1. In this problem we consider a possible definition of common belief, analogous to the definition of common knowledge. Suppose there are two agents and a belief model $\left\langle W,\left\{R_{1}, R_{2}\right\}, V\right\rangle$ where R_{1} and R_{2} are serial, transitive and Euclidean relations. Let $R_{B}=\left(R_{1} \cup R_{2}\right)^{+}$, where R^{+}is the transitive closure of R (the smallest transitive relation containing R). Define the common belief operator C^{B} as follows:

$$
\mathcal{M}, w \models C^{B} \varphi \text { iff for each } v \in W, \text { if } w R_{B} v \text { then } \mathcal{M}, v \models \varphi
$$

(a) Provide a KD45 model $\mathcal{M}=\left\langle W,\left\{R_{1}, R_{2}\right\}, V\right\rangle$ and a state $w \in W$ where $\mathcal{M}, w \models B_{1}\left(C^{B} p\right)$ but $\mathcal{M}, w \models \neg C^{B} p$ (i.e., a state where agent 1 believes that p is commonly believed, but p is, in fact, not commonly believed).
(b) Provide an example that shows that negative introspection for common belief $\left(\neg C^{B} \varphi \rightarrow C^{B} \neg C^{B} \varphi\right)$ is not valid

Answer. The same model works for both 1. and 2. Let $W=\{w, v, x\}$ and $R_{1}=$ $\{(w, v),(v, v),(x, x)\}$ and $R_{2}=\{(w, x),(x, x),(v, v)\}$ and $V(p)=\{w\}$. This model can be pictured as follows:

Then, $\left(R_{1} \cup R_{2}\right)^{+}=\{(w, v),(v, v),(w, x),(x, x)\}$. This means we have the following:
(a) $\mathcal{M}, v \models C^{B} p$ and so $\mathcal{M}, w \models B_{1} C^{B} p$
(b) $\mathcal{M}, w \models \neg B_{2} p$ and so $\mathcal{M}, w \models \neg C^{B} p$
(c) Since $\mathcal{M}, v \models C^{B} p$ and $(w, v) \in\left(R_{1} \cup R_{2}\right)^{+}$, we have $\mathcal{M}, w \models \neg C^{B} \neg C^{B} p$.
2. We have argued that $K_{i} \varphi \rightarrow K_{j} \varphi$ is valid on a frame $\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ iff for each $i, j \in \mathcal{A}$, $R_{j} \subseteq R_{i}$. Find a property on frames $\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ that guarantees that $K_{i} \varphi \rightarrow K_{i} K_{j} \varphi$ is valid.

Answer. The required property is a generalization of transitivity:
(ij-Transitive) For all $w, v, x \in W$, if $w R_{i} v$ and $v R_{j} x$ then $w R_{i} x$.

Suppose that \mathcal{F} is a frame with relations R_{i} and R_{j}.
Claim $1 K_{i} \varphi \rightarrow K_{i} K_{j} \varphi$ is valid on \mathcal{F} iff \mathcal{F} satisfies $i j$-Transitivity.
Proof. (\Leftarrow) Suppose that $\mathcal{F}=\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ is a frame with the $i j$-transitivity property. Let $\mathcal{M}=\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$ be any model based on \mathcal{F}. Suppose that $w \in W$. We will show $\mathcal{M}, w \models K_{i} \varphi \rightarrow K_{i} K_{j} \varphi$. Suppose that $\mathcal{M}, w \models K_{i} \varphi$, then for each $v \in W$, if $w R_{i} v$ then $\mathcal{M}, v \models \varphi$. Suppose that $y, x \in W$ with $w R_{i} y$ and $y R_{j} x$. We must show $\mathcal{M}, x \models \varphi$. Since $w R_{i} y$ and $w R_{j} x$, by $i j$-transitivity we have $w R_{i} x$, which implies $\mathcal{M}, x \models \varphi$. Since x and y are arbitrary, we have $\mathcal{M}, w \models K_{i} K_{j} \varphi$ and so $\mathcal{M}, w \models K_{i} \varphi \rightarrow K_{i} K_{j} \varphi$, as desired.
(\Rightarrow) Suppose that a frame $\mathcal{F}=\left\langle W,\left\{R_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ is not $i j$-transitive. Then there are $w, x, y \in W$ with $w R_{i} x$ and $x R_{j} y$ but it is not the case that $w R_{i} y$. Let p be a proposition with $V(p)=W-\{y\}$. Then $\mathcal{M}, w \models K_{i} p$, since $\left\{v \mid w R_{i} v\right\} \subseteq V(p)$, but we have $\mathcal{M}, x \not \vDash K_{j} p$ and so $\mathcal{M}, w \not \vDash K_{i} K_{j} p$.

