1. Consider the following relational structure (assume that there are no atomic propositions in the language):

For each of the follows sets of states, find a formula that is true at precisely those sets (note that since there are no atomic propositions, the formulas will be construction using \perp and \top): \emptyset , $\{w_1\}$, $\{w_2\}$, $\{w_3\}$, $\{w_4\}$, $\{w_1, w_2, w_3, w_4\}$.

Answer. We write $\llbracket \varphi \rrbracket_{\mathcal{M}}$ for the *truth set of* φ (the set of states in \mathcal{M} where φ is true). Formally, $\llbracket \varphi \rrbracket_{\mathcal{M}} = \{ w \mid \mathcal{M}, w \models \varphi \}$. Then,

$$\begin{split} \emptyset &= \llbracket \bot \rrbracket_{\mathcal{M}} \\ \{w_2\} &= \llbracket \Box \bot \rrbracket_{\mathcal{M}} \\ \{w_4\} &= \llbracket \diamond \top \land \Box \Box \bot \rrbracket_{\mathcal{M}} \\ \{w_4\} &= \llbracket \diamond \top \land \Box \Box \bot \rrbracket_{\mathcal{M}} \\ \{w_1\} &= \llbracket \diamond \top \land \Box (\Box \bot \lor \Box \Box \bot) \rrbracket_{\mathcal{M}} \\ \{w_3\} &= \llbracket \diamond \top \land \Box \diamond \Box \bot \rrbracket_{\mathcal{M}} \\ \{w_1, w_2, w_3, w_4\} &= \llbracket \top \rrbracket_{\mathcal{M}} \end{split}$$

2. We say a frame $\langle W, R \rangle$ is **secondary reflexive** if R has the property $\forall x \forall y (xRy \rightarrow yRy)$. Prove that for all frames $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models \Box(\Box \varphi \rightarrow \varphi)$ iff \mathcal{F} is secondary reflexive.

Proof. (\Leftarrow) Suppose that $\mathcal{F} = \langle W, R \rangle$ is secondary reflexive. Let $\mathcal{M} = \langle W, R, V \rangle$ be any model based on \mathcal{F} and $w \in W$ any state. We must show $\mathcal{M}, w \models \Box(\Box \varphi \to \varphi)$. Let $v \in W$ be any state with wRv. We must show $\mathcal{M}, v \models \Box \varphi \to \varphi$. Suppose that $\mathcal{M}, v \models \Box \varphi$. Then for all $x \in W$, if vRx then $\mathcal{M}, x \models \varphi$. Since R is secondary reflexive and wRv, we have vRv. Therefore, $\mathcal{M}, v \models \varphi$, as desired. So, $\mathcal{M}, v \models \Box \varphi \to \varphi$; and therefore, $\mathcal{M}, w \models \Box(\Box \varphi \to \varphi)$. Logic and AI

(\Rightarrow) Suppose that $\mathcal{F} = \langle W, R \rangle$ is not secondary reflexive. Then there are states $w, v \in W$ with wRv but it is not the case that vRv. Let $\mathcal{M} = \langle W, R, V \rangle$ be a models based on \mathcal{F} where $x \in V(p)$ for all $x \in W$ with $x \neq v$ (i.e., $V(p) = W - \{v\}$). Then $\mathcal{M}, v \not\models p$. Furthermore, if $y \in W$ and vRy then $y \neq v$, so by construction of \mathcal{M} , we have $y \in V(p)$ and so $\mathcal{M}, y \models p$. Therefore, $\mathcal{M}, v \models \Box p$ and $\mathcal{M}, v \not\models \Box p \rightarrow p$. Since wRv, $\mathcal{M}, w \not\models \Box(\Box p \rightarrow p)$ which implies, $\mathcal{F} \not\models \Box(\Box \varphi \rightarrow \varphi)$. QED

3. Which one of the following two implications is valid in multiagent **S5**? Draw a counterexample for the other:

$$L_1 K_2 \varphi \to L_2 L_1 \varphi$$
 $L_1 K_2 \varphi \to L_2 K_1 \varphi$

(recall that $L_i \varphi$ is defined to be $\neg K_i \neg \varphi$)

Answer. $L_1K_2\varphi \to L_2L_1\varphi$ is valid (in multi agent **S5** and equivalently over the class of epistemic structures (Kripke structures where each relation is an equivalence relation).

