows what is claimed

in the right side of the equivalence and that the agent does not forget that piece of

knowledge, we can easily see that the agent will know that ψ after the successful exe-

cution of ϕ. No miracle justifies the left-to-right direction. Given that the successful

execution of ϕ always has the same epistemic effect, we cannot explain the fact that

the agent will know ψ after the successful execution of ϕ unless we accept that the

agent has the piece of knowledge claimed in the right side of the equivalence.

As we can see, these properties idealize agents and successful executions. However

we claim that these idealizations can be assumed for the purpose of our discussions.

194 CHAPTER 4. KNOWABILITY PARADOX

The question concerning the knowability thesis, as it is discussed in the literature,

is the following: Is there any essential fact about our epistemic capacity that, in

principle, prevents us from knowing certain true statements? As we investigate this

question, facts about our forgetfulness or contingent epistemic side effects of particular

epistemic events may be, and have been, left out of the debate. Therefore, we claim

that these properties may be assumed and thus that the axiom R3 can be accepted

in our verificationist framework.

4.5.2 In Some Sense Knowable

Objection. Some formulas, say, ¬Kq, seem to be in some sense knowable, but they do

not count as knowable by our formulation, since they are not self-retaining. However,

this seems counterintuitive, since we can easily think of some model in which ♦K¬Kq

is true (See [5]).

Reply. Granted. Our formulation of the knowability thesis does not count, say, ¬Kq

as knowable. However, this is no objection against our formulation. The main reason

is that, in such cases, until the meaning of propositions p and q in the formula are fully

specified, our account does not tell whether the formula is knowable. In our semantic

setting, the meaning of p and q will be “specified”, so to speak, when the class of the

relevant epistemic models is fixed. After this, we can talk about the knowability of

the formulas.

On the other hand, our formulation of the knowability thesis is only dependent

on the structural properties of the relevant notions. Therefore, it is no surprise that

our structural formulation of the knowability thesis does not imply the knowability of

the formula of the kind in question. Thus, NKT only states the structural limitations

concerning knowledge and may not decide the knowability of some formula without

a suitable specification of the meaning of propositions.

4.5. OBJECTIONS AND DISCUSSIONS 195

4.5.3 Logical Omniscience on Knowledge

Objection. The system presented in Section 4.3 assumes that agents are logically

omniscient, since it is an extension of epistemic logic. However, isn’t this assumption

problematic?

Reply. Granted. TAPAL, as an extension of epistemic logic, assumes logical om-

niscience. However, we do not take this as problematic for the reason mentioned in

Section 4.5.1. That is, our question concerning the knowability thesis is whether there

is any essential fact about our epistemic capacity that, in principle, prevents us from

knowing certain true statements. In the light of this, it does not seem problematic

to assume that all logical consequences are knowable by (some finite extensions of)

epistemic capacity like ours, given that we have an effective procedure for the deduc-

tive system.4 Thus, although epistemic logic may not give the best representation for

knowledge in all contexts, it can at least represent enough for the purpose of analysing

the knowability thesis.

4.5.4 Why Do We Have to Buy the Semantics?

Objection. Setting aside the above problems, the epistemic models do not represent

the correct notion of knowledge anyway. Why must we accept all the theoretical

baggage that comes with these epistemic models?

Reply. Granted. We do not claim that these epistemic models correctly represent

every aspect of the notion of knowledge. Rather we claim that the semantic device we

invoke is a heuristic device to capture some relevant aspects of the notions in question.

4As we mentioned above, although we presented a system with an infinitary rule as an axioma-
tization of TAPAL, this infinitary rule can be replaced with some finitary one. Therefore our proof
system is effective.

196 CHAPTER 4. KNOWABILITY PARADOX

If modelling in epistemic logic is not palatable, then we can just forget about the

intended semantics and accept the axiomatic system by convincing ourselves of the

validity given the intended readings of the operators and our pre-theoretic intuitions

about the relevant notions. We can still achieve the goals of this paper in the same

manner without depending on this particular semantic story.

4.6 Conclusion

We have presented a verificationist framework that avoids Fitch’s paradox and the

idealism problem. Given a true statement, we distinguish its truth from the successful

executability of its verification procedure and its self-retainingness. This distinction in

our framework allows verificationism to hold that every statement has its verification

procedure without being committed to the knowability thesis, every truth is knowable.

We have also shown that, by appealing to the system TAPAL, we can clarify the logical

relationship between the relevant notions and make explicit the presuppositions we

use to draw distinctions between them. Moreover, the formalization in TAPAL allows

us to formulate the verificationist commitment concerning knowability as a theorem

in TAPAL: for every statement, if it is successful, then it is knowable provided that

it is successfully executable. Also we can give a fine-grained comparison between

alternative formulations of the knowability thesis.

We conclude the paper with some general remarks about our framework from the

perspective of dynamic epistemic logic. The core of our framework hinges on two

crucial demarcations. First, we make the notion of verification procedure indepen-

dent of epistemic actions for actually executing them. This allows us to draw the

line between verification procedures yielding the value success and their successful

execution. As we diagnose, the idealism problem arises when successful executions

of verification procedures are not distinguished from verification procedures yielding

4.6. CONCLUSION 197

the value success. Second, we abstract away the possible dynamic changes to agents’

epistemic states from the actions of executing verification procedures. This allows us

to introduce the notion of self-retaining statements. As we diagnose, Fitch’s paradox

arises when these two concepts are not clearly separated.

Recent developments in dynamic epistemic logic have clarified this second aspect.

In dynamic epistemic logic, the static epistemic states of agents are represented by

epistemic models, and, independently from them, relevant informational events are

represented by event models. The dynamic character of agents’ epistemic states is

represented by those model transformations on given epistemic models that are in-

duced by given event models. In the light of this, the main contribution of our system

is to introduce into dynamic epistemic logic a framework that can represent the first

distinction. In our framework, the executability of verification procedures is repre-

sented by protocols and the information in the protocols is determined independently

from truth in a given epistemic model. This additional structure gives us another

dimension along which to describe epistemic phenomena and thereby disentangle the

puzzlement in the knowability paradox. Therefore, protocol information highlights

the important aspects of dynamic epistemic events.

Chapter 5

Logical Omniscience and Deductive

Inference

The next philosophical application of our framework concerns what is called the

problem of logical omniscience. Epistemic logic validates the principle if [i]ϕ and

ϕ logically implies ψ, then [i]ψ. When the epistemic operator [i] is interpreted as

“i knows. . . ”, what the principle amounts to saying is that agents know whatever is

logically implied by what they know or simply knowledge is closed under logical im-

plication. However, this principle does not fit the notion of knowledge at least in its

ordinary sense. It is simply false to say that I, for instance, know every theorem of

Peano Arithmetic, even though I know the axiomatic system. It seems that the prin-

ciple can be satisfied only by highly idealized agents, logically omniscient agents, but

does not properly represent knowledge of realistic agents like us with finite cognitive

resources. This problem is known as the problem of logical omniscience.

One popular view on the problem is based on the distinction between explicit

knowledge and implicit knowledge.1 Explicit knowledge is often characterized as what

an agent concurrently knows and implicit knowledge is whatever follows from explicit

1The distinction was first brought up by Levesque [47] on this topic.

198

199

knowledge. On the popular view, what epistemic logic describes by the operator [i]

is implicit knowledge and the principle is not problematic when interpreted accord-

ingly. What needs to be done in epistemic logic is then to characterize the notion of

explicit knowledge that is free from the problem of logical omniscience. Based on this

perspective, various alternative systems of epistemic logic have been proposed in the

literature.

On the other hand, Robert Stalnaker ([55, 56]) presents a rather negative view on

the prospect of giving a reasonable formalization to the notion of explicit knowledge.

He claims that what distinguishes what we concurrently know from what we know

implicitly is the notion of availability. Knowledge is available if we have the capacity

to make actions depend on it whenever we want to act that way. Therefore, to

characterize the required notion of availability, we need to consider the notion of

knowledge in relation to actions and motivations. The problem of logical omniscience

consists in the fact that epistemic logic leaves these relevant factors out of the picture.

For this reason, insofar as epistemic logic approaches the notion of knowledge as it

does, it would not reasonably capture what we concurrently know in contrast to what

we implicitly know. Furthermore, the three notions are so intimately connected and

we might simply not be able to disentangle them to the extent that we can properly

formalize them.

In the current chapter, we will challenge this pessimistic view and give a meaning-

ful formalization of explicit knowledge. We will, as we should, grant Stalnaker that

actions and motivations have an important connection to the notion of knowledge.

Also we may further grant him that the formalization of knowledge that takes the

factors into account may be very difficult to give. However, we will claim that the

characterization of explicit knowledge can be given in an elucidating manner so that

it does not depend on the notions of actions and motivations. The characterization

that we propose is: an agent explicitly knows ϕ if and only if she would not obtain

200 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

any new information by observing ϕ. With this characterization, we will be able to

formalize the notion of explicit knowledge by suitably interpreting the system TPAL.

Furthermore, the formalization of explicit knowledge, which does not presuppose

logical omniscience, makes it meaningful to think about the representation of deduc-

tive inference in the framework of epistemic logic. For realistic agents without logical

omniscience, explicit knowledge is not closed under logical implication and, for this

reason, such agents can extend knowledge by making deductive inferences. Thus, we

will propose a characterization of logical inferences based on the notion of explicit

knowledge. The characterization that we will propose is that logical inference is a

process of observing what follows from explicit knowledge. This characterization will

imply that by deductively inferring ϕ, an agent obtains the information that she was

able to observe ϕ.

