Preference (Modal) Logics

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$
Preference (Modal) Logics

Modal betterness model \(\mathcal{M} = \langle W, \succeq, V \rangle \)

Preference Modalities \(\langle \succeq \rangle \phi \): “there is a world at least as good (as the current world) satisfying \(\phi \)”

\[\mathcal{M}, w \models \langle \succeq \rangle \phi \text{ iff there is a } v \succeq w \text{ such that } \mathcal{M}, v \models \phi \]
Preference (Modal) Logics

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Preference Modalities $\langle \succeq \rangle \varphi$: "there is a world at least as good (as the current world) satisfying φ"

$\mathcal{M}, w \models \langle \succeq \rangle \varphi$ iff there is a $v \succeq w$ such that $\mathcal{M}, v \models \varphi$

$\mathcal{M}, w \models \langle \succ \rangle \varphi$ iff there is $v \succeq w$ and $w \not\succeq v$ such that $\mathcal{M}, v \models \varphi$
Preference Lifting, I

Given a preference ordering \preceq over a set of objects X, we want to **lift** this to an ordering $\preceq' \supseteq$ over $\mathcal{P}(X)$.

Given \preceq, what reasonable properties can we infer about \preceq'?

You know that $x \prec y \prec z$
Can you infer that $\{x, y\} \hat{\prec} \{z\}$?
Preference Lifting, II

- You know that \(x \prec y \prec z \)
 Can you infer that \(\{x, y\} \hat{\prec} \{z\} \)?

- You know that \(x \prec y \prec z \)
 Can you infer anything about \(\{y\} \) and \(\{x, z\} \)?
Preference Lifting, II

- You know that $x \prec y \prec z$
 Can you infer that $\{x, y\} \hat{\prec} \{z\}$?

- You know that $x \prec y \prec z$
 Can you infer anything about $\{y\}$ and $\{x, z\}$?

- You know that $w \prec x \prec y \prec z$
 Can you infer that $\{w, x, y\} \hat{\leq} \{w, y, z\}$?
You know that $x \prec y \prec z$
Can you infer that $\{x, y\} \hat{\prec} \{z\}$?

You know that $x \prec y \prec z$
Can you infer anything about $\{y\}$ and $\{x, z\}$?

You know that $w \prec x \prec y \prec z$
Can you infer that $\{w, x, y\} \hat{\preceq} \{w, y, z\}$?

You know that $w \prec x \prec y \prec z$
Can you infer that $\{w, x\} \hat{\prec} \{y, z\}$?
Preference Lifting, III

There are different interpretations of $X \lesssim Y$:

- You will get one of the elements, but cannot control which.
- You can choose one of the elements.
- You will get the full set.
Preference Lifting, IV

Kelly Principle

(EXT) $\{x\} \prec \supseteq \{y\}$ provided $x \prec y$

(MAX) $A \prec \text{Max}(A)$

(MIN) $\text{Min}(A) \prec A$

Preference Lifting, IV

Gärdenfors Principle

\[(G1) \quad A \hat{\succ} A \cup \{x\} \text{ if } a \prec x \text{ for all } a \in A\]
\[(G2) \quad A \cup \{x\} \hat{\succ} A \text{ if } x \prec a \text{ for all } a \in A\]

Preference Lifting, IV

Gärdenfors Principle

\[(G1) \quad A \hat{\prec} A \cup \{x\} \text{ if } a \prec x \text{ for all } a \in A\]
\[(G2) \quad A \cup \{x\} \hat{\prec} A \text{ if } x \prec a \text{ for all } a \in A\]

Independence

\[(\text{IND}) \quad A \cup \{x\} \preceq B \cup \{x\} \text{ if } A \preceq B \text{ and } x \notin A \cup B\]
Theorem (Kannai and Peleg). If $|X| \geq 6$, then no weak order satisfies both the Gärdenfors principle and independence.

From Worlds to Sets, I

\[M, w \models \varphi \leq \exists \psi \text{ iff there is } s, t \text{ such that } M, s \models \varphi \text{ and } M, t \models \psi \text{ and } s \preceq t \]
From Worlds to Sets, I

$\mathcal{M}, w \models \varphi \preceq \exists \exists \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \preceq t$

$\mathcal{M}, w \models \varphi \prec \exists \exists \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \prec t$
From Worlds to Sets, I

$\mathcal{M}, w \models \varphi \leq_{\exists \exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s \leq t$

$\mathcal{M}, w \models \varphi \prec_{\exists \exists} \psi$ iff there is s, t such that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \models \psi$ and $s < t$