We give two proofs of this fact, one semantic and one proof-theoretic. The first is to show that there is a derivation of the above formula in multiagent $\mathbf{S5}$

Semantic Proof. We show that $L_1K_2\varphi \to L_2L_1\varphi$ is valid over the class of Kripke frames where the relations are equivalence relations (Let \mathfrak{F}^{rat} denote this class of frames). Let $\mathcal{F} = \langle W, \{\sim_i\}_{i \in \mathcal{A}} \rangle$ be any Kripke frame where each \sim_i is an equivalence relation. We will show that $\mathcal{F} \models L_1K_2\varphi \to L_2L_1\varphi$. Let $\mathcal{M} = \langle W, \{\sim_i\}_{i \in \mathcal{A}}, V \rangle$ be any model based on \mathcal{F} and $w \in W$. Suppose that $\mathcal{M}, w \models L_1K_2\varphi$. Then there is a $v \in W$ with $w \sim_1 v$ and $\mathcal{M}, v \models K_2\varphi$. This means that there is a $v \in W$ with $w \sim_1 v$ such that for all $x \in W$, if $v \sim_2 x$ then $\mathcal{M}, x \models \varphi$. Since \sim_2 is reflexive, we have $x \sim_2 x$ for each $x \in W$. Hence, since $v \sim_2 v$, we have $\mathcal{M}, v \models \varphi$. Putting everything together, we have $w \sim_2 w$ and $w \sim_2 v$ with $\mathcal{M}, v \models \varphi$. Hence, $\mathcal{M}, w \models L_2L_1\varphi$, as desired. Applying the completeness theorem for multi-agent S5, we conclude from the fact that $L_1K_2\varphi \to L_2L_1\varphi$ is valid on \mathfrak{F}^{rts} that there must be a derivation of $L_1K_2\varphi \to L_2L_1\varphi$.

Syntactic Proof. We give a derivation in multi agent S5 of $L_1K_2\varphi \rightarrow L_2L_1\varphi$. As a reminder, multi agent S5 contains the following axiom schemes and rules:

tautology	All propositional tautologies
К.	$K_1(\varphi \to \psi) \to (K_i \varphi \to K_i \psi)$
Т.	$K_i \varphi \to \varphi$
4.	$K_i \varphi \to K_i K_i \varphi$
5.	$\neg K_i \varphi \to K_i \neg K_i \varphi$
MP	from φ and $\varphi \to \psi$ infer ψ
Nec	from φ infer $K_i \varphi$

Page 2 of 4

Giving all the details can be tedious, so I first give the key steps in the derivation:

- 1. $L_1 \varphi \to L_2 L_1 \varphi$ Modal reasoning using axiom T
- 2. $K_2 \varphi \to \varphi$ Axiom T
- 3. $L_1 K_2 \varphi \to L_1 \varphi$ Modal reasoning
- 4. $L_1 K_2 \varphi \rightarrow L_2 L_1 \varphi$ Propositional reasoning using 1 and 3

The full details of the derivation are:

- 1. $K_2 \varphi \to \varphi$ 2. $(K_2\varphi \to \varphi) \to (\neg \varphi \to \neg K_2\varphi)$ 3. $\neg \varphi \rightarrow \neg K_2 \varphi$ MP 1, 2 4. $K_1(\neg \varphi \rightarrow \neg K_2 \varphi)$ Nec 3 $K_1(\neg \varphi \to \neg K_2 \varphi) \to (K_1 \neg \varphi \to K_1 \neg K_2 \varphi)$ 5. 6. $K_1 \neg \varphi \rightarrow K_1 \neg K_2 \varphi$ MP 4, 5 7. $(K_1 \neg \varphi \rightarrow K_1 \neg K_2 \varphi) \rightarrow (\neg K_1 \neg K_2 \varphi \rightarrow \neg K_1 \neg \varphi)$ 8. $\neg K_1 \neg K_2 \varphi \rightarrow \neg K_1 \neg \varphi$ MP 6, 7 9. $L_1 K_2 \varphi \rightarrow L_1 \varphi$ 10. $K_2 \neg L_1 \varphi \rightarrow \neg L_1 \varphi$ 11. $(K_2 \neg L_1 \varphi \rightarrow \neg L_1 \varphi) \rightarrow (\neg \neg L_1 \varphi \rightarrow \neg K_2 \neg L_1 \varphi)$ 12. $\neg \neg L_1 \varphi \rightarrow \neg K_2 \neg L_1 \varphi$ 13. $L_1 \varphi \rightarrow \neg \neg L_1 \varphi$ 14. $((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)$ 15. $(a \rightarrow (b \rightarrow (a \land b)))$ 16. $(\neg \neg L_1 \varphi \rightarrow \neg K_2 \neg L_1 \varphi) \rightarrow ((L_1 \rightarrow \neg \neg L_1 \varphi))$ $\wedge (\neg \neg L_1 \varphi \to \neg K_2 \neg L_1 \varphi))$ 17. $(L_1 \to \neg \neg L_1 \varphi) \land (\neg \neg L_1 \varphi \to \neg K_2 \neg L_1 \varphi)$ 18. $L_1 \varphi \rightarrow \neg K_2 \neg L_1 \varphi$ 19. $L_1 \varphi \to L_2 L_1 \varphi$ 20. $((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)$ 21. $(a \rightarrow (b \rightarrow (a \land b)))$ $b := L_1 \varphi \to L_2 L_1 \varphi$ 22. $(L_1\varphi \to L_2L_1\varphi) \to ((L_1K_2\varphi \to L_1\varphi))$ $\wedge (L_1 \varphi \to L_2 L_1 \varphi))$ 23. $(L_1 K_2 \varphi \to L_1 \varphi) \land (L_1 \varphi \to L_2 L_1 \varphi)$
- 24. $L_1 K_2 \varphi \rightarrow L_2 L_1 \varphi$

Instance of Ttautology Axiom K tautology Definition of L_1 Axiom K tautology MP 10, 11 tautology tautology with $a := L_1 \varphi$, $b := \neg \neg L_1 \varphi, c := \neg K_2 \neg L_1 \varphi$ tautology with $a := L_1 \varphi \rightarrow \neg \neg L_1 \varphi$ $b := \neg \neg L_1 \varphi \to \neg K_2 \neg L_1 \varphi$ MP13, 15 MP12, 16 MP14, 17 Definition of L_2 tautology with $a := L_1 K_2 \varphi$ $b := L_1 \varphi, c := L_2 L_1 \varphi$ tautology with $a := L_1 K_2 \varphi \to L_1 \varphi$

MP 21, 9 MP 22, 19 MP 20, 23

Logic and AI

Answer. $L_1K_2\varphi \to L_2K_1\varphi$ is not valid.

Proof. To show that the above formula is not valid, it is enough to show that there is a counter-model for the following instance: $L_1K_2p \to L_2K_1p$ where p is an atomic proposition. Consider the following two world model $\mathcal{M} = \langle W, \sim_1, \sim_2, V \rangle$ with $W = \{w, v\}, \sim_1 = \{(w, w), (w, v), (v, w), (v, v)\}, \sim_2 = \{(w, w), (v, v)\}$ and $V(p) = \{v\}$. The model is pictured below:

Then $\mathcal{M}, w \models L_1 K_2 p \land \neg L_2 K_1 p$, as desired.

4. Read the article by Joe Halpern *Should Knowledge Entail Belief?*, Journal of Philosophical Logic (there is a link on the website). Write a short explanation in your own words summarizing Halpern's main point. (That is, explain in 1-2 paragraphs what is Halpern's main message in this article).