Bringing together the notions of explicit knowledge and deductive inference in a

single formal framework of epistemic logic, we will be able to provide a ground on

which to compare two different perspectives on the epistemic closure principle. In

epistemic logic, the principle, formulated as above, is considered as a problem, since

it presupposes logically omniscient agents, for whom the notion of deductive inference

would be meaningless. In epistemology, the principle has often been discussed as a

principle that guarantees that we can always extend our knowledge by deduction. By

having our formal characterizations, we can view both of the perspectives together in

one system. By using our framework, we will be able to give a formal analysis about

the difference between the two perspectives.

Finally the purpose of the current chapter can be also motivated by the recent

literature in epistemic logic. As mentioned above, various types of systems have been

developed to block logical omniscience. (See e.g. a survey on the problem of logical

omniscience in [54].) In addition, representations of deductive inference is a topic of

increasing interests (e.g. [16, 17, 18, 66, 65, 43, 44, 75], etc.) Our approach takes a

5.1. STALNAKER ON THE PROBLEM OF LOGICAL OMNISCIENCE 201

perspective from dynamic epistemic logic on those existing research directions.

We proceed as follows. We will start by reviewing Stalnaker’s view on the prob-

lem of logical omniscience. (Section 5.1) We will then present our characterization of

explicit knowledge in the way that avoids the problem that Stalnaker raises. Having

the characterization of explicit knowledge, we will also propose a characterization of

deductive inference. (Section 5.2) After this, we will formalize those characterizations

by giving suitable interpretation of TPAL. (Section 5.3 and 5.4) By using the formal-

ization of explicit knowledge and deductive inference, we will discuss perspectives in

epistemic logic and in epistemology on epistemic closure principle. (Section 5.5)

5.1 Stalnaker on the Problem of Logical Omni-

science

In epistemic logic, we have the following principle:

LO If [i]ϕ and ϕ logically implies ψ, then [i]ψ.

This is validated by the two basic principles of epistemic logic, the K-axiom and the

necessitation rule:

K [i]ϕ ∧ [i](ϕ→ ψ)→ [i]ψ)

Nec If ` ϕ, then ` [i]ϕ).

Suppose [i]ϕ. If ϕ logically implies ψ, i.e. ` ϕ → ψ, then we obtain ` [i](ϕ → ψ)

by necessitation. By K-axiom, we obtain [i]ψ. The principles are validated in any

standard interpretation of the modal operator [i] with respect to Kripke models.2

2If ϕ and ϕ→ ψ are true at each world accessible from a given world w ([i]ϕ and [i](ϕ→ ψ) are
true at w), then ψ must be true at each world accessible from w ([i]ψ is true at w). Also if ϕ is
logically true (` ϕ), then it is true at every world. This implies that [i]ϕ is also true at every world
(` [i]ϕ).

202 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

Therefore, LO is validated in any version of epistemic logic based on the standard

interpretation of modal operators. For this reason, the previous attempts to represent

explicit knowledge without validating LO have been made by revising the standard

semantic framework of epistemic models and introducing a new modality with non-

standard interpretations.

However, Stalnaker [55, 56] presents a rather negative view about the project of

characterizing the notion of explicit knowledge in epistemic logic. For the rest of this

section, we will give a reconstruction of his argument.

Reconstruction of Stalnaker’s Argument

According to Stalnaker, the reason that LO is problematic when applied to more

realistic agents like us is based on our intuition that, even when some information

is implicit in our knowledge, we may not have that information available in order

to make decisions about our actions. Suppose my friend presents me a card with

the number 1571 written on it. This number is in fact a prime number. Here, it

seems quite possible, in an ordinary sense of knowledge, that I do not know whether

the presented number is prime, even though my knowledge about prime numbers—

e.g. the concept of prime number, effective procedures to determine whether a given

number is prime, etc.—implies that 1571 is prime. Indeed, I may not be able to

reasonably make up my mind based on the implicit information in order to answer

‘yes’, at the time that it is asked whether the number is prime. I have to take some

time and must see what my careful calculation will turn out to be. In this sense, the

information that the number is prime is implicit in my knowledge but not available

to me to make my actions depend on it. What this suggests is that, in general,

available knowledge must be characterized in relation to actions that an agent can

make. Stalnaker says:

5.1. STALNAKER ON THE PROBLEM OF LOGICAL OMNISCIENCE 203

[T]he problem is that we need to understand knowledge and belief as ca-

pacities and dispositions—states in order to distinguish what we actually

know and believe, in the ordinary sense, from what we know and be-

lieve only implicitly. We can do this only by bringing the uses to which

knowledge and belief are put into the concepts of knowledge and belief

themselves, but, on the face of it, it does not seem that when we attribute

knowledge or belief to someone we are making any claims about what the

agent plans to do with that information. ([55] p.253)

Based on the consideration, Stalnaker gives the following rough characterization of

available knowledge: an agent know ϕ, if the agent have the capacity to make her

action depend on whether ϕ.

However, this is not the end of the story. Suppose that, in the above scenario,

my friend has the only two cards, one with 1571 (prime) and the other with 1591

(non-prime). Therefore, I can be presented only with either of the two number cards,

1571 and 1591. Now assume that I have the capacity to make my action depend on

whether the presented number is 1571 and I have the capacity to make my action

depend on whether 1591. (I have a good vision on the card that is presented and can

recognize these numbers.) In that situation, we can say, I would have the capacity to

make my action depend on whether 1571 is prime. (If the presented number is 1571, it

is automatically a prime number; if the presented number is 1591, it is automatically

not a prime number) However, this situation could happen, even when I do not know

1571 is prime. Therefore the above characterization does not seem to fully capture

the notion of available knowledge.

What this example illustrates is that, in general, an agents may happen to have

the capacity to make actions depend on certain information in the way that the

capacity does not represents her internal state as much as we want it to. In view of

this problem, Stalnaker claims that such situations can be marked out by bringing

204 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

agents’ motivational states into the picture. What he proposes as the characterization

of available knowledge can be cashed out as: an agent know ϕ, if the agent have the

capacity to make her action depend on whether ϕ and she is disposed to make her

action depend on whether ϕ whenever she wants her action to depend on whether ϕ.3

With the above conception of knowledge, a part of Stalnaker’s view about the

problem of logical omniscience can be characterized as follows. Availability of knowl-

edge must be characterized in relation to action and motivation. As far as epistemic

logic leaves these elements out in representing knowledge, as its standard frame-

work does, it cannot reasonably capture availability of knowledge or any notion of

knowledge that supports our intuition that we have when resisting the validity of the

principle LO.

However, this seems to be only a part of Stalnaker’s view. His negative view

seems to go further. He seems to suggest that the relevant notions here, available

knowledge, action and motivation, are so intimately related to each other that we

cannot formally characterize what knowledge an agent has available based on action

and motivation of an agent. Here is what Stalnaker says:

But the problem is that we have no independent way to assign content to

the motivational states. If we are talking just about machines and systems

that we build and program to serve our needs, then it will be easy to see

how to interpret the content of the “wants” of the processors, but we want

our theory to apply also to organisms and systems that we find, and want

to understand as autonomous agents. . . the information-bearing states of

participants in the system have the (implicit) content they do because of

the structure of the system—the constraints imposed by that structure on

the relation between the internal states of the participants and the global

3The material discussed in this paragraph is from pp. 265-266 in [56], where Stalnaker discuss
available knowledge that ϕ under condition ψ. We reconstructed the version without the relativiza-
tion in the text above to make explicit what we think is Stalnaker’s main argument.

5.1. STALNAKER ON THE PROBLEM OF LOGICAL OMNISCIENCE 205

states of the system of which it is a part. If our theory is to contribute to

an explanation of intentionality, then the decision rules and motivational

states should also get their content from the structure of the system, and

not be imposed from outside by the intentions and desires of the users.

Motivational states should derive their contents from the dispositions of

the participants to make its actions depend on the information it has.

But it will be the dispositions to use the available knowledge, not the

implicit knowledge, that will determine the content of decision rules and

motivational states. (ibid. p.266)

Thus, when we would like to characterize available knowledge, we need to know

actions and motivation of an agent. However, to know actions and motivation, we now

in turn have to know what knowledge the agent has available. This interdependence

between the notions makes the project of characterizing available knowledge look even

intractable.

Then, what should we do? Should we abandon the project of formalizing the no-

tion of knowledge that does not satisfy LO for the reasons that Stalnaker presents?

Our answer to this question is negative. We will agree with Stalnaker on the impor-

tance of action and motivation to the characterization of knowledge. We will also

grant him that the intimate interdependence between them makes it difficult to char-

acterize available knowledge based on action and motivation. However, we claim that

there is still a way of characterizing the desired notion of knowledge before we commit

ourselves to the notions of action and motivation. This is the project that we will

undertake for the rest of the chapter.

206 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

5.2 Explicit Knowledge and Deductive Inference

Our basic strategy is to characterize the notion of explicit knowledge by addressing

the dynamics of information when an agent makes observations. The information we

have about the world gets updated when we make observations. For instance, I may

not have information about whether it is raining outside right now, but I will come to

know it by going outside and observe the current weather outside. Or I may know the

procedure to determine whether a given number is prime but may not tell whether

1571 is prime when the number is presented to me. After careful calculation, I will

come to know whether the number is prime. Thus, observations, in the broad sense

of the term, bring our informational states to new informational states.

Depending on what informational states we are in, a given observation can impact

on our informational states in different ways. If I do not know whether it is raining

now, observing the current weather outside will update my informational state by

the new information. If I already know whether it is raining, then observing the

current weather outside will not give me any new information. Similarly, if I do not

concurrently know whether 1571 is prime though the information that the number

is prime is implicit in my knowledge about arithmetic, my careful calculation will

give me new information. However, once I concurrently come to know whether the

number is prime, repeating calculation will not give me new information.

