
Logic and AI Fall 2011

Problem Set # 3 (Midterm Questions: Answers)

1. Recall the muddy children puzzle discussed in Lecture 1: A Primer on Epistemic
Logic (see slides 10 - 11). In the puzzle, after the father’s announcement, the children’s
announcements are simultaneous. What happens if the children speak in turn? That
is, suppose there are three children two of which have mud on their forehead (suppose
it is the 2nd and 3rd child that have mud on their forehead), and the children speak
in order (child 1 speaks first, then child 2, and finally child 3).

Answer. The successive updates after the father’s and first two children’s announcements
are drawn below (the explanation of this diagram is provided in the slides for Lecture 1):
(Child 1’s relation is the solid red line, Child 2’s relation is the dotted blue line and Child
3’s relation is the densely dashed green line)
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In the last model, child three can truthfully announce that she knows that her forehead is
muddy; however, this announcement does not change the model (no states are removed).
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No subsequent truthful announcement (child 1 says “I don’t know whether my forehead is
muddy”, child 2 says “I don’t know whether my forehead is muddy” and child 3 says “my
forehead is muddy”).

Does your answer change if it is child 1 and child 2 with mud on their forehead (but the
speaking order remains the same)? The successive updates are pictured below:
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BRIEF ARTICLE 3
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After child 3 says “I don’t know whether I am muddy”

It is easy to see that no subsequent announcement (child one and two say “I know my
forehead is muddy” and child three can say “I don’t know whether my forehead is muddy”)
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by any of the children can change this model.

2. Three men are standing on a ladder, each wearing a hat. Each can see the colors of
the hats of the people below him, but not his own or those higher up. It is common
knowledge that only the colors red and white occur, and that there are more white
hats than red ones. The actual order is white, red, white from top to bottom. Draw
the epistemic model. The top person says: I know the color of my hat. Is that true?
Draw the update. Who else knows his color now? If that person announces that he
knows his color, what does the bottom person learn?

Answer. The top agent does, indeed, know the color of his hat. After announcing his
hat, the second agent knows the color of his hat. The successive updates are given below.
Assume that agent 1 (whose information cell is colored black) is at the top of the ladder,
agent 2 (whose information cell is colored blue) is the second on the ladder, and agent 3
(whose information cell is colored green) is the bottom of the ladder. Each node depicts the
color of the at (with agent 1 on the left, agent 2 in the middle and agent 3 on the right).
The successive updates are pictured below (with agent 1’s information cell the solid black
line, agent 2’s information cell is the densely dashed blue line and agent 3’s information cell
is the dotted red line):
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It is not hard to see that no subsequent truthful announcements will change this last model.

3. Recall that an epistemic-plausibility model is a tuple

M = 〈W, {∼i}i∈A, {�i}i∈A, V 〉
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where W is a non-empty set of states, for each i ∈ A, ∼i is an equivalence relation on
W , for each i ∈ A, �i is reflexive, transitive, and well-founded (every nonempty subset
X ⊆ W has a �-minimal element), and V : At → ℘(W ) is a valuation function. In
addition, the following two properties are satisfied:

(a) plausibility implies possibility: if w �i v then w ∼i v.

(b) locally-connected: if w ∼i v then either w �i v or v �i w.

Let LKB be the modal language defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kiϕ | Bϕψ | [�i]ϕ | Bsϕ

with p ∈ At. Recall that Min�i
(X) = {v ∈ X | v �i w for all w ∈ X } (which is

always non-empty since �i is well-founded). Truth for the modal operators is defined
as follows:

• M, w |= Kiϕ iff for all v ∈ W , if w ∼i v then M, v |= ϕ

• M, w |= Bϕ
i ψ iff for all v ∈Min�i

([[ϕ]]M ∩ [w]i), M, v |= ψ

• M, w |= [�i]ϕ iff for all v ∈ W , if v �i w then M, v |= ϕ

• M, w |= Bsϕ iff [[ϕ]]M ∩ [w]i 6= ∅ and [[ϕ]]M �i [[¬ϕ]]M

where [[ϕ]]M = {w | M, w |= ϕ}.

(a) Prove that the following two formulas are valid on every epistemic-plausibility
model (recall that Liϕ is defined to be ¬Ki¬ϕ and Biϕ is B>ϕ):

• Bϕ
i ψ ↔ Liϕ→ Li(ϕ ∧ [�i](ϕ→ ψ))

• 1 Bs
iϕ ↔ Biϕ ∧Ki(ϕ→ [�i]ϕ) ∧ ¬Ki¬ϕ

Claim 1 Bϕ
i ψ ↔ Liϕ → Li(ϕ ∧ [�i](ϕ → ψ)) is valid on the class of all epistemic-

plausibility models.

