1. Linear time models: A linear time model is a tuple $\mathcal{M}=\langle T,<, V\rangle$ where T is a set of time points (or moments), $<\subseteq T \times T$ is the precedence relation: $s<t$ ("time point occurs earlier than t ") is irreflexive and transitive, and V : At $\rightarrow \wp(T)$ is a valuation function (describing when the atomic propositions are true). The linear time language is given by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi|G \varphi| H \varphi
$$

where $p \in$ At (a countable set of atomic propositions). Truth is defined as follows:

- $\mathcal{M}, t \models p$ iff $t \in V(p)$
- $\mathcal{M}, t \models \neg \varphi$ iff $\mathcal{M}, t \not \vDash \varphi$
- $\mathcal{M}, t \models \varphi \wedge \psi$ iff $\mathcal{M}, t \models \varphi$ and $\mathcal{M}, t \models \psi$
- $\mathcal{M}, t \models G \varphi$ iff for all $s \in T$, if $t<s$ then $\mathcal{M}, s \models \varphi$
- $\mathcal{M}, t \models H \varphi$ iff for all $s \in T$, if $s<t$ then $\mathcal{M}, s \models \varphi$

We define $F \varphi:=\neg G \neg \varphi$ and $P \varphi:=\neg H \neg \varphi$, so truth for these operators is:

- $\mathcal{M}, t \models F \varphi$ iff there is $s \in T$ such that $t<s$ and $\mathcal{M}, s=\varphi$
- $\mathcal{M}, t \models P \varphi$ iff there is $s \in T$ such that $s<t$ and $\mathcal{M}, s \models \varphi$

We say φ is valid on a temporal model $\mathcal{M}=\langle T,<, V\rangle$ provided $\mathcal{M}, t \models \varphi$ for all $t \in T$, and φ is valid on a temporal frame $\langle T,<\rangle$, provided φ is valid on every model based on $\langle T,<\rangle$ (these are standard definitions - see the notes on modal logic).
(a) A temporal frame $\langle T,<\rangle$ is past-linear provided for all $s, x, y \in T$, if $x<s$ and $y<s$, then either $x<y$ or $x=y$ or $y<x$.

Claim $1 F P \varphi \rightarrow(F \varphi \vee \varphi \vee P \varphi)$ is valid on $\langle T,<\rangle$ iff $\langle T,<\rangle$ is past-linear.
Proof. Suppose that $\mathcal{T}=\langle T,<\rangle$ is past-linear and $\mathcal{M}=\langle T,<, V\rangle$ is a model based on \mathcal{T}. We must show $F P \varphi \rightarrow(F \varphi \vee \varphi \vee P \varphi)$ is valid on \mathcal{M}. Let $t \in T$ be any moment and suppose that $\mathcal{M}, t \models F P \varphi$. Then, there is a $s \in T$ such that $t<s$ and $\mathcal{M}, s \models P \varphi$. This implies there is a s^{\prime} such that $s^{\prime}<s$ with $\mathcal{M}, s^{\prime} \models \varphi$. Since \mathcal{T} is past-linear and $t<s$ and $s^{\prime}<s$ we have three cases: either $t<s^{\prime}$ or $t=s^{\prime}$ or $s^{\prime}<t$. In the first case $\mathcal{M}, t \models F \varphi$, in the second case $\mathcal{M}, t \models \varphi$ and in the third case $\mathcal{M}, t \models P \varphi$. Hence, $\mathcal{M}, t \models F \varphi \vee \varphi \vee P \varphi$, as desired.
Suppose that $\mathcal{T}=\langle T,<\rangle$ is not past-linear. Then, there are moments s, s^{\prime}, and t such that $s<t, s^{\prime}<t$ but $s \neq s^{\prime}, s \nless s^{\prime}$ and $s^{\prime} \nless s$. Let $\mathcal{M}=\langle T,<, V\rangle$ be a model based on T where $V(p)=\left\{s^{\prime}\right\}$. Since, $s^{\prime}<t$ and $\mathcal{M}, s^{\prime} \models p$, we have $\mathcal{M}, t \vDash P p$. Then, since $s<t$, we have $\mathcal{M}, s \models F P p$. Note that $\mathcal{M}, s \models \neg P p \wedge p \wedge \neg F p$ (this follows since the only state satisfying p is s^{\prime} and s^{\prime} is incomparable with s). Hence, $\mathcal{M}, s \not \models F P p \rightarrow(P p \vee p \vee F p)$.