Based on these considerations, we articulate the standard intuition of explicit

knowledge as follows: An agent i explicitly knows ϕ iff i would not obtain new

information after observing the information that ϕ. If we concurrently know a cer-

tain fact, then observing the fact will not give us new information. If we do not

concurrently know a certain fact, then observing the fact will give us new informa-

tion. As the above examples suggest, the notion of explicit knowledge characterized

this way accords with the intuition that we have against the principle LO and avoid

5.2. EXPLICIT KNOWLEDGE AND DEDUCTIVE INFERENCE 207

the problem of logical omniscience.

We may further illustrate the idea in relation to the notions of action and moti-

vation. If I concurrently know whether 1571 is prime, then I would not obtain new

information by observing that 1571 is prime. The idea that I have the same informa-

tion before and after observing that 1571 can be explained by noting I would answer

‘yes’ to the question whether the number is prime before and after the observation.

On the other hand, if the information that 1571 is prime is only implicit in my knowl-

edge about arithmetic, I would not answer ‘yes’ to the question or at least would not

be able to make my answer depend on whether the number is prime, as I want it to.

However, once I observe that the number is prime, I would obtain new information.

This can be explained by noting that I would now be able to say ‘yes’ to the question

and make the action depend on whether the number is prime, as I want it to, even

though I was not be able to do so before I made the observation. We explain this

difference in my disposition to answer the question in terms of my informational after

deducing that 1751.

Note that the last paragraph appeals to the notions of actions and motivations

only for the purpose of illustrating our characterization of explicit knowledge. Indeed,

our characterization itself does not involve the notions. However, it would be appro-

priate to articulate the nature of our project further here. As mentioned above, we

agree with Stalnaker that action and motivation are important to the characteriza-

tion of available knowledge and that they are indeed so intimately related in the way

that they do not seem to allow formalizations of available knowledge. This is why

we had to appeal to action and motivation in order to explain our characterization.

What we intend to do by the above characterization, however, is to show that we can

still reveal interesting aspects of explicit knowledge without invoking the notions of

action and motivation as our theoretical primitives to be used in characterizations

of knowledge. Thus, we are with Stalnaker, if he thinks that the full-fledged theory

208 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

of knowledge would have to invoke the notion of action and motivation, but we are

not, if he thinks that there is nothing that can be said about the desired notion of

knowledge without considering action and motivation.

Once we characterize the notion of knowledge that does not suffer from the prob-

lem of logical omniscience, we can now meaningfully consider the situations where

an agent makes deductive inferences. To describe the intuition that we appeal to in

characterizing deductive inferences, let us review our prime number example. First,

the fact that I can deduce the conclusion that 1571 is prime can be explained by my

explicit knowledge about the relevant part of arithmetic. In order to make deduc-

tive inferences, I have to appeal to my knowledge about arithmetic. The parts of

my knowledge about arithmetic that I use should be my explicit knowledge, when I

indeed make the deductive inferences. Otherwise, it is not clear how we can explain

the fact that I perform the calculations I do in the course of maing the deductive

inferences. Second, by deducing the conclusion, I observe the conclusion of my de-

ductive inference. My careful calculations reveal relevant arithmetical facts about

the number 1571 and will present me the information that the number is prime. I

observe, in the broad sense of the word, that 1571 is prime through the process of

making deductive inferences.

Based on these considerations, we propose the following characterization of de-

ductive inferences. When an agent makes a deductive inference,

1. the agent must explicitly know the premises of the inference and

2. by making a deductive inference, the agent observes the true information that

the conclusion is the case.

Thus, we characterize deductive inferences as a process of observing the conclusions

of the inferences based on explicit knowledge.

5.3. FORMALIZING EXPLICIT KNOWLEDGE 209

5.3 Formalizing Explicit Knowledge

We now formalize the notion of explicit knowledge basd on our characterization above.

5.3.1 Reinterpretation of TPAL

TPAL extends propositional logic with the epistemic operator [i] and the public an-

nouncement operator 〈!θ〉 (and its dual [!θ]). For our current purpose, we will restrict

our attention to the single agent case and denote the epistemic operator by Ki.4 We

start by giving interpretations of the operators in TPAL for our application.

1. Kiϕ: “An agent implicitly knows ϕ.”.

2. 〈!θ〉ϕ: “An agent can observe θ after which ϕ is true.”

3. [!θ]ϕ: “After observing θ, ϕ is true.”.

Also we assume that propositional letters refer to atomic propositions about the

world, whose truth values are determined independently of the epistemic state of

agents. Given that our purpose is to analyze the relevant epistemic concepts, such

as information, explicit knowledge, observation, we take this familiar assumption to

mark off the objects of our analysis from unanalyzable atomic propositions.

Some remarks are in order concerning the intended reading of the operator Ki.

First, as the standard modal operator, the operator Ki validates the principle, if Kiϕ

and ϕ logically implies ψ, then Kiψ. This accords the way in which we conceive the

notion of implicit knowledge. What we will do below is to define another notion of

knowledge that does not validate the principle. Second, we interpret Kiϕ also as “an

agent has the information that ϕ” or “an agent is informationally committed to ϕ”.

We consider these readings and the above reading equivalent for our current purpose.

4We will discuss the multi-agent case in Section 5.6.2

210 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

The models of TPAL are ETL-tree structures that represent temporal evolutions

of initial epistemic models over informational updates by sequences of public an-

nouncements based on protocols assigned to worlds in the epistemic models. For the

complete definitions of the models, we refer readers to Chapter 2. Here, we only

describe how we interpret the models in TPAL to reflect the intended readings that

we listed above.

First, epistemic models represent informational states of an agent by domains of

points, indistinguishability relations, and valuation functions. Points in the domain

of an epistemic model represent epistemic possibilities for an agent and the valuation

function characterizes each epistemic possibility by determining truth values of atomic

propositions. The indistinguishability relation represents what epistemic possibilities

an agent considers at a given world.

Public announcements !ϕ update the informational state of an agent by relativizing

the epistemic possibilities in epistemic models to epistemic possibilities in which ϕ is

true. By this mechanism, we represent the informational event of observations. When

observing ϕ, an agent eliminates the possibility of non-ϕ. At this level of abstraction,

our use of the word, “observation”, should be taken in a broad sense. Not only is

it intended to capture physical observations such as observing that it is raining, but

also to capture other types of observations in a broad sense, such as observing things

by reflection, etc., as we suggested in our previous discussions.

Protocols are sets of sequences of public announcements assigned to points in

a given epistemic model. In general, they represent the information about what

public announcements can happen in given points of the epistemic model. With our

interpretation of public announcements, the protocol at a point represents what can

possibly be observed. If !p is in the protocol at a point, then p can be observed

provided that p is true at the point. Similarly if !p is not in the protocol at a point,

then p cannot be observed even when p is true at the point.

5.3. FORMALIZING EXPLICIT KNOWLEDGE 211

Finally, based on our current interpretations, the models in TPAL represent tem-

poral evolutions of agents’ informational states over sequences of observations. A

model H in TPAL is a triple of the form (H,∼, V). H is a set of histories, sequences

of the form w!ϕ1 . . .!ϕn, where w!ϕ1 . . .!ϕn represents the state at w after the sequence

of observations !ϕ1 . . .!ϕn have been made. ∼ represents the indistinguishability of

those temporal states for an agent and V determines the truth of atomic proposi-

tions at each state. Truth of formulas in TPAL are defined with respect to a model

H = (H,∼, V) and a history h in H. Here we give the truth definitions for the

operators of our interest (For the complete list, readers are referred to Chapter 2.):

Forest(M, p), h |= Kiϕ iff ∀h′ : h ∼ h′ ⇒ Forest(M, p), h′ |= ϕ.

Forest(M, p), h |= 〈!θ〉ϕ iff h!θ ∈ H and Forest(M, p), h!θ |= ϕ.

Having this interpretation of TPAL, we introduce the new operator for explicit

knowledge, K, in the framework of TPAL, and define it by the following definition:

Definition 5.3.1 (Explicit Knowledge) Let H ∈ F(PAL) and h, a history in H.

Then

Forest(M, p), h |= Kϕ iff ∀h′ : h ∼ h′ implies Forest(M, p), h′ |= 〈!ϕ〉>

/

We read Kϕ as “an agent explicitly knows ϕ”. Given that 〈!ϕ〉> reads as “ϕ is

observable”, our definition of explicit knowledge says that an agent explicit knows that

ϕ when the true information that ϕ is observable by the agent in all indistinguishable

worlds.

212 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

This formulation of Ke has two immediate consequences. First, as is clear in the

definition, the operator can be expressed by the language of TPAL. The following

equivalence is an immediate consequence of Definition 5.3.1 and the truth definition

of TPAL:

Keϕ↔ Ki〈!ϕ〉>.

Therefore, we can obtain the completeness and decidability of the extension of TPAL

with Ke by adding this equivalence to the axiomatization of TPAL (Section 2.3),

based on the completeness and decidability results we derived in Chapter 2 (Sec-

tion 2.3.3 and 2.3.2. Second, the formula Keϕ → Kiϕ (explicit knowledge implies

implicit knowledge) is valid in the semantics of TPAL, because 〈!ϕ〉> → ϕ (the

observability of the true information that ϕ implies the truth of ϕ). This coheres

with the characterization of implicit knowledge as anything that follows from explicit

knowledge. Explicit knowledge trivially follows from itself.

5.3.2 Dynamic Characterization of Explicit Knowledge

How does the formalization above capture our intuitive characterization of explicit

knowledge in the previous section? To see how it does, let us consider the three

models in Figure 5.1. The three models are constructed from an epistemic model

that has two indistinguishable worlds w, v. In the model on the left, p and q are true

only at w and v respectively, and the protocols at both worlds allow !p. Since w and

v are indistinguishable, an agent does not know that p is true even in an implicit

sense. However, after observing p, the world v is “eliminated” in the sense that v!p is

absent. This is simply because p is false at v and thus v!p is not created even though

!p is in the protocol. In this sense, this model represents the case where the agent

obtain new information by observing p.