Proof. Suppose that M, w |= Bϕ
i ψ. Then, Min�i

([[ϕ]]M ∩ [w]i) ⊆ [[ψ]]M. We must
show M, w |= Liϕ→ Li(ϕ ∧ [�i](ϕ→ ψ)). Suppose that M, w |= Liϕ then there is a
v ∈ W such that w ∼i v and M, v |= ϕ. This implies [[ϕ]]M ∩ [w]i 6= ∅, and since, �i
is well-founded, we have Min�i

([[ϕ]]M ∩ [w]i) 6= ∅. Suppose that v′ ∈ Min�i
([[ϕ]]M ∩

[w]i) ⊆ [[ϕ]]M∩[w]i. Then, v′ ∈ [[ϕ]]M∩[w]i. We will show thatM, v′ |= ϕ∧[�i](ϕ→ ψ).
It is clear thatM, v′ |= ϕ (since v′ ∈ [[ϕ]]M). For the second conjunct, let v′′ ∈ W be a
state such that v′′ �i v′, and suppose thatM, v′′ |= ϕ. Then, since plausibility implies
possibility (�i⊆∼i), we have v′′ ∼i v′, and, since v′ ∈ [w]i, we have v′′ ∈ [w]i. This
means that v′′ ∈ [[ϕ]]M ∩ [w]i. Since, v′ is a �i-minimal element of [[ϕ]]M ∩ [w]i and

1Note that the first conjunct (Biϕ) is not actually needed here. (See if you can explain why?)
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v′′ �i v′, we have v′′ ∈Min≺i
([[ϕ]]M∩[w]i) (i.e., v′′ must also be a�i-minimal element of

[[ϕ]]M∩ [w]i). By the first assumption, Min�i
([[ϕ]]M∩ [w]i) ⊆ [[ψ]]M, and so v′′ ∈ [[ψ]]M.

Hence, M, v′′ |= ψ. Thus, M, v′′ |= ϕ → ψ, and since v′′ was arbitrary, we have
M, v′ |= [�i](ϕ→ ψ). Putting everything together, we haveM, v′ |= ϕ∧ [�i](ϕ→ ψ),
and so, M, w |= Liϕ→ Li(ϕ ∧ [�i](ϕ→ ψ)).

Suppose that M, w |= Liϕ → Li(ϕ ∧ [�i](ϕ → ψ)). Then (1) there is a v such
that w ∼i v and M, v |= ϕ, and (2) there is a v′ such that w ∼i v′ and we have
M, v′ |= ϕ ∧ [�i](ϕ → ψ). First of all, note that by (1), [[ϕ]]M ∩ [w]i is non-empty,
and so Min�i

([[ϕ]]M ∩ [w]i) is also non-empty (since �i is well-founded). We must
show that Min�i

([[ϕ]]M ∩ [w]i) ⊆ [[ψ]]M. Suppose that v′′ ∈Min�i
([[ϕ]]M ∩ [w]i). Then

v′′ ∈ [[ϕ]]M ∩ [w]i and v′′ �i x for each x ∈ [[ϕ]]M ∩ [w]i. By (2), we have v′ ∈ [w]i and
M, v′ |= ϕ ∧ [�i](ϕ → ψ). Hence v′ ∈ [[ϕ]]M ∩ [w]i, and so v′′ �i v′. Since (by (2)),
M, v′ |= [�i](ϕ→ ψ), we haveM, v′′ |= ϕ→ ψ. Then, since v′′ ∈ [[ϕ]]M∩ [w]i, we have
v′′ |= ϕ, and hence, M, v′′ |= ψ, as desired. Therefore, Min�i

([[ϕ]]M ∩ [w]i) ⊆ [[ψ]]M
and so M, w |= Bϕ

i ψ. qed

Claim 2 Bs
iϕ ↔ Biϕ ∧Ki(ϕ→ [�i]ϕ)∧¬Ki¬ϕ is valid on the class of all epistemic-

plausibility models.