QED
3. For a Bayesian model with a common prior $\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}}, \pi\right\rangle$, prove that for each $i \in \mathcal{A}$, $\pi\left(E \mid B_{i}^{p}(E)\right) \geq p$.

Proof. Recall the following two facts:
(a) For each $w \in B_{i}^{p}(E), \pi\left(E \mid[w]_{i}\right)=\frac{\pi\left(E \cap[w]_{i}\right)}{\pi\left([w]_{i}\right)} \geq p$, which implies for each $w \in$ $B_{i}^{p}(E), \pi\left(E \cap[w]_{i}\right) \geq p \pi\left([w]_{i}\right) ;$ and
(b) $B_{i}^{p}(E)=\bigcup_{w \in B_{i}^{p}(E)}[w]_{i}$.

Then,

$$
\begin{aligned}
\pi\left(E \mid B_{i}^{p}(E)\right)= & \frac{\pi\left(E \cap B_{i}^{p}(E)\right)}{\pi\left(B_{i}^{p}(E)\right)}=\frac{\pi\left(\bigcup_{w \in B_{i}^{p}(E)}\left(E \cap[w]_{i}\right)\right)}{\pi\left(\bigcup_{w \in B_{i}^{p}(E)}\left([w]_{i}\right)\right)}=\frac{\sum_{w \in B_{i}^{p}(E)} \pi\left(E \cap[w]_{i}\right)}{\sum_{w \in B_{i}^{p}(E)} \pi\left([w]_{i}\right)} \\
& \geq \frac{\sum_{w \in B_{i}^{p}(E)} p \pi\left([w]_{i}\right)}{\sum_{w \in B_{i}^{p}(E)} \pi\left([w]_{i}\right)}=\frac{p \cdot \sum_{w \in B_{i}^{p}(E)} \pi\left([w]_{i}\right)}{\sum_{w \in B_{i}^{p}(E)} \pi\left([w]_{i}\right)}=p
\end{aligned}
$$

QED
4. Explain why Aumann's original agreeing to disagree theorem (Theorem 7 in the handout for lecture 8) follows from Samet's generalized agreeing to disagree theorem (Theorem 4 in the handout for lecture 8). Hint: fix an event $E \subseteq W$ and for each agent i, let the decision function \mathbf{d}_{i} be defined as follows: $\mathbf{d}_{i}(w)=\pi\left(E \mid[w]_{i}\right)$ (the posterior probability of E for agent i at state w). Prove that \mathbf{d} satisfies the ISTP.

Answer. Let $\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}}, \pi\right\rangle$ be a Bayesian model. We must show that for any event $E \subseteq W$ and any set $\left\{r_{1}, \ldots, r_{n}\right\}$ of real numbers that are not identical, $C\left(\bigcap_{i \in \mathcal{A}} E_{i, r_{i}}\right)=$ \emptyset. Fix an event E and define a decision function $\mathbf{d}_{i}: W \rightarrow[0,1]$ as follows $\mathbf{d}_{i}(w)=$ $\pi\left(E \mid[w]_{i}\right)$.