The situation is different in the model in the middle. Here p is true at both w and

5.3. FORMALIZING EXPLICIT KNOWLEDGE 213

!p

p, q ¬p,¬q
{!p} {!p}

!p

p, q p,¬q
{!p} {}

!p !p

p, q p,¬q
{!p} {!p}

Figure 5.1: Dynamic characterization of explicit knowledge

v, but q is true only at w. Only the protocol at w allows !p. In this model, at w, it is

already the case that an agent implicitly knows that p is the case. However, what is

interesting about this model is that, even though the agent implicitly knows that p is

true, she obtains new information by observing p. Indeed, at w, the agent does not

implicitly know that q is true, but after observing p, i.e. at w!p, she does implicitly

know that q is the case. The reason for this is that, in the model, !p is not allowed

in the protocol at v even though p is true. That is, at v, p is true but the fact that p

is true is not observable. Thus, we can recapitulate what this example illustrate by

saying: given a formula ϕ, even when an agent implicitly know that ϕ, she may still

gain information since she may be able to eliminate some possibilities based on the

observability of the information.

This situation should be contrasted with the model on the right. This model has

the same propositional valuation as the model in the middle: p is true at both worlds;

q is true only at w. However, in this model, the protocol allows !p at both w and

v. Thus, at w, an agent implicitly knows that p is true. Nonetheless, even after

observing p, the agent still cannot distinguish w and v (more precisely w!p and v!p),

since in this model p is observable also at v. In general, for every ϕ, if ϕ is observable

at all indistinguishable worlds, then an agent does not gain new information in the

sense that no world will be eliminated.

This point explains the intuition of our definition of explicit knowledge. If an

agent explicitly knows ϕ, then she does not obtain new information by observing ϕ

214 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

(the right model in Figure 5.1). If an agent does not explicitly know ϕ, then she

obtain new information (the models on the right and the middle in Figure 5.1). By

this dynamic characterization, our model goes beyond mere syntactic manipulations

in formalizing the notion of explicit knowledge.

5.3.3 Epistemic Information and Protocol Information

The above explanation appeals to a specific notion of information that an agent

has. We need to clarify what the notion is. To do so, we point to two kinds of

information that are represented in models of TPAL. One kind of information in the

models is represented by sets of points (or nodes), indistinguishability relations, and

valuation functions. As we mentioned above, models in TPAL start with epistemic

models and describe temporal evolutions of the models over informational updates—

observations in our interpretation. Each observation creates a new set of points

with the corresponding indistinguishability relation and valuation function. Thus,

each level of tree structures in models of TPAL can be considered as an epistemic

model and it represents an aspect of the information that an agent has. Pictorially,

this is the aspect of the information of an agent that is represented ‘horizontally’

at each level of tree structures in the models discussed above. Let us call the kind

of information epistemic information. The other kind of information that an agent

has is the information about what information can be observed at worlds (or nodes).

Protocols represent the information about what can be observable and an agent has

information about them in addition to the epistemic information that she has. This

aspect of the information of an agent is represented ‘vertically’ by the arrows coming

out of each world in the models discussed above. Let us call this kind of information

protocol information.

Given the distinction, we can now articulate our characterization of explicit knowl-

edge. Our characterization was that an agent explicitly knows ϕ iff she would not

5.3. FORMALIZING EXPLICIT KNOWLEDGE 215

obtain new information by observing ϕ. When we explained the ‘gain’ of information

above, the sense of information that we appealed to was the epistemic information

that an agent has. An agent gains epistemic information when the set of indistin-

guishable epistemic possibilities gets reduced. An agent does not gain new epistemic

information when the set of indistinguishable epistemic possibilities stays the same.

Therefore, we now need to restate the characterization of explicit knowledge as follows

based on the distinction: An agent i explicitly knows ϕ iff i would not obtain new

epistemic information after observing ϕ.

The following example also illustrates the importance of the distinction in our

framework. Consider the following two schemas:

(Pos) Kiψ ∧Keϕ→ [!ϕ]Kiψ

(Neg) ¬Kiψ ∧Keϕ→ [!ϕ]¬Kiψ

These two schemas together represent that, if an agent explicitly knows that ϕ, the

information that she has, epistemic or protocol, stays the same after observing ϕ.

These schemas are not valid in TPAL and counterexamples are given by Figure 5.2.

At w, the instantiation of Pos with ϕ := p and ψ := p is false. (The antecedent is

true since p is observable at w and v, but the consequent is false, since Kp is not

true at w!p by the non-observability of p at w!p or v!p.) Similarly the instantiation of

Neg with ϕ := p and ψ := q is false at w. These counterexamples are possible, since

the protocol information may still change over the event of observing ϕ, even though

her epistemic information is preserved. Thus, in general, an agent may obtain new

explicit knowledge by obtaining new protocol information, or even lose his explicit

knowledge by losing protocol information, even when her epistemic information kept

preserved.

To ensure the validity of the above schemas, we need to make sure that the protocol

information stays the same over events of making observations. The following schemas

216 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

!q !q

!p !p

w v
p, q p, q

{!p!q} {!p!q}

Figure 5.2: Counterexample

express such a condition.

(MT) 〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>

(AMT) 〈!ψ〉〈!ϕ〉> → 〈!ϕ〉>

Indeed, we can prove the following:

Proposition 5.3.2 Let H be a TPAL-model. If MT is valid in H, then Pos is valid

in H. Also if AMT is valid in H, then Neg is true at every h in H.

MT guarantees that, if it is true at every node in H, H is monotonic in terms of

observable information, that is, if ϕ is observable, then ϕ will be observable again after

any information is observed. AMT guarantees that, if it is true at every node inH, H

is anti-monotonic in terms of observable information, that is, if ϕ is observable after

any information is observed, then ϕ is observable before the information is observed.

5.3.4 Avoiding the Problem of Logical Omniscience

We shall also note that our formal definition of explicit knowledge extracts from

the fact that the truth of TPAL-formulas containing public announcement opera-

tors depends on protocols, which are specified syntactically by TPAL-formulas (See

5.3. FORMALIZING EXPLICIT KNOWLEDGE 217

Chapter 2. As mentioned above, even if a formula ϕ is true at a world, 〈!ϕ〉> (!ϕ is

observable) will not be true unless !ϕ is stipulated to be observable by the protocol

assigned to the world. Also even if the true information that ϕ is observable, its log-

ical consequences may not be, since protocols in general do not have to be logically

closed (Even if ϕ is in a protocol and ϕ logically implies ψ, ψ may not be in the

protocol) or closed by any specified condition.

Technically, this is exactly the feature that allows our Ke-operator to resolve

the problem of logical omniscience. As mentioned above, the problem of logical

omniscience arises, because the standard modal operators validate the K-axiom and

necessitation rule. In our framework, the principles are validated with respect to the

implicit knowledge operator Ki.5 However, the principles are not valid with respect

to the explicit knowledge operator Ke. It is straightforward to show the following.

Proposition 5.3.3 The necessitation rule with respect to Ke, if ` ϕ, then ` Keϕ is

not sound in TPAL.

Proposition 5.3.4 The K-axiom with respect to Ke, Keϕ ∧Ke(ϕ→ ψ)→ Keψ, is

not valid in TPAL.

The first proposition reflects the fact that, even if ϕ is true, the information that ϕ

may not be observable. The second proposition follows from the fact that protocols

are generally not closed under implication, as stated above. The readers are invited

to generate counterexamples to the principles.

However, demanding that explicit knowledge have no closure property whatsoever

may not sound too plausible in some contexts. For instance, we may think that, if

an agent explicitly know a conjunction, then the agent also explicitly know each

conjunct. Fortunately TPAL is flexible enough to characterize the closure properties

of explicit knowledge (more precisely, closure of protocols, hence closure of explicit

5The schema Kiϕ ∧Ki(ϕ→ ψ)→ Kiψ is valid and the rule, if ` ϕ, then ` Kiϕ, is sound.

218 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

knowledge). The validity of the following schema is equivalent respectively to the

above closure properties:

〈!(ϕ ∧ ψ)〉> → 〈!ϕ〉> ∧ 〈!ψ〉>

What the schema ensures may be pictorially described by saying that, in a given

TPAL-model, if an arrow labeled by !(ϕ ∧ ψ) comes out of a node, then two arrows

labeled by !ϕ and !ψ respectively must come out of the node.

We can express more natural closure conditions, which may be properly assumed

depending on the situations we describe. The following list are the pair of closure

conditions and corresponding epistemic principles. The validity of a schema in a pair

is equivalent to the validity of the other.

RF 〈!ϕ〉> → 〈!Keϕ〉>.

• Keϕ→ KeKeϕ.

EI 〈!Kiϕ〉> → 〈!ϕ〉>.

• KeKiϕ→ Keϕ.

LI 〈!ϕ〉> ∧ 〈!(ϕ→ ψ)〉> → 〈!ψ〉>.

• Keϕ ∧Ke(ϕ→ ψ)→ Keψ

VF If ` ϕ, then ` 〈!ϕ〉>.

• if ` ϕ, then ` Keϕ

It is straightforward to show that the principles LI and VF are independent (in the

sense that there are models in which only either one of the two is valid). Also they

together imply EI. RF is independent from the three principles.

5.4. FORMALIZING DEDUCTIVE INFERENCE 219

5.4 Formalizing Deductive Inference

Having defined explicit knowledge, let us now model situations where an agent makes

a deductive inference. First, to express such situations, we extend our language with

the operator 〈Γ ` ϕ〉, where Γ logically implies ϕ. The intended reading of 〈Γ ` ϕ〉ψ

is “an agent can deductively infer ϕ from Γ after which ψ”. The dual of 〈Γ ` ϕ〉 is

denoted by [Γ ` ϕ], and [Γ ` ϕ]ψ is read as “After deductively inferring ϕ from Γ,

ψ.” “After an agent makes a logical deductive from Γ to ϕ, ψ.”