Proof. Suppose that M, w |= Bs
iϕ. Then [[ϕ]]M ∩ [w]i 6= ∅ and [[ϕ]]M ∩ [w]i �i

[[¬ϕ]]M∩ [w]i. The first conjunct implies thatM, w |= ¬K¬ϕ. We must showM, w |=
Biϕ ∧ Ki(ϕ → [�i]ϕ). Recall that [[ϕ]]M ∩ [w]i �i [[¬ϕ]]M ∩ [w]i provided for all
x ∈ [[ϕ]]M ∩ [w]i, for all y ∈ [[¬ϕ]]M ∩ [w]i, x �i y. This implies Min�i

([w]i) ⊆ [[ϕ]]M
(otherwise there is a x ∈ Min�i

such that x 6∈ [[ϕ]]M. But then we can find a y ∈
[[ϕ]]M ∩ [w]i such x �i y with x ∈ [[¬ϕ]]M ∩ [w]i, which contradicts the assumption
that [[ϕ]]M ∩ [w]i �i [[¬ϕ]]M ∩ [w]i). So, M, w |= Biϕ. For the second conjunct, let
y ∈ [w]i and suppose thatM, y |= ϕ. Hence, y ∈ [[ϕ]]M ∩ [w]i. Let v ∈ W be any state
such that v �i w. By the definition of an epistemic-plausibility model (assumption
(a) above), this implies v ∈ [w]i. If M, v |= ¬ϕ, then this contradicts the assumption
that [[ϕ]]M ∩ [w]i �i [[¬ϕ]]M ∩ [w]i (this follows since we have y ∈ [[ϕ]]M ∩ [w]i, v �i y
and v[[¬ϕ]]M∩ ∈ [w]i). Hence, M, v |= ϕ, which means M, y |= [�i]ϕ. This, in turn,
means that M, y |= ϕ→ [�i]ϕ and M, w |= Ki(ϕ→ [�i]ϕ), as desired.

For the converse, suppose thatM, w |= Biϕ∧Ki(ϕ→ [�i]ϕ)∧¬Ki¬ϕ. SinceM, w |=
¬Ki¬ϕ, we have [[ϕ]]M ∩ [w]i 6= ∅. We must show that [[ϕ]]M ∩ [w]i �i [[¬ϕ]]M ∩ [w]i
Suppose that x ∈ [[ϕ]]M ∩ [w]i and y ∈ [[¬ϕ]]M ∩ [w]i. Since, �i is locally-connected
(item (b) in the above definition), either x �i y or y �i x. We will show that y 6�i x.
Suppose towards a contradiction that y �i x. Since, M, w |= Ki(ϕ → [�i]ϕ) and
x ∈ [w]i, we haveM, x |= ϕ→ [�i]ϕ. In addition,M, x |= ϕ, soM, x |= [�i]ϕ. Since,
y �i x, this meansM, y |= ϕ, which contradicts the assumption that y ∈ [[¬ϕ]]M. qed
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(b) Let M be an epistemic-plausibility model and define Kw = {ϕ | M, w |= Bϕ}.
Define a revision operator ∗ as follows: Kw ∗ψ = {ϕ | M, w |= Bψϕ}. Prove that
∗ satisfies the AGM postulates.

Answer. We first need some notation. Let L0 be the sublanguage consisting of only
propositional formulas (the formulas do not contain any belief/knowledge modalities).
Note that the previous definitions assume that the ψ and elements of Kw are restricted
to the propositional language L0.

Given a set of sentences X ⊆ L0 and an epistemic-plausibility model M, we are
interested in the local consequences of X at a state w in model M. This is defined as
follows: suppose that [[X]]M,w =

⋂
α∈X [[α]]M ∩ [w], then define

CnM,w(X) = {α | [[X]]M,w ⊆ [[α]]M,w}

To see the need for this local definition, suppose that W = {w1, w2, w3} with w1 ∼ w2

(so [w1] = [w2] = {w1, w2}, but w3 is not in this equivalence cell). Suppose that
V (p) = {w1, w3} and V (q) = {w1}. Now if w1 and w2 are equally plausible, we have
M, w1 |= Bpq, which implies q ∈ Kw1 ∗ p. According to AGM, this means that q is a
“consequence” of p. However, some care must be taken concerning what “consequence”
means in this setting. Obviously, p → q is not a tautology (as p and q are different
atomic propositions), furthermore we do not even have [[p→ q]]M = W (i.e., p→ q is
valid on the model). We only have a much weaker fact: the agent knows that p → q
is true (i.e., it is true throughout the agents information cell at w1). Note that this
situation can also be modeled in the “standard” AGM setting: the agent is assumed
to have an underlying theory which she takes as knowledge (in the previous example,
the agent assumes that p↔ q is a theorem).

Note that we make use of two similar notations: [[ϕ]]M = {w | M, w |= ϕ} and
[[ϕ]]M,w = [[ϕ]]M ∩ [w].

Fact 1. The following basic facts will be used in the proof below.