Claim 2 The above decision function \mathbf{d} has the ISTP in $\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}}\right.$:

$$
(I S T P) \quad i, j \in \mathcal{A}, K_{j}\left([i \succeq j] \cap\left[d_{i}=r\right]\right) \subseteq\left[d_{j}=r\right]
$$

Proof. First, note the following two facts:
(a) For any $w \in W, w \in K_{j}([i \succeq j])$ iff $[w]_{j}=\bigcup_{v \in[w]_{j}}[v]_{i}$.

First of all, recall that $w \in[i \succeq j]$ iff $[w]_{i} \subseteq[w]_{j}$. Suppose that $w \in K_{j}([i \succeq j])$. Then, we have $[w]_{j} \subseteq[i \succeq j]$. This means that for all $v \in[w]_{j}, v \in[i \succeq j]$ which implies for all $v \in[w]_{j},[v]_{i} \subseteq[v]_{j}=[w]_{j}$.

Suppose that $[w]_{j}=\bigcup_{v \in[w]_{j}}[v]_{i}$. We must show that $[w]_{j} \subseteq[i \succeq j]$. Suppose that $x \in[w]_{j}$. Then $x \in[v]_{i}$ for some $v \in[w]_{j}$. Let $E \subseteq W$ be any event and suppose that $x \in K_{j}(E)$. Then $[x]_{j} \subseteq E$. Then $[x]_{i}=[v]_{i} \subseteq[w]_{j}=[x]_{j} \subseteq E$. Hence $v \in K_{i}(E)$ and so $[w]_{j} \subseteq[i \succeq j]$, as desired.
(b) $w \in K_{j}\left(\left[d_{i}=r\right]\right)$ implies that for all $v \in[w]_{j}, v \in\left[d_{i}=r\right]$. So for all $v \in[w]_{j}$, $d_{i}(v)=\pi\left(E \mid[v]_{i}\right)=\frac{\pi\left(E \cap[v]_{i}\right)}{\pi\left([v]_{i}\right)}=r$. So for all $v \in[w]_{j}, \pi\left(E \cap[v]_{i}\right)=r \pi\left([v]_{i}\right)$.

Suppose that $w \in K_{j}\left([i \succeq j] \cap\left[d_{i}=r\right]\right)$. Then,

$$
\begin{aligned}
& \mathbf{d}_{j}(w)=\pi\left(E \mid[w]_{j}\right)=\frac{\pi\left(E \cap[w]_{j}\right)}{\pi\left([w]_{j}\right)}=\frac{\pi\left(\bigcup_{v \in[w]_{j}}\left(E \cap[v]_{i}\right)\right)}{\pi\left(\bigcup_{v \in[w]_{j}}\left([v]_{i}\right)\right)}=\frac{\sum_{v \in[w]_{j}} \pi\left(E \cap[v]_{i}\right)}{\sum_{v \in[w]_{j}} \pi\left([v]_{i}\right)} \\
&=\frac{\sum_{v \in[w]_{j}} r \pi\left([v]_{i}\right)}{\sum_{v \in[w]_{j}} \pi\left([v]_{i}\right)}=\frac{r \cdot \sum_{v \in[w]_{j}} \pi\left([v]_{i}\right)}{\sum_{v \in[w]_{j}} \pi\left([v]_{i}\right)}=r
\end{aligned}
$$

And so, $w \in\left[\mathbf{d}_{j}=r\right]$, as desired. Finally, it is clear that if \sim_{n+1} is an epistemic dummy and $\mathbf{d}_{n+1}: W \rightarrow[0,1]$ defined by $\mathbf{d}_{n+1}(w)=\pi\left(E \mid[w]_{n+1}\right)$, then $\mathbf{d}^{\prime}=\left(\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{n}, \mathbf{d}_{n+1}\right)$ has the ISTP in $\left\langle W,\left\{\sim_{i}\right\}_{i \in \mathcal{A}} \cup\left\{\sim_{n+1}\right\}\right\rangle$ (the above argument works even if there is an epistemic dummy among the agents).

QED