We will give the truth definition of this new operator based on the observation we

made in Section 5.2. That is, when an agent makes a logical inference from Γ to ϕ,

1. the agent must explicitly know all the formulas in Γ, and

2. by making a deductive inference, the agent observes that the conclusion is the

case.

The corresponding truth definition is as follows. Let H be a TPAL-model (H ∈

F(PAL)) and h a history in H:

H, h |= 〈Γ ` ϕ〉ψ iff (1) H, h |= Keχ for all χ ∈ Γ

(2) H, h!ϕ |= ψ.

Given that we consider deductive inferences made by realistic agents with limited

resources, we may assume that Γ is finite. By this assumption, we can define the

deductive inference operator in TPAL. (Ke is definable in TPAL, as we saw above):

〈Γ ` ϕ〉ψ ↔
∧
χ∈Γ

Keχ ∧ 〈!ϕ〉ψ.

The semantics of the deductive inference operator can be visualized as in Fig-

ure 5.3. In the figure, we have two indistinguishable nodes, black and gray, and, at

220 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

...
...

...
...

...

ψ.

!χ1

!χ2

!ϕ !χ1

!χ2

...
...

Figure 5.3: Making a deductive inference

the nodes, the formulas χ1, χ2, . . . are observable. Therefore, we have Keχi for each

i. In addition, at the black node, ϕ is observable, and, after ϕ is observed, ψ becomes

true. In this model at the black node, we have 〈χ1, χ2 . . . |= ϕ〉ψ true.

This illustrates that our deductive inference operator represents a process of mak-

ing a deductive inference as eliminating worlds where the conclusion is not observable.

In the example, χ1, . . . χn and ϕ are all true at both the black and gray nodes. Never-

theless, an agent, observing that the conclusion ϕ is the case, gains further epistemic

information (but not protocol information.) by eliminating the gray node where ϕ

is not observable. This feature of our definition corresponds to the following intu-

ition: by deductive inference, an agent gains the information that the conclusion was

observable. The points in an epistemic model that will be left uneliminated after an

agent makes a deductive inference are the ones where the conclusion is observable

before an agent makes the inference.

5.5 Logical Omniscience vs Epistemic Closure

What is called the epistemic closure principle is the principle that states that knowl-

edge is closed under logical implication. As we have discussed above, in epistemic

logic, a version of this principle, i.e. if ϕ is known and ϕ logically implies ψ, then ψ is

5.5. LOGICAL OMNISCIENCE VS EPISTEMIC CLOSURE 221

known, raises the problem of logical omniscience. We have investigated how to model

the notion of knowledge, which we call explicit knowledge, that does not validate the

version of the principle. The formalization of such a notion of knowledge makes it

meaningful to pursue representations of deductive inference in epistemic logic and we

have introduced a new operator 〈Γ ` ϕ〉 to represent a situation that an agent makes

a deductive inference from Γ to ϕ.

Now our representation of deductive inferences allows us to address another per-

spective on the epistemic closure principle in the epistemology literature. In episte-

mology, the epistemic closure principle has been discussed as a principle expressing

that we can extend our knowledge by logical inference. For instance, Williamson [81]

presents the following formulation of the principle, which he calls intuitive closure:

. . . knowing p1, . . . , pn, competently deducing q, and thereby coming to

believe q is in general a way of coming to know q. (p.117)

He then says:

We should in any case be very reluctant to reject intuitive closure, for it

is intuitive. If we reject it, in what circumstances can we gain knowledge

by deduction? (Williamson, pp.118, [81])

Those who defend the principle attempt to save this intuition about deduction as a

good epistemic method, while those who attack the principle articulate why and how

the intuition is sometimes betrayed.

This perspective on the closure principle is very contrastive to the perspective on

the epistemic closure principle in epistemic logic. As we have discussed above, the

epistemic closure principle is considered as the principle that assumes logically om-

niscient agents for whom deductive inferences are not meaningful. In [55], Stalnaker,

discussing the problem of logical omniscience, says:

222 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

Any context where an agent engages in reasoning is a context that is

distorted by the assumption of deductive omniscience, since reasoning

(at least deductive reasoning) is an activity that deductively omniscient

agents have no use for. . . In fact any kind of information processing or

computation is unintelligible as an activity of a deductively omniscient

agent. (pp.428-9)

Thus, to highlight the contrast, one could say: on the interpretation in the philosophi-

cal literature on epistemology, the closure principle is something that would guarantee

the unshakable epistemic value of deduction; on the interpretation in epistemic logic,

it is something that would take away the epistemic value of deduction.

The reason that the situation has arisen may be characterized as follows. First,

the problem of logical omniscience consists in the particular feature of the standard

framework in epistemic logic. Therefore it is a task in epistemic logic, but not in

epistemology as a whole, to resolve the problem. In the general epistemological

context, the formulation of the closure principle, if an agent knows ϕ and ϕ logically

imply ψ, then she knows ψ, must be simply abandoned for its immediate implausibility

as a description of knowledge held by realistic agents like us. Second, while the

nature of deductive inference have been investigated in philosophical discussions on

the closure principle, the standard framework of epistemic logic does not represent

deductive inference. In that case, there is no way to address the relevant aspect of

the closure principle in the formal representation of knowledge in epistemic logic.

5.5.1 Formalizing the Epistemic Closure Principle

Having the representation of deductive inferences, we can now address the perspective

on the epistemic closure principle in epistemology. We formulate the epistemic closure

principle as discussed in the epistemology literature by:

5.5. LOGICAL OMNISCIENCE VS EPISTEMIC CLOSURE 223

.

!χ1

!χ2

!ϕ !χ1

!χ2

w v

Figure 5.4: Counterexample to EC

EC ∧
χ∈Γ

Keχ→ [Γ ` ϕ]Keϕ

which reads “If an agent explicitly knows every formula χ in Γ, then, after making

the deductive inference Γ ` ϕ, she explicitly knows ϕ.”6

Despite the initial plausibility of the formulation, EC is not a valid formula in

TPAL. A counterexample is visualized in Figure 5.4. (The dashed line between w

and v represents the the indistinguishability relation between them as usual. The

dashed lines are omitted between pairs of nodes, w!χi and v!χi, for simplicity, even

though they are indistinguishable.) Let Γ := {χ1, . . . , χn}. At the node w of the

model,
∧n
i=1K

eχi is true at w, since, for all i, 〈χi〉> is true at w by the presence of

the !χi-arrow. However [Γ ` ϕ]Keϕ is false. For Keϕ is false at w!ϕ given that 〈!ϕ〉>

is false at w!ϕ (by the absence of a !ϕ-arrow coming out of w!ϕ).

The reason of the failure of EC can be explained by the change of the protocol

information over the events of making observation. (cf. Pos and Neg in Section 5.3.2)

The cause of the change in protocol information may vary depending on situations.

Here we give a possible interpretation of the model by one example from the literature

in epistemology, given by Lawlor in [46]. The example can be described as follows:

Edward, being raised by a believer in homeopathy, believes in homeopathic

6Given the definition of the logical inference operator, the formulation is equivalent to [Γ ` ϕ]Keϕ.

224 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

medicine. He has the strong conviction that he has seen illness cured by

homeopathic treatments. Edward knows that the cold medicine he takes

has a concentration of 1 part per 100200. Recently he learned chemistry

just recently, so he knows that, if a substance is diluted that much, it

is unlikely that even one molecule of the substance remains. From this,

he arrives through deduction at the belief that the cold medicine will

very likely not work. Given the strength of his previous conviction in

homeopathy, one could argue that he does not know that the cold medicine

will very likely not work, until he goes through the process of questioning

the efficacy of the homeopathic medicine. However, by epistemic closure,

Edward necessarily has to know that the medicine will very likely not

work.

In our model, let Γ be the set of propositions stating the relevant facts in chemistry,

and ϕ, the proposition that the medicine will very likely not work. Initially, Edward

explicitly knows the propositions in Γ, but not ϕ. After making the inference Γ ` ϕ,

he still cannot possibly justify ϕ in the presence of the previous conviction. Thus

in the sense that he cannot eliminate the possibility of non-ϕ, he cannot observe ϕ.

Hence he does not (explicitly) know ϕ. There are other counterexamples raised in

the literature (e.g. [28]), which involves the conflict between the belief arrived at by

deduction and the previously held beliefs, as in this Edward example.

To block counterexamples to EC, we can add the schema MT to the axiomatiza-

tion of TPAL:

〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>.

As stated in Section 5.3.2, this guarantees that, if a formula ϕ can be observed, then

it will be observable after any information is observing. In the context of the Edward

example, we may read this as saying “If some information is observable by an agent,

5.5. LOGICAL OMNISCIENCE VS EPISTEMIC CLOSURE 225

there is nothing that prevents her from observing it after observing any information”.

This will block our counterexample, since information will stay observable once it

becomes observable. Indeed it is straightforward to show the following:

Proposition 5.5.1 The validity of MT implies the validity of EC.

5.5.2 Independence

Discussions in the previous sections points out that the problem of logical omniscience

in epistemic logic and debates about the epistemic closure principle in the philosoph-

ical literature deal with different aspects of the principle knowledge is closed under

logical implication. By using our formulations of the problems, we can indeed show

that principles that generate the problem of logical omniscience and the epistemic

closure principles are logically independent.

First let us review the following principles and the corresponding facts:

MT 〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>.

• The validity of MT implies the validity of EC.

LI 〈!ϕ〉> ∧ 〈!(ϕ→ ψ)〉> → 〈!ψ〉>.

• LI is equivalent to Keϕ ∧Ke(ϕ→ ψ)→ Keψ

VF If ` ϕ, then ` 〈!ϕ〉>.

• VF is equivalent to the principle if ` ϕ, then ` Keϕ

Given the above facts, the following simple results shows the independence be-

tween the principles that generate the problem of logical omniscience and the principle

EC.