(a) [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M, and so [[ϕ ∧ ψ]]M,w = [[ϕ]]M,w ∩ [[ψ]]M,w

Proof. Immediate from the definitions: [[ϕ ∧ ψ]]M = {w | M, w |= ϕ ∧ ψ} =
{w | M, w |= ϕ and M, w |= ψ} = {w | M, w |= ϕ} ∩ {w | M, w |= ψ} =
[[ϕ]]M ∩ [[ψ]]M. qed

(b) Let X be a set of formulas and ϕ a formula, then [[X∪{ϕ}]]M,w = [[X]]M,w∩[[ϕ]]M,w

Proof. Immediate from the definitions:

[[X ∪ {ϕ}]]M,w =
⋂

β∈X∪{ϕ}

[[β]]M,w =
⋂
β∈X

[[β]]M,w ∩ [[ϕ]]M,w = [[X]]M,w ∩ [[ϕ]]M,w.

qed
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(c) Min�([w] ∩ [[ϕ]]M) ⊆ [[Kw ∗ ϕ]]M,w (Min�([w]) ⊆ [[Kw]]M,w by letting ϕ be >).

Proof. LetM be an epistemic-plausibility model and w a state inM. Since for
each β ∈ Kw ∗ϕ,M, w |= Bϕβ, we have for each β ∈ Kw ∗ϕ, Min�([w]∩ [[ϕ]]M) ⊆
[[β]]M. Since for all w, Min�([w] ∩ [[ϕ]]M) ⊆ [w], we also have for all β ∈ Kw ∗ ϕ,
Min�([w] ∩ [[ϕ]]M) ⊆ [[β]]M ∩ [w] = [[β]]M,w. Hence,

Min([w] ∩ [[ϕ]]M) ⊆
⋂

β∈Kw∗ϕ

[[β]]M,w = [[Kw ∗ ϕ]]M,w

qed

(d) If Min�([w] ∩ [[ϕ]]M) ⊆ [[α]]M, then [[Kw ∗ ϕ]]M,w ⊆ [[α]]M,w

Proof. Suppose that Min�([w] ∩ [[ϕ]]M) ⊆ [[α]]M. Then, M, w |= Bϕα. Hence,
α ∈ Kw ∗ ϕ. This implies [[Kw ∗ ϕ]]M,w ⊆ [[α]]M,w (since α is one of the conjuncts
in [[Kw ∗ ϕ]]M,w.

qed

(e) If Min�([w] ∩ [[ϕ]]M) ∩ [[ψ]]M ⊆ [[α]]M then [[Kw ∗ ϕ]]M,w ∩ [[ψ]]M ⊆ [[α]]M

Proof. We first note that X ∩ [[α]]M ⊆ [[β]]M iff X ⊆ [[α → β]]M. Recall
that w ∈ [[α → β]]M provided, if w ∈ [[α]]M then w ∈ [[β]]M. Suppose that
X ∩ [[α]]M ⊆ [[β]]M and w ∈ X. If w ∈ [[α]]M, then by assumption w ∈ X ∩ [[α]]M,
and so, w ∈ [[β]]M. Suppose that X ⊆ [[α → β]]M. Suppose that w ∈ X ∩ [[α]]M.
Then, we have w ∈ [[β]]M.

Now suppose that Min�([w]∩ [[ϕ]]M)∩ [[ψ]]M ⊆ [[α]]M. Then, Min�([w]∩ [[ϕ]]M) ⊆
[[ψ → α]]M. Then by (d), we have [[K∗ϕ]]M,w ⊆ [[ψ → α]]M,w ⊆ [[ψ → α]]M. Hence,
[[K ∗ ϕ]]M,w ∩ [[ψ]]M ⊆ [[α]]M. qed

(f) For sets X ⊆ W and Y ⊆ W , Min�(X) ∩ Y ⊆Min�(X ∩ Y )

Proof. If Min�(X)∩ Y = ∅ then we are done. Suppose that v ∈Min�(X)∩ Y .
Then v ∈ X ∩ Y . Let y ∈ X ∩ Y , then y ∈ X and since v ∈ Min�(X), v � y.
Hence, v ∈Min�(X ∩ Y ) and so Min�(X) ∩ Y ⊆Min�(X ∩ Y ). qed

(g) For sets X ⊆ W and Y ⊆ W , if Min(X) ∩ Y 6= ∅, then Min�(X ∩ Y ) =
Min�(X) ∩ Y .