QED
2. Branching-time temporal models: Given a temporal model $\langle T,<, V\rangle$ a branch b is a maximal linearly ordered set of moments. We say $s \in T$ is on a branch b of T provided $s \in b$ (we also say " b is a branch going through t "). The branching time language is given by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi|G \varphi| H \varphi \mid \square \varphi
$$

where $p \in$ At. Truth is defined at pairs t / b where t is a moment on branch b :

- $\mathcal{M}, t / b=p$ iff $t / b \in V(p)$
- $\mathcal{M}, t / b \models \neg \varphi$ iff $\mathcal{M}, t / b \not \models \varphi$
- $\mathcal{M}, t / b=\varphi \wedge \psi$ iff $\mathcal{M}, t / b \models \varphi$ and $\mathcal{M}, t / b \models \psi$
- $\mathcal{M}, t / b=G \varphi$ iff for all $s \in T$, if s is on b and $t<s$ then $\mathcal{M}, s / b \models \varphi$
- $\mathcal{M}, t / b \models H \varphi$ iff for all $s \in T$, if s is on b and $s<t$ then $\mathcal{M}, s / b \models \varphi$
- $\mathcal{M}, t / b \models \square \varphi$ iff for all branches c through $t, \mathcal{M}, s / c \models \varphi$

For each of the following formulas, determine which are valid on all temporal frames (for those that are not valid, provide counterexamples):
(a) $\diamond F \varphi \rightarrow F \diamond \varphi$ is not valid.

Proof. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ with $t_{1}<t_{2}$ and $t_{1}<t_{3}$, so there are two branches $b=\left\{t_{1}, t_{2}\right\}$ and $b^{\prime}=\left\{t_{1}, t_{3}\right\}$. Let $V(p)=\left\{t_{2} / b\right\}$. Then, $\mathcal{M}, t_{1} / b \models F p$ and so $\mathcal{M}, t_{1} / b^{\prime} \models \diamond F p$. However, since b^{\prime} is the only branch going through t_{3} and $\mathcal{M}, t_{3} / b^{\prime} \not \vDash p$, we have $\mathcal{M}, t_{3} / b^{\prime} \not \vDash \diamond p$. Furthermore, since t_{3} is the only moment on b^{\prime} such that $t_{1}<t_{3}$, we have $\mathcal{M}, t_{1} / b^{\prime} \mid \vDash F \diamond p$. Hence, $\diamond F p \rightarrow F \diamond p$ is not valid. This model is pictured below:

QED
(b) $\square F \varphi \rightarrow F \square \varphi$ is not valid.

Proof. Suppose that $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ with $t_{1}<t_{2}<t_{3}$ and $t_{1}<t_{2}<t_{4}$. There are two branches: $b_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}$ and $b_{2}=\left\{t_{1}, t_{2}, t_{4}\right\}$. Suppose that $V(p)=\left\{t_{2} / b_{1}, t_{4} / b_{2}\right\}$. Then, since $t_{1}<t_{2}$ and $t_{1}<t_{4}$, we have $\mathcal{M}, t_{1} / b_{1} \models F p$ and $\mathcal{M}, t_{1} / b_{2} \models F p$. Hence, $\mathcal{M}, t_{1} / b_{1} \models \square F p$. However, since $\mathcal{M}, t_{3} / b_{1} \not \vDash \square p$ (this follows from the fact that $\mathcal{M}, t_{3} / b_{1} \not \vDash p$ and b_{1} is the only branch through t_{3}) and $\mathcal{M}, t_{2} / b_{1} \not \models \square p$ (this follows since $\mathcal{M}, t_{2} / b_{2} \not \vDash p$), we have $\mathcal{M}, t_{1} / b_{1} \not \models F \square p$. Therefore, $\square F \varphi \rightarrow F \square \varphi$ is not valid. This model is pictured below:

QED
(c) $F \diamond \varphi \rightarrow \diamond F \varphi$ is valid.

Proof. Suppose that $\mathcal{M}, t / b \models F \diamond \varphi$. Then there is a $t^{\prime} \in b$ such that $t<t^{\prime}$ and $\mathcal{M}, t^{\prime} / b \models \diamond \varphi$. This implies there is a branch c going through t^{\prime} such that $\mathcal{M}, t^{\prime} / c \models \varphi$. Since t^{\prime} is $t<t^{\prime}$, any branching going through t^{\prime} must also go through t (recall that branches are maximal sets of linearly ordered moments), so c is a branching going through t. Since $\mathcal{M}, t^{\prime} / c \models \varphi$ and $t<t^{\prime}$, we have $\mathcal{M}, t / c \models F \varphi$. Since both c and b go through t, we have $\mathcal{M}, t / b \models \diamond F \varphi$. Hence, $F \diamond \varphi \rightarrow \diamond F \varphi$ is valid.

QED
(d) $F \square \varphi \rightarrow \square F \varphi$ is not valid.

Proof. Suppose that $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ with $t_{1}<t_{2}<t_{3}$ and $t_{1}<t_{2}<t_{4}$. There are two branches: $b_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}$ and $b_{2}=\left\{t_{1}, t_{2}, t_{4}\right\}$. Suppose that $V(p)=\left\{t_{3} / b_{1}\right\}$. Since $\mathcal{M}, t_{3} / b_{1} \models p$ and b_{1} is the only branch through t_{3}, we have $\mathcal{M}, t_{3} / b_{1} \models \square p$. Hence, $\mathcal{M}, t_{1} / b_{1} \models F \square p$. However, since