226 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

Proposition 5.5.2 (Consistency) MT, LI and VF are consistent. That is, there

is a model in which all the instances of the schemas are true at every node.

Proposition 5.5.3 (Independence) MT is independent from LI and from VF,

i.e. the former pair does not imply the latter and that the latter does not imply the

former.

These facts can be shown by the models in Figure 5.5. First consider the model on the

left. At w, ϕ and all of its logical consequences, τ1, τ2 . . . , are observable (and nothing

else). At w!ϕ, ψ and all of its logical consequences, τ ′1, τ
′
2, . . . are observable (and

nothing else). Also at every other nodes, all and only formulas provable in TPAL are

observable. Now, suppose ϕ and ψ are identical with some provable formula. Then,

at every node of the model, MT, LI and VF are all true, since all provable formulas

are observable at every node and every node has the same observable formulas. Next,

suppose ϕ and ψ are distinct propositional letter, say p and q. In this case, LI and

VF are still true at every node, but MT are false at w.7 Next consider the model

on the right. In the model, p is observable at every node. This guarantees that MT

is true at every node. However, no node satisfies LI or VF, since no node is closed

under logical consequence. Therefore, MT does not imply logical omniscience and

logical omniscience does not imply MT. (This fact will be mentioned in Section 5.5.)

By the two proposition, we can argue for the independence of the problem of

logical omniscience and the validity of EC. First, by Proposition 5.5.2, there is a

model in which MT, LI and VF are valid. In such a model, logical omniscience is

present in the model and EC is valid. (MT guarantees that EC, and LI plus VF

guarantees logical omniscience.) Second, by Proposition 5.5.3, there is a model in

which LI and VF are valid, while MT is false at some node. In such a model, logical

omniscience is present and EC is false. Third, by Proposition 5.5.3 again, there is a

7p is observable at w but not at w!p. Thus at w, 〈!p〉> but not 〈!p〉〈!p〉>. This means that MT
is false at w.

5.5. LOGICAL OMNISCIENCE VS EPISTEMIC CLOSURE 227

. . .

...
...

...
...

!p

!p

v

!ψ!τ ′1

!τ ′2

. . .

...
...

!ϕ

!τ2

!τ1

Figure 5.5: Independence of MT and AMT from LI and VF

model in which MT is valid, while LI and VF are false at a node. Finally, in general,

MT, LI and VF are not valid in TPAL. Therefore, we claim that the presence or

absence of logical omniscience does not determine the question about EC, and the

truth or falsity of EC does not determine the question about logical omniscience.

Here one may object that the formulation of EC does not fully capture the epis-

temic closure principle discussed in epistemology. In particular, consider a formulation

of the epistemic closure principle in [81], mentioned in the introduction:

. . . knowing p1, . . . , pn, competently deducing q, and thereby coming to

believe q is in general a way of coming to know q.

At least, it is not clear how EC captures the part thereby coming to believe q. Other

formulations, e.g. in [28, 35, 46], include similar conditions. In fact, the part in

question is essential since it avoids counterexamples in which an agent does not arrive

at the belief of the conclusion given her previously held beliefs and ones in which the

belief of the conclusion is arrived at based on some unreliable methods independent

228 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

from the deduction from known premises.

In fact, the objection rightly points out that EC does not completely capture

standard formulations of the epistemic closure principle in the relevant literature. It

is true that our framework does not capture the notion of belief in contrast with

knowledge, let alone the ways by which beliefs are arrived at.

However our main point in the current paper is to highlight that the literature

on the problem of logical omniscience and debates on the epistemic closure principle

in epistemology take different perspectives on the principle knowledge is closed under

logical implication. We did this by providing a single framework in dynamic epistemic

logic that characterizes the notions of explicit knowledge and deductive inference. We

defined explicit knowledge by the observability at all indistinguishable worlds, and

showed that the principles that give rise to logical omniscience (the necessitation

rule and the K-axiom) fail with respect to the defined notion. Also we defined

the epistemic closure principle as a distinct dynamic principle, if an agent explicitly

knows the premises, then she will explicitly know the conclusion after observing that

the conclusion is the case. This way, we could show that the two problems are

independent in the sense that the validity of one does not imply the other. These

points would not be taken away by the objection in question. Indeed, as is illustrated

in the Edward example, our claims do not depend on the fact that the notion in

question thereby coming to believe is left out of the formulation. The example would

work out even when the notion is considered.

5.6 Concluding Discussions

We have formalized the notions of explicit knowledge and deductive inference in the

framework of TPAL. We defined explicit knowledge by the information observable at

all indistinguishable worlds. The syntactic character of the notion avoids the problem

5.6. CONCLUDING DISCUSSIONS 229

of logical omniscience and the dynamic character allows us to formulate the principle

that, when an agent explicitly knows ϕ, then she does not obtain new information

after observing that ϕ. We also defined the notion of logical inference as a dynamic

notion of observing, on suitable conditions, that the conclusion is the case. This

enabled us to express the epistemic closure principle as a dynamic principle. We

showed that this dynamic principle is independent from the principles that generate

the problem of logical omniscience. Now we conclude the paper by discussing future

research directions.

5.6.1 Comparison with Other Systems

Various systems have been developed in epistemic logic in order to represent the no-

tions of explicit knowledge and deductive inference. Quite a few systems among those

systems have some syntactic elements in their semantic models. In the sense that pro-

tocols are also syntactic entities, our system has similarities with those frameworks.

Comparison between our system and those will be useful.

On explicit knowledge, a list of similar systems includes van Benthem [66, 65],

Fagin and Halpern [22] and Velazquez-Quesada [75]. The basic idea of these systems

is to assign a set of formulas to each state in a given epistemic model. These sets, let us

call accessibility sets, represent the information to which an agent have internal access.

The general aspects of their models can be captured by a quadrupleM = (W,∼, V, I),

where (W,∼, V) is an epistemic model and I is a function assigning a set of formulas

to each point in W . With this setting, the notion of explicit knowledge, say Eϕ, is

defined by something along the following line:

M, w |= Eϕ iffϕ ∈ I(w) and ∀v : w ∼ v ⇒M, v |= ϕ.

Since our protocols are also sets of (sequences of) formulas assigned to each point in

230 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

a given epistemic model, these approaches are very similar to our system.

Nonetheless there are differences. First, in those models, although accessibility

sets distinguish what is explicitly known from what is implicitly known, they do

not contribute to further characterizations of explicit knowledge. In contrast, in our

model, assigned formulas receive dynamic interpretations. Each formula corresponds

to the operation of eliminating the worlds where the formula is false. This character

of our system allows us to add an intended aspect of explicit knowledge to our formal-

ization, that is, if an agent explicit knows ϕ, she does not obtain further information

by accessing ϕ.

Second, those systems, in particular those of van Benthem and Velazquez-Quesada,

consider explicit ways of updating accessibility sets. One kind of operators they con-

sider are the ones that add new formulas to initially assigned accessibility sets. On

the other hand, in the current paper, we did not consider such operations. In our

framework, there are two ways to model operations of the kind. One way is to appeal

to the temporal evolution of accessible information along given protocols. What is

accessible at a given point h and what is accessible after a given information ϕ is

accessed at h are both determined by an assigned protocol. Addition of formulas Φ

to accessible information at ϕ can be represented in a given model by setting the

accessible information at h!ϕ so that it extends the accessible information at h by

formulas in Φ. Another way is to represent the operations by update operations to

protocols. By the operations, we add specified formulas to given protocols in suitable

ways and this gives the desired operations.

On logical inference, a list of similar systems include van Benthem [66, 65], Duc

[16, 17, 18], Jago [43, 44], and Velazquez-Quesada [75]. By appealing to the models

with certain forms of syntactic accessible sets, they represent logical inferences in

two distinct ways. Duc and Jago represent logical inference as transitions from a

given point, say w, to another, say v. The accessibility set at v expands that at w

5.6. CONCLUDING DISCUSSIONS 231

with the conclusion of corresponding logical inferences. In contrast, van Benthem

and Velazquez-Quesada represent logical inferences by updating accessibility sets by

their conclusions. When an agent makes logical inferences, formulas expressing the

conclusions are added to accessibility sets.

The basic intuition of our system goes in the middle of these two approaches. As

the systems of Duc and Jago, logical inferences in our system correspond to temporal

transitions from a node to another. By accessing the information that the conclusion

is the case, we go along an arrow and move to another node where there is another set

of accessible information. As the systems of van Benthem and Jago, these temporal

transition in our system correspond to updates of initial epistemic states. By accessing

the information, worlds in conflict with the information are eliminated.

Beyond these abstract considerations, more precise comparison between these sys-

tems and ours remains to be investigated. The presence of the mentioned differences

seems to be relatively minor and it seems to be a promising project to try to imitate

those systems in our TPAL framework and enrich our system by importing different

essences from those systems.

5.6.2 Extension to Multi-agent with TDEL

In developing our system, we restricted ourselves to the single agent case. Thus it

is natural to ask whether the system can be extended to the multi-agent case. One

way that suggests itself here is to simply expand initial epistemic models with in-

distinguishability relations assigned to multiple agents. Such epistemic models will

be of the form (W,∼1, . . . ,∼n, V) where each ∼i corresponds to the indistinguisha-

bility relation for an agent i. However, this approach does not give intended results

automatically. The reason is that, in the above models, we consider the operations

of public announcements as the events of making observations. If we keep this set-

ting for the multi-agent case, every agent must make the same observation when a

232 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

single agent observes it. Public announcement operations eliminate worlds in con-

flict with the information from the model and thus such worlds are eliminated from

indistinguishability relation of every agent.

Therefore we need to appeal to operations that allow agents to observe true in-

formation independently from the other agents. Fortunately DEL provides a way to

represent such operations. In addition, ETL tree models can be generated, in a way

similar to TPAL ([68]), with respect to the class of such operations and a logic over

those models turn out to be manageable ([42]). Upon these developments in DEL, a

precise form multi-agent version of our system remains to be seen.

Conclusion

In this dissertation, we have developed a formal framework that captures two impor-

tant aspect of intelligent interaction, epistemic dynamics and protocol information.

The framework merges the two major systems in the literature, Dynamic Epistemic

Logic (DEL) and Epistemic Temporal Logic (ETL). The main idea of the framework

is to construct time-branching tree structures by successively updating an epistemic

model based on protocols assigned to its states. Product update and event models

generate correct representations of agents’ informational states at each moment and

time-branching tree structures represent possible temporal evolutions of the states

that are permitted by assigned protocols.

We have studied the framework from three perspectives. First, in generating ETL

models from models in DEL, the framework can provide a ‘bridge’ between DEL

and ETL. From this perspective, we have given a systematic comparison between

DEL and ETL in Chapter 1. Our main result is the representation theorem that

characterizes the class of DEL-generated ETL models as the class of ETL models

with propositional stability, synchronicity, perfect recall, and uniform no miracle.

Second, our framework provides a reinterpretation of the language of DEL. From

this perspective, we have studied logics over classes of DEL-generated ETL models

in Chapter 2. Furthermore, we have considered various extensions of the logics in

Chapter 3. Third, by representing epistemic dynamics and protocol information in one

system, our framework can work as a powerful modelling tool. From this perspective,

233

234 CHAPTER 5. LOGICAL OMNISCIENCE AND DEDUCTIVE INFERENCE

we have made philosophical applications of our system in Chapter 4 and 5. In the

former chapter, we have dealt with the knowability paradox and given a fine-grained

logical analysis of the knowability thesis. In the latter chapter, we have represented

explicit knowledge and deductive inference.

Our investigations of the framework in this dissertation suggest further research

topics from each of these perspectives. First, our model constructions may be ex-

tended to the systems that describe beliefs. In this dissertation, we have mainly

dealt with DEL, which is designed to describe knowledge. However, in the literature,

systems that describe beliefs have been studied (e.g. [7, 64]). [67] takes this per-

spective and merge Dynamic Doxastic Logic and Doxastic Temporal Logic. Also, in

introducing syntactic structures by protocols, our framework shares some similarities

with other related systems, such as Justification Logic (e.g. [1, 3, 2, 24]), Logic of

Awareness (e.g [21, 22]). The exact relation between our system and those systems

remains to be seen.

Second, our study of logics in TDEL has left several open questions. Two major

kinds of questions concern computational complexity and extensions of TDEL. On

computational complexity, we have investigated the systems, TPAL and TDEL(X),

and have shown that they are decidable. However, the exact complexities of these

systems are not known. Furthermore, for the extended systems, including TAPAL

and TDEL(X)+P, the decidability question is open. On extensions of TDEL, we

have seen that some extensions of TPAL could not be extended in a straightforward

way to TDEL(X). For instance, the axiomatization of TDEL with generalized event

operators is left open. Also, the method to generalize TDEL in order to permit

preconditions containing future operators remains to be developed.

Third, possible applications of our framework are not limited to the ones we

have given in this dissertation. In epistemology, recent discussions have highlighted

important features of various epistemic concepts, for which much remains to be done

5.6. CONCLUDING DISCUSSIONS 235

from a formal perspective. For instance, contextual aspects of knowledge have been

widely discussed in the literature. The question of how to best represent such aspects

in formal systems remains to be investigated. It is interesting to see if protocols

in our framework may give a reasonable representation for contexts of knowledge

attribution. Also our framework can provide further modeling tools for the fields of

studies beyond philosophy. Artificial intelligence and game theory are prime examples

of the kind of disciplines. Other related topics include cryptography ([72]), learning

theory, etc.

Bibliography

[1] S. Artemov. Proceedings of the 11th european conference on logics in artificial

intelligence. In Lecture Notes in Artificial Intelligence, volume 5293, pages 1–4.

Springer-Verlag, 2008.

[2] S. Artemov and E. Nogina. Basic epistemic logic with justification. Technical

Report TR-2005004, CUNY Ph.D. Program in Computer Science, 2005.

[3] S. Artemov and E. Nogina. On epistemic logic with justification. In R. van der

Meyden, editor, Theoretical Aspects of Rationality and Knowledge. Proceedings

of the Tenth Conference, pages 279–294, Singapore, June 10-12 2005.

[4] R. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236–1239, 1976.

[5] P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and de Lima.

Arbitrary announcement logic. Review of Symbolic Logic, 2008. To appear.

[6] A. Baltag, L. Moss, and S. Solecki. The logic of public announcements, common

knowledge and private suspicions. In I. Gilboa, editor, Proceedings of the 7th

Conference on Theoretical Aspects of Rationality and Knowledge, pages 43–56,

1998.

[7] A. Baltag and S. Smets. Dynamic belief revision over multi-agent plausibility

models. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic

236

BIBLIOGRAPHY 237

and the Foundations of Game and Decision Theory: Proceedings of LOFT’06,

Texts in Logic and Games, pages 11–24. Amsterdam University Press, 2006.

[8] J. C. Beall. Fitch’s proof, verificationism, and the knower paradox. Australasian

Journal of Philosophy, 78:241–247, 2000.

[9] N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives. In Jr.

et al H. E. Kyburg, editor, Knowledge Representation and Defeasible Reasoning,

pages 167–190. Kluwer, Dordrecht, 1990.

[10] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University

Press, Cambridge, 2001.

[11] G. Bonanno. Memory and perfect recall in extensive games. Games and Eco-

nomic Behaviour, 47:237–256, 2004.

[12] Giacomo Bonanno. Belief revision in a temporal framework. In G. Bonanno,

W. van der Hoek, and M. Wooldridge, editors, Logic and the Foundations of

Game and Decision Theory: Proceedings of LOFT’06, Texts in Logic and Games,

pages 43–50. Amsterdam University Press, 2006.

[13] J. Broersen. A complete STIT logic for knowledge and action and some of

its application. In Proceedings DALT@AAMAS08, Lecture Notes in Artificial

Intellligence. Springer, 2008. To appear.

[14] B. Brogaard and J. Salerno. Fitch’s paradox of knowability. Stanford Encyclo-

pedia of Philosophy, 2002. http://plato.stanford.edu/entries/fitch-paradox/.

[15] B. F. Chellas. Time and modality in the logic of agency. Studia Logica, 51:485–

517, 1992.

238 BIBLIOGRAPHY

[16] H. Duc. In Proceedings of the 7th Portuguese Conference on Artificial In-

telligence, volume 990 of Lecture Notes in Computer Science, pages 237–248.

Springer, 1995.

[17] H. Duc. Reasoning about rational, but not logically omniscient, agents. Journal

of Logic and Computation, 7(5):633–648, 1997.

[18] H. Duc. Resource-Bounded Reasoning about Knowledge. PhD thesis, Institut für

Informatik, Universtät Leipzig, 2001.

[19] M. Dummett. Victor’s error. Analysis, 61:1–2, 2001.

[20] D. Edgington. The paradox of knowability. Mind, 94:557–568, 1985.

[21] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.

Synthese Library. MIT Press, Boston, 1995.

[22] R. Fagin and J. Y. Halpern. Belief, awareness and limited reasoning. Artificial

Intelligence, 34:39–76, 1988.

[23] F. Fitch. A logical analysis of some value concepts. Journal of Symbolic Logic,

28:135–142, 1963.

[24] M. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic,

132(1):1–25, 2005.

[25] T. French and H. van Ditmarsch. Undecidability for arbitrary announcement

logic. AiML, 2008.

[26] J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, ILLC, 1999.

[27] J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal

of Logic, Language, and Information, 6:147–169, 1997.

BIBLIOGRAPHY 239

[28] S. Hales. Epistemic closure principles. Southern Journal of Philosophy, 33:185–

201, 1995.

[29] J. Halpern and M. Vardi. The complexity of reasoning about knowledge and

time. Journal of Computer and System Sciences, 38:195–237, 1989.

[30] M. Hand. Knowability and epistemic truth. Australasian Journal of Philosophy,

81(2):216–228, 2003.

[31] M. Hand and J. Kvanvig. Tennant on knowability. Australasian Journal of

Philosophy, 77:422–428, 1999.

[32] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook

of Philosophical Logic: extensions of classical logic, volume 2, pages 497–604.

Reidel Publishing Company, 1984.

[33] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic, Foundations of Computing.

MIT Press, Cambridge, 2000.

[34] W. D. Hart and C. McGinn. Knowledge and necessity. Journal of Philosophical

Logic, 5:205–208, 1976.

[35] J. Hawthorne. Is knowledge closed under known entailment? the case for closure.

In M. Setup and E. Sosa, editors, Contemporary Debates in Epistemology, pages

26–43. Blackwell, 2005.

[36] V. Hendricks. Mainstream and Formal Epistemology. Cambridge University

Press, New York, 2006.

[37] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two

Notions. Cornell University Press, Cornell, 1962.

240 BIBLIOGRAPHY

[38] I. Hodkinson and M. Reynolds. Temporal logic. In P. Blackburn, J. van Benthem,

and F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006.

[39] T. Hoshi. The knowability paradox and dynamics of knowledge. Philosophy

Department, Stanford University, 2008.

[40] T. Hoshi. Logical omniscience and epistemic closure. Philosophy Department,

Stanford University, 2008.

[41] T. Hoshi. Logics of public announcement with constrained protocols. In LOFT,

2008.

[42] T. Hoshi and A. Yap. Etl, del and past operators. In J. van Benthem and

E. Pacuit, editors, Proceedings of the Workshop on Logic and Intelligent Inter-

action, pages 132–142, 2008.

[43] M. Jago. Logics for Resource-Bounded Agents. PhD thesis, Department of Phi-

losophy, University of Nottingham, 2006.

[44] M. Jago. Epistemic logic for rule-based agents. Journal of Logic, Language and

Information, 18:131–158, 2009.

[45] J. Kvanvig. The knowability paradox and the prospects for anti-realism. Nous,

29:481–499, 1995.

[46] K. Lawlor. Living without closure. In M. Blaauw, editor, Epistemological Con-

textualism, pages 25–49. Rodopi, 2005.

[47] H. J. Levesque. A logic of implicit and explicit belief. In Proceedings of the

Seventh International Joint Conference on Artificial Intelligence (IJCAI 1981),

pages 240–245, 1981.

BIBLIOGRAPHY 241

[48] D. Lewis. Convention: A Philosophical Study. Harvard University Press, Cam-

bridge, 1969.

[49] J. S. Miller and L. S. Moss. Undecidability of iterated modal relativization.

Studia Logica, 79(3):373–407, 2005.

[50] E. Pacuit and R. Parikh. Reasoning about communication graph. In J. van

Benthem, D. Gabbay, and B. Löwe, editors, Proceedings of the 7th Augustus de

Morgan Workshop. King’s College Press, 2003.

[51] R. Parikh and R. Ramanujam. A knowledge based semantics of messages. Jour-

nal of Logic, Language, and Information, 12:453–467, 2003.

[52] P. Percival. Fitch and intuitionistic knowability. Analysis, 50:182–187, 1990.

[53] J. Plaza. Logics of public announcements. In Proceedings of the 4th International

Symposium on Methodologies for Intelligent Systems: Poster Session Program,

pages 201–216, 1989.

[54] K. Sim. Epistemic logic and logical omniscience. a survey. International Journal

of Intelligent Systems, 12(1):57–81, 1997.

[55] R. Stalnaker. The problem of logical omniscience, I. Synthese, 89:425–440, 1991.

[56] R. Stalnaker. The problem of logical omniscience II. In Context and Contents,

pages 255–278. Oxford University Press, 1999.

[57] N. Tennant. The Taming of the True. Oxford University Press, USA, 1997.

[58] N. Tennant. Is every truth knowable? Reply to Hand and Kvanvig. Australasian

Journal of Philosophy, 79:107–113, 2001.

[59] N. Tennant. Is every truth knowable? Reply to Williamson. Ratio, XIV:263–280,

2001.

242 BIBLIOGRAPHY

[60] N. Tennant. Victor vanquished. Analysis, 62:135–142, 2002.

[61] J. van Benthem. Games in dynamic epistemic logic. Bulletin of Economic Re-

search, 53:216 – 248, 2001.

[62] J. van Benthem. One is lonely number: On the logic of communication. Technical

Report PP-2002-27, University of Amsterdam, 2002.

[63] J. van Benthem. What one may come to know. Analysis, 64(2):95–105, 2004.

[64] J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-

Classical Logics, 17(2):129–155, 2007.

[65] J. van Benthem. Merging observation and access in dynamic logic. Journal of

Logic Studies, 1(1):80–90, 2008.

[66] J. van Benthem. Tell it like it is. Journal of Beking University, Humanities and

Social Science Edition(1):80–90, 2008.

[67] J. van Benthem and C. Dègremont. Building bridges between dynamic and

temporal doxastic logics. Technical Report PP-2008-17, Institution for Logic,

Language & Computation, 2008.

[68] J. van Benthem, J. Gerbrandy, T. Hoshi, and E. Pacuit. Merging frameworks

for interaction. Journal of Philosophical Logic, 2008. To appear.

[69] J. van Benthem and F. Liu. Diversity of logical agents in games. Philosophia

Scientiae, 8(2):163–178, 2004.

[70] J. van Benthem and E. Pacuit. The tree of knowledge in action: Towards a

common perspective. In G. Governatori, I. Hodkinson, and Y. Venema, editors,

Proceedings of Advances in Modal Logic, volume 6. King’s College Press, 2006.

BIBLIOGRAPHY 243

[71] J. van Benthem, J. van Eijck, and B. J. Kooi. Logic of communication and

change. Information and Computation, 204(11):1620–1662, 2006.

[72] H. van Ditmarsch. The Russian cards problem. Studia Logica, 71:1–32, 2003.

[73] H. van Ditmarsch, J. Ruan, and L. Verbrugge. Sum and product in dynamic

epistemic logic. Journal of Logic and Computation, 2007. to appear.

[74] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,

volume 337 of Synthese Library. Springer, 2007.

[75] F. Velazquez-Quesada. Inference and update. Technical Report PP-2008-48,

ILLC, 2008.

[76] T. Williamson. Intuitionism disproved? Analysis, 42:203–207, 1982.

[77] T. Williamson. On knowledge of the unknowable. Analysis, 47:154–8, 1987.

[78] T. Williamson. On the paradox of knowability. Mind, 96:256–61, 1987.

[79] T. Williamson. Knowability and constructivism. Philosophical Quarterly,

38:422–432, 1988.

[80] T. Williamson. On intuitionistic modal epistemic logic. Journal of Philosophical

Logic, 21:63–89, 1992.

[81] T. Williamson. Knowledge and Its Limits. Oxford University Press, USA, 2000.

[82] T. Williamson. Tennant on knowable truth. Ratio, 13:99–114, 2000.

[83] A. Yap. Dynamic epistemic logic and temporal modality. University of Victoria,

2007.

Index

!ϕ, 20

(•)TPAL, 69

EOC(•), 89

Ptcl(•), 33

[E , e], 26

[i], 19

A, 17

At, 17

F(X), 40

Ldel, 25

Lel, 19

Lpal, 21

Ltdel, 81

Ltpal, 52

L+
tpal, 121

E, 33

E∗, 33

Fsd, 40

Funi, 40

O, 122

PAL, 52, 96

PAL+, 122

M×E , 24

PAL, 51, 96

PAL+, 121

d(•), 55

o(•), 122

pd(•), 113

t(•), 129

type(•), 129

e-closure, 86

TPALE, 77

TPALUni, 78

announcement occurrence set, 56

APAL, 94

arbitrary public announcement logic, 94

artificial intelligence, 12, 207

atom, 70

axiomatization

TPAL, 62

belief revision, 49

bisimulation, 43

canonical model

244

INDEX 245

TPAL, 65

closure

under finite prefix, 29

common knowledge, 72

completeness

TPAL, 64

compositional analysis, 62

correspondence theory, 48

D. Lewis, 72

decidability, 72, 87

DEL, 6, 20, 22

DEL-generated ETL model, 10, 33

DEL-generated ETL models, 13

uniform protocol, 35

depth, 55

Dynamic Doxastic Logic, 12, 49

Dynamic Epistemic Logic, 6

EL, 17

epistemic bisimulation invariance, 43

epistemic closure, 14

epistemic dynamics, 16

Epistemic Logic, 6

Epistemic Temporal Logic, 6

epistemology, 12

ETL, 6, 29

event occurrence set, 89

Fitch’s argument, 148, 151

Fitch’s paradox, 14, 148, 152

game theory, 12, 207

grafting, 102, 136

history, 7, 29

maximal, 46

idealism problem, 14, 150, 152

indistinguishability, 6

indistinguishability relation, 18, 23

information

informational events, 3

informational states, 6

protocol information, 4

initial box iteration, 141

intelligent interaction, 1, 16

Interpreted Systems, 9

intuitionistic logic, 153

isomorphism

ETL, 43

knowability, 95

knowability paradox, 148

knowability thesis, 148, 152

language

DEL, 25

EL, 18

246 INDEX

ETL, 30

PAL, 20

TDEL, 81

TPAL, 52

legal history, 64

logic

Dynamic Epistemic Logic, 22

Epistemic Logic, 17

Epistemic Temporal Logic, 29

justification logic, 12

logic of awareness, 12

Public Announcement Logic, 20

Temporal Dynamic Epistemic, 51, 81

Temporal Public Announcement, 51

logical omniscience, 14, 175

logical revisions, 151, 153

modal logic, 6

model

σ-generated epistemic model, 34

σL-generated, 37

DEL-generated ETL model, 38

epistemic model, 6, 17

ETL model, 29

ETL-model, 7

event model, 6, 22

Kripke model, 6

PAL-generated ETL model, 53

pointed event model, 25

model relativization, 20

muddy children, 5

normalization, 54, 58, 88

order, 122

PAL, 20

PAL-protocol, 51

extended, 121

paraconsistent logic, 153

past-depth, 113

PDL, 69

perfect recall, 42, 48

performance, 159

possible states, 6

prefix, 29

product update, 6, 24

propositional stability, 43

protocol, 10, 13, 32

DEL-, 33

state-dependent, 33

uniform, 34

protocol information, 16

public announcement, 20, 21

higher-order, 120

tautologous, 58

public announcements, 26

INDEX 247

reachability question, 4, 16, 95

reasoning about knowledge, 2

reduction axiom, 27, 62

relativized common knowledge, 72, 73

representation theorem, 13, 42

representative, 129

Russian cards problem, 5

satisfiability, 53

saturation

with respect to ♦, 106

with respect to ♦∗, 106

self-retainingness, 149, 159

semantic reformulation, 151, 154

STIT, 9

successful executability, 149, 158

synchronicity, 42, 48

syntactic restriction, 151, 154

TDEL, 13, 51, 81

TDEL(X), 86

TDEL-closure, 87

TPAL, 13, 51

TPAL+, 121

TPALC , 73

TPAL-closed set, 69

TPAL-closure, 69

transitive closure, 72

truth

ETL, 31

in DEL, 26

in EL, 19

in PAL, 21

TDEL, 81

types, 129

uniform no miracle, 42

validity, 53

valuation, 17

verification procedure, 157

verificationism, 148, 156

well-founded, 134

world, 17