$\mathcal{M}, w \models \varphi \leq_{\forall \exists} \psi$ iff for all s there is a t such that $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, t \models \psi$, and $s \leq t$
From Worlds to Sets, I

\[\mathcal{M}, w \models \varphi \preceq_{\exists} \psi \iff \text{there is } s, t \text{ such that } \mathcal{M}, s \models \varphi \text{ and } \mathcal{M}, t \models \psi \text{ and } s \preceq t \]

\[\mathcal{M}, w \models \varphi \prec_{\exists} \psi \iff \text{there is } s, t \text{ such that } \mathcal{M}, s \models \varphi \text{ and } \mathcal{M}, t \models \psi \text{ and } s \prec t \]

\[\mathcal{M}, w \models \varphi \preceq_{\forall} \psi \iff \text{for all } s \text{ there is a } t \text{ such that } \mathcal{M}, s \models \varphi \text{ implies } \mathcal{M}, t \models \psi, \text{ and } s \preceq t \]

\[\mathcal{M}, w \models \varphi \prec_{\forall} \psi \iff \text{for all } s \text{ there is a } t \text{ such that } \mathcal{M}, s \models \varphi \text{ implies } \mathcal{M}, t \models \psi, \text{ and } s \prec t \]
From Worlds to Sets, II

\[\varphi \leq E \exists \psi := E (\varphi \land \Box \preceq \psi) \]
From Worlds to Sets, II

\[\varphi \leq \exists \psi \; := \; E(\varphi \land \Box \leq \psi) \]

\[\varphi \prec \exists \psi \; := \; E(\varphi \land \Box \prec \psi) \]
\(\varphi \preceq \exists \psi \; := \; E(\varphi \land \Diamond \preceq \psi) \)

\(\varphi \prec \exists \psi \; := \; E(\varphi \land \Diamond \prec \psi) \)

\(\varphi \preceq \forall \exists \psi \; := \; A(\varphi \rightarrow \Diamond \preceq \psi) \)

\(\varphi \prec \forall \exists \psi \; := \; A(\varphi \rightarrow \Diamond \prec \psi) \)
From Worlds to Sets, II

\[\varphi \preceq \exists \exists \psi := E(\varphi \land \lozenge \preceq \psi) \]

\[\varphi \prec \exists \exists \psi := E(\varphi \land \lozenge \prec \psi) \]

\[\varphi \preceq \forall \exists \psi := A(\varphi \rightarrow \lozenge \preceq \psi) \]

\[\varphi \prec \forall \exists \psi := A(\varphi \rightarrow \lozenge \prec \psi) \]
\(\mathcal{M}, w \models \varphi \preceq\forall \psi \) iff for all \(s, t \), \(\mathcal{M}, s \models \varphi \) and \(\mathcal{M}, t \models \psi \) implies \(s \preceq t \)
From Worlds to Sets, III

\[\mathcal{M}, w \models \varphi \preceq \forall \forall \psi \text{ iff for all } s, \text{ for all } t, \mathcal{M}, s \models \varphi \text{ and } \mathcal{M}, t \models \psi \]
implies \(s \preceq t \)

\[\mathcal{M}, w \models \varphi \prec \forall \forall \psi \text{ iff for all } s, \text{ for all } t, \mathcal{M}, s \models \varphi \text{ and } \mathcal{M}, t \models \psi \]
implies \(s \prec t \)
From Worlds to Sets, IV

$$\varphi \preceq \forall \psi \; : = \; A(\psi \rightarrow \square \preceq \neg \varphi)$$
From Worlds to Sets, IV

\[\varphi \preceq \forall \psi := A(\psi \rightarrow \Box \preceq \neg \varphi) \]

\[\varphi \prec \forall \psi := A(\psi \rightarrow \Box \prec \neg \varphi) \]
From Worlds to Sets, IV

\[\varphi \leq \forall \psi := A(\psi \rightarrow \Box \preceq \neg \varphi) \]

\[\varphi \prec \forall \psi := A(\psi \rightarrow \Box \prec \neg \varphi) \]

We must assume the ordering \(\preceq \) is total
From Sets to Worlds

\[P_1 \gg P_2 \gg P_3 \gg \cdots \gg P_n \]

\(x > y \) iff \(x \) and \(y \) differ in at least one \(P_i \) and the first \(P_i \) where this happens is one with \(P_i x \) and \(\neg P_i y \)

Once a semantics and language are fixed, then standard questions can be asked: eg. develop a proof theory, completeness, decidability, model checking.
General Issues

How should we *compare* the different logical systems?

- Embedding one logic in another:

 - Coalition logic is a fragment of ATL ($\langle C \phi \rangle = \langle\langle C \rangle\rangle_{\tau} \phi$)
How should we compare the different logical systems?

- Embedding one logic in another: coalition logic is a fragment of ATL ($\text{tr}([C]\varphi) = \langle C \rangle \bigcirc \varphi$)
How should we compare the different logical systems?

- Embedding one logic in another: *coalition logic* is a fragment of ATL ($tr([C]\varphi) = \langle \langle C \rangle \rangle \bigcirc \varphi$)

- Compare different models for a fixed language:
General Issues

How should we \textit{compare} the different logical systems?