Proof. Suppose that Min(X) ∩ Y 6= ∅. Then, there is a x ∈ Min(X) ∩ Y . By
(1) we have Min�(X) ∩ Y ⊆ Min�(X ∩ Y ). We must show Min�(X ∩ Y ) ⊆
Min�(X) ∩ Y . Suppose that w ∈ Min�(X ∩ Y ). Then w ∈ X ∩ Y and w � y
for each y ∈ X ∩ Y . Then w ∈ Y . To see that w ∈ Min(X), note that x � z
for each z ∈ X and x ∈ Y . Since w ∈ Min�(X ∩ Y ) and x ∈ X ∩ Y , we have
w � x. This implies w � z for each z ∈ X. Putting everything together, we have
Min�(X ∩ Y ) ⊆Min�(X) ∩ Y . qed
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Proof. LetM be an epistemic-plausibility model and define Kw = {ϕ | M, w |= Bϕ},
and suppose that the revision operator ∗ is defined as follows: Kw ∗ ψ = {ϕ | M, w |=
Bψϕ}. We show that ∗ satisfies the 8 AGM postulates:

AGM 1: Kw ∗ ψ is deductively closed: Suppose that α→ β ∈ Kw ∗ ψ and α ∈ Kw ∗ ψ.
Then,M, w |= Bψ(α→ β) andM, w |= Bψα. This means that for all v ∈Min�([w]∩
[[ψ]]M),M, v |= α→ β andM, v |= α. Hence, for all v ∈Min�([w]∩[[ψ]]M),M, v |= β.
This implies M, w |= Bψβ, and so, β ∈ Kw ∗ ψ.

AGM 2: ψ ∈ Kw ∗ ψ: Note that by definition of the Min� operator, we have for any
subset of states U , Min�(U) ⊆ U . Hence, Min�([w] ∩ [[ψ]]M) ⊆ [w] ∩ [[ψ]]M ⊆ [[ψ]]M.
This implies M, w |= Bψψ, and so ψ ∈ Kw ∗ ψ.

AGM 3: Kw ∗ψ ⊆ CnM,w(Kw ∪ {ψ}): Suppose that α ∈ Kw ∗ψ. ThenM, w |= Bψα.
This implies Min�([w]∩ [[ψ]]M) ⊆ [[α]]M. We must show [[Kw ∪{ψ}]]M,w ⊆ [[α]]M,w. By
Fact 1(f),

Min�([w]) ∩ [[ψ]]M ⊆Min�([w] ∩ [[ψ]]M) ⊆ [[α]]M

By, Fact 1(e), this implies [[Kw]]M,w ∩ [[ψ]]M ⊆ [[α]]M. Hence, by Fact 1(b) and the
definition of [[·]]M,w,

[[Kw ∪ {ψ}]]M,w = [[Kw]]M,w ∩ [[ψ]]M,w ⊆ [[Kw]]M,w ∩ [[ψ]]M ⊆ [[α]]M

Since, [[Kw ∪ {ψ}]]M,w ⊆ [w], we also have [[Kw ∪ {ψ}]]M,w ⊆ [[α]]M,w.

AGM 4: If ¬ϕ 6∈ Kw then Kw ∗ψ = CnM,w(Kw∪{ψ}): By AGM 3, we need only show
that if ¬ϕ 6∈ Kw then CnM,w(Kw ∪ {ψ}) ⊆ Kw ∗ ψ. Suppose that ¬ψ 6∈ Kw. Then,
M, w 6|= B¬ψ and so M, w |= ¬B¬ψ. This means that Min�([w]) ∩ [[ψ]]M 6= ∅ Then,

Min�([w] ∩ [[ψ]]M) = Min�([w] ∩ [[ψ]]M) ∩ [w] (since Min�([w] ∩ [[ψ]]M) ⊆ [w])

= Min�([w]) ∩ [[ψ]]M ∩ [w] (by Fact 1(g))

⊆ [[Kw]]M,w ∩ [[ψ]]M ∩ [w] (by Fact 1(c))

= [[Kw]]M,w ∩ [[ψ]]M,w (since [[ψ]]M,w = [[ψ]]M ∩ [w])

= [[Kw ∪ {ψ}]]M,w (by Fact 1(b))

⊆ [[α]]M,w (by assumption)

⊆ [[α]]M (since [[α]]M,w = [[α]]M ∩ [w])

AGM 5: Kw ∗ ψ is inconsistent only if ψ is inconsistent (in the sense that [[ψ]]M ∩
[w] = ∅): Suppose that Kw ∗ ψ is inconsistent (i.e., there is a formula α such that
α,¬α ∈ Kw ∗ ψ. Then, Min�([w] ∩ [[ψ]]M) = ∅. By the definition of epistemic-
plausibility models, this can only happen when [w] ∩ [[ψ]]M = ∅.
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AGM 6: If ψ1 and ψ2 are logically equivalent (in the sense that [[ψ1]]M,w = [[ψ2]]M,w),
then Kw ∗ ψ1 = Kw ∗ ψ2: If ψ1 and ψ2 are logically equivalent, we have [[ψ1]]M,w =
[[ψ2]]M,w. Hence,

Min�([w] ∩ [[ψ1]]M) = Min�([[ψ1]]M,w) = Min�([[ψ2]]M,w) = Min�([w] ∩ [[ψ2]]M)

And so, Kw ∗ ψ1 = Kw ∗ ψ2.

AGM 7: Kw ∗ (ϕ∧ψ) ⊆ CnM,w(Kw ∗ϕ∪{ψ}): Suppose that α ∈ Kw ∗ (ϕ∧ψ). Then,
M, w |= Bϕ∧ψα and so Min([w] ∩ [[ϕ ∧ ψ]]M) ⊆ [[α]]M. Then

[[Kw ∗ ϕ ∪ {ψ}]]M,w = [[Kw ∗ ϕ]]M,w ∩ [[ψ]]M,w (by Fact 1(b))

= [[Kw ∗ ϕ]]M,w ∩ [[ψ]]M ∩ [w] (definition of [[·]]M,w)

⊆ Min�([w] ∩ [[ϕ]]M) ∩ [[ψ]]M ∩ [w] (by Fact 1(c))

⊆ Min�([w] ∩ [[ϕ]]M ∩ [[ψ]]M) ∩ [w] (by Fact 1(f))

= Min�([w] ∩ [[ϕ ∧ ψ]]M) ∩ [w] (by Fact 1(a))

⊆ [[α]]M ∩ [w] = [[α]]M,w (by assumption)

= [[α]]M,w (definition of [[·]]M,w)

AGM 8 if ¬ψ 6∈ Kw ∗ ϕ then Cn(Kw ∗ ϕ∪ {ψ}) ⊆ Kw ∗ (ϕ∧ ψ): If ¬ψ 6∈ Kw ∗ ϕ, then
M, w 6|= Bϕ¬ψ. Hence, M, w |= ¬Bϕ¬ψ. This means Min([w] ∩ [[ϕ]]M) ∩ [[ψ]]M 6= ∅.
Min�([w] ∩ [[ϕ]]M) ∩ [[ψ]]M,w = Min�([w] ∩ [[ϕ]]M) ∩ [[ψ]]M ∩ [w] (def. of [[·]]M,w)

= Min�([w] ∩ [[ϕ]]M ∩ [[ψ]]M) ∩ [w] (by Fact 1(g))

= Min�([w] ∩ [[ϕ]]M ∩ [[ψ]]M) (Min�([w] ∩X) ⊆ [w])

= Min�([w] ∩ [[ϕ ∧ ψ]]M) (by Fact 1(a))

⊆ [[α]]M (by assumption)

By Fact 1(b & e) and the definition of [[·]]M,w, this implies

[[K ∗ ϕ ∪ {ψ}]]M,w = [[K ∗ ϕ]]M,w ∩ [[ψ]]M,w ⊆ [[K ∗ ϕ]]M,w ∩ [[ψ]]M ⊆ [[α]]M

Since [[K ∗ ϕ ∪ {ψ}]]M,w ⊆ [w], we also have [[K ∗ ϕ ∪ {ψ}]]M,w ⊆ [[α]]M,w, as desired.

qed

4. Recall the definition of product update (slide 6 of Lecture 12: Dynamic Logics of In-
formation Change). Let M = 〈W,R, V 〉 be a Kripke models and E = 〈E, S, pre〉 and
event model. Prove that if R and S are both transitive, then the relation inM⊗E is
also transitive. Is this also true if R and S are serial (a relations T is serial if for all x
there is a y such that xTy)?

Answer. Let M = 〈W,R, V 〉 be a Kripke model where R is transitive and E =
〈E, S, pre〉 and event model where S is transitive. We must show that M ⊗ E =
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〈W ′, R′, V ′〉 is a Kripke model whereR′ is transitive. Suppose that (w, e), (v, f), (x, g) ∈
W ′ with (w, e)R′(v, f) and (v, f)R′(x, g). We must show that (w, e)R′(x, g). By the
definition of product update, since (w, e)R′(v, f) we have wRv and eSf . Similarly, we
have vRx and fSg. Since R and S are both transitive, this implies wRx and eSg.
Hence, (w, e)R′(x, g), as desired.

The product of a Kripke models that is serial and an event model that is serial need
not be a serial model as the following example shows:

p

w

¬p
v

M

⊗ p

e

E

= p

(w, e)

M⊗E

Note thatM = 〈{w, v}, {(w, v), (v, v)}, V 〉 (with V (p) = {w}) is a serial Kripke model.
Also, the event model E = 〈{e}, {(e, e)}, pre〉 (with pre(e) = p) is a serial event model.
However, M⊗E = 〈{(w, e)}, ∅, V 〉 is not serial.

5. Let W be a set of states, L the propositional language with At as the set of atomic
formulas, and V : At→ ℘(W ) a valuation function. For ϕ ∈ L, define [[ϕ]] by recursion
as follows: [[p]] = V (p), [[¬ϕ]] = W − [[ϕ]] and [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]. Let X ⊆ W .
A system of spheres centered at X is a collection of sets S ⊆ ℘(W ) satisfying the
following properties

(S-a) S is totally ordered by ⊆ (for U, V ∈ S, either U ⊆ V or V ⊆ U)

(S-b) X is the ⊆-minimum element of S (X ∈ S and for all V ∈ S, X ⊆ V )

(S-c) W ∈ S

(S-d) For every propositional formula ϕ ∈ L and sphere U ∈ S, if U ∩ [[ϕ]] 6= ∅ then
there is a ⊆-minimal sphere U0 ∈ S such that U0 ∩ [[ϕ]] 6= ∅.

Let X ⊆ W and let ≤ be a binary relation on W . We say that ≤ is X-persistent if it
satisfies the following properties:

(O-a) ≤ is a weak order (≤ is reflexive, transitive and complete: for all w, v ∈ W , w ≤ v
or v ≤ w)

(O-b) 2For every ϕ ∈ L, if [[ϕ]] 6= ∅, then {v | v ∈ [[ϕ]] and v ≤ w for all w ∈ [[ϕ]] } 6= ∅
2There was a typo in the earlier version of this midterm. The earlier version was “For every ϕ ∈ L,

if [[ϕ]] 6= ∅, then {v | v ∈ [[ϕ]] and v ≤ w for all w ∈W } 6= ∅” which says that for each consistent ϕ, [[ϕ]]
consists of ≤-minimal elements, which is not what we want.
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(O-c) For each w ∈ W , w is a ≤-minima (w ≤ v for all v ∈ W ) if and only if w ∈ X

Let X ⊆ W

(i) Show that every system of spheres centered on X generates a X-persistent binary
relation.

Proof. Let S be a system of spheres centered on X. We define a X-persistent relation
≤S⊆ W ×W as follows:

(*) w ≤S v iff for each U ∈ S, if v ∈ U then w ∈ U .

We must show ≤S satisfies the above properties (O-a), (O-b) and (O-c).

Claim O-a. ≤S is a weak order.

Proof of Claim O-a. We first show that ≤S is reflexive: let w ∈ W , since we obvi-
ously have for all spheres U ∈ S, we have w ∈ U implies w ∈ U , w ≤S w. To show that
≤S is transitive, suppose that w, v, x ∈ W with w ≤S v and v ≤S x. We must show
w ≤S x. Let U ∈ S with x ∈ U . Since v ≤S x, by (*), we have v ∈ U . Since, w ≤S v,
by (*), we have w ∈ U . Hence, u ≤S x. To show that ≤S is complete: suppose that
w, v ∈ W with w 6≤S v. Then there is a U ∈ S such that v ∈ U but w 6∈ U . Let V ∈ S
be an sphere such that w ∈ V . Since S is totally ordered by ⊆, we must have either
U ⊆ V or V ⊆ U . Since w 6∈ U , we cannot have V ⊆ U . Hence, U ⊆ V . Since v ∈ U ,
this implies v ∈ V . Hence, v ≤S w. qed (of Claim)

Claim O-b. For every ϕ ∈ L, if [[ϕ]] 6= ∅, then

{v | v ∈ [[ϕ]] and v ≤S w for all w ∈ [[ϕ]] } 6= ∅

Proof of Claim O-b. Suppose that ϕ ∈ L and [[ϕ]] 6= ∅. Since W ∈ S and [[ϕ]] 6= ∅,
this implies W ∩ [[ϕ]] 6= ∅. Hence, by (S-c), there is a ⊆-minimal U ∈ S such that
U ∩ [[ϕ]] 6= ∅. Let v ∈ U ∩ [[ϕ]]. We claim that v ≤S x for each x ∈ [[ϕ]]. Suppose
that x ∈ [[ϕ]] and let V ∈ S with x ∈ V . We must show that w ∈ V . Since U is the
⊆-smallest subset with a nonempty intersection with [[ϕ]] and V ∩ [[ϕ]] 6= ∅, we must
have U ⊆ V . Since, v ∈ U , we have v ∈ V . Hence v ≤S x. Hence,

{v | v ∈ [[ϕ]] and v ≤S w for all w ∈ [[ϕ]] } 6= ∅.

qed (of Claim)

Claim O-c. For each w ∈ W , w is a ≤S-minima (w ≤ v for all v ∈ W ) if and only if
w ∈ X.
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Proof of Claim O-c. Suppose that w is a ≤S-minima. Then w ≤S x for all x ∈ W .
This implies that for each U ∈ S, if x ∈ U then w ∈ U . By (S-b), X ∈ S. Note
that X 6= ∅ (this is implicitly assumed above), so there is some x ∈ X. Since w is a
≤S-minima and x ∈ X ∈ S, we must have w ∈ X. Thus, w is a ≤S-minima implies
w ∈ X. Conversely, suppose that w ∈ X. Let x ∈ W be any state and V ∈ S any
sphere with x ∈ V . Then, since X is ⊆-minimal element of S, we have X ⊆ V . Hence,
w ∈ V and so w ≤S x. Thus, w ∈ X implies w is a ≤S-minima. qed (of Claim)

qed

(ii) Show that every X-persistent binary relation generates a system of spheres cen-
tered on X.

Proof. Suppose that ≤ is an X-persistent binary relation on W . For U ⊆ W , the
down set generated by U is the set U↓= {v ∈ W | v ≤ u for some u ∈ U}. Define a
system of spheres as follows:

S≤ = {V ↓ | V ⊆ W}

Note that if U ∈ S≤ then U 6= ∅. We must show S≤ satisfies (S-a), (S-b), (S-c), and
(S-d).

Claim S-a. S≤ is totally ordered by ⊆.

Proof of Claim S-a. Suppose that U, V ∈ S≤ with U 6⊆ V . Then there is a u ∈ U
with u 6∈ V . Let v ∈ V . We will show that v ∈ U . Since ≤ is totally ordered, either
u ≤ v or v ≤ u. If u ≤ v, then since V is a downset (V = V ↓), we must have u ∈ V ,
which is a contradiction. So, v ≤ u. But this implies, since U is a downset (U = U↓)
and u ∈ U , that v ∈ U , as desired. qed (of Claim)

Claim S-b. X is the ⊆-minimum element of S≤.

Proof of Claim b. First of all, note that the set of ≤-minimal elements of W is a
downset (this is easy to see, since if w and v are ≤-minimal elements then w ≤ v and
v ≤ w). So, since by (O-c), X is the set of ≤-minimal elements, we have X ∈ S≤. Let
U ∈ S≤ be any downset. We must show that X ⊆ U . Let x ∈ X. Recall that U is
nonempty, so there is some u ∈ U . By (O-c), x is a ≤-minima, so x ≤ u. Hence x ∈ U .

qed (of Claim)

Claim S-c. W ∈ S≤.

Proof of Claim S-c. Obviously, W is a downset (W = W↓), so W ∈ S≤.

qed (of Claim)
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Claim S-d. For every propositional formula ϕ ∈ L and sphere U ∈ S≤, if U ∩ [[ϕ]] 6= ∅
then there is a ⊆-minimal sphere U0 ∈ S≤ such that U0 ∩ [[ϕ]] 6= ∅.

Proof of Claim S-d. Suppose that ϕ ∈ L and U ∈ S≤ with U ∩ [[ϕ]] 6= ∅. Let
U0 = {v | v ∈ [[ϕ]] and v ≤ w for all w ∈ [[ϕ]] }. By (O-b), since [[ϕ]] 6= ∅, U0 6= ∅. Then
U0↓∈ S≤. We claim that U0↓ is the ⊆-smallest element of S≤ that overlaps [[ϕ]]. Let
V ∈ S≤ with V ∩ [[ϕ]] 6= ∅. Say y ∈ V ∩ [[ϕ]]. We must show U0↓⊆ V . Let x ∈ U0↓.
Then x ≤ u for some u ∈ U0. By construction of U0, since y ∈ [[ϕ]], we have u ≤ y.
Since ≤ is transitive, x ≤ y. Since V is a downset, we have x ∈ V , as desired. Hence,
U0↓ is the ⊆-minimal element of S≤ that overlaps [[ϕ]].

qed (of Claim)

qed
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