- Embedding one logic in another: \textit{coalition logic} is a fragment of ATL ($tr([C] \varphi) = \langle\langle C\rangle\rangle \circ \varphi$).

- Compare different models for a fixed language:
 - Alternating-Time Temporal Logics: Three different semantics for the ATL language.

How should we compare the different logical systems?

- Embedding one logic in another: coalition logic is a fragment of ATL \((tr([C]\varphi) = \langle\langle C\rangle\rangle \circ \varphi)\)

- Compare different models for a fixed language:
 - Alternating-Time Temporal Logics: Three different semantics for the ATL language.

- Comparing different frameworks:
General Issues

How should we compare the different logical systems?

▶ Embedding one logic in another: coalition logic is a fragment of ATL ($tr([C]\varphi) = \langle\langle C\rangle\rangle \bigcirc \varphi$)

▶ Compare different models for a fixed language:
 - Alternating-Time Temporal Logics: Three different semantics for the ATL language.

▶ Comparing different frameworks: eg. PDL vs. Temporal Logic, PDL vs. STIT, STIT vs. ATL, etc.
How should we *merge* the different logical systems?
How should we *merge* the different logical systems?

- Combining logics is hard!

How should we *merge* the different logical systems?

- Combining logics is hard! ▶ Explain

Theorem $\square \varphi \leftrightarrow \varphi$ is provable in combinations of Epistemic Logics and PDL with certain “cross axioms” ($\square[a]\varphi \leftrightarrow [a]\square \varphi$) (and full substitution).

Merging Logics of Rational Agency

- Entangling Knowledge/Beliefs and Preferences
- “Epistemizing” Logics of Action and Ability
- BDI (Belief + Desires + Intentions) Logics
Logics of Knowledge and Preference

\(K(\varphi \succeq \psi) \): “Ann knows that \(\varphi \) is at least as good as \(\psi \)”

\(K\varphi \succeq K\psi \): “knowing \(\varphi \) is at least as good as knowing \(\psi \)”
Logics of Knowledge and Preference

\[K(\varphi \succeq \psi) : \text{“Ann knows that } \varphi \text{ is at least as good as } \psi \text{”} \]

\[K\varphi \succeq K\psi : \text{“knowing } \varphi \text{ is at least as good as knowing } \psi \text{”} \]

\[\mathcal{M} = \langle W, \sim, \succeq, V \rangle \]
Logics of Knowledge and Preference

\(K(\varphi \succeq \psi): \text{“Ann knows that } \varphi \text{ is at least as good as } \psi\text{”}\)

\(K \varphi \succeq K \psi: \text{“knowing } \varphi \text{ is at least as good as knowing } \psi\text{”}\)

\(\mathcal{M} = \langle W, \sim, \succeq, V \rangle\)

J. van Eijck. Yet more modal logics of preference change and belief revision. manuscript, 2009.

$A(\psi \rightarrow \langle \preceq \rangle \varphi)$ vs. $K(\psi \rightarrow \langle \preceq \rangle \varphi)$
General Issues

\[A(\psi \to \langle \preceq \rangle \varphi) \quad \text{vs.} \quad K(\psi \to \langle \preceq \rangle \varphi) \]

Should preferences be restricted to information sets?
$A(\psi \rightarrow \langle \succeq \rangle \varphi) \text{ vs. } K(\psi \rightarrow \langle \succeq \rangle \varphi)$

Should preferences be restricted to information sets?

$\mathcal{M}, w \models \langle \succeq \cap \sim \rangle \varphi$ iff there is a v with $w \sim v$ and $w \preceq v$ such that $\mathcal{M}, v \models \varphi$

$K(\psi \rightarrow \langle \succeq \cap \sim \rangle \varphi)$
Merging Logics of Rational Agency

✓ Entangling Knowledge/Beliefs and Preferences

▶ “Epistemizing” Logics of Action and Ability

▶ BDI (Belief + Desires + Intentions) Logics
Knowing how to win

Consider the following game: Two cards, Ace and Joker, lie face down and the agent i must choose one. The Ace wins, the Joker loses.
Knowing how to win

Consider the following game: Two cards, Ace and Joker, lie face down and the agent i must choose one. The Ace wins, the Joker loses.

- Does the agent i have a strategy to win the game?
Knowing how to win

Consider the following game: Two cards, Ace and Joker, lie face down and the agent i must choose one. The Ace wins, the Joker loses.

▶ Does the agent i have a strategy to win the game?

▶ Does the agent i know that she has a strategy to win the game?
Knowing how to win

Consider the following game: Two cards, Ace and Joker, lie face down and the agent i must choose one. The Ace wins, the Joker loses.

▶ Does the agent i have a strategy to win the game?

▶ Does the agent i know that she has a strategy to win the game?

▶ Does the agent i know a strategy to win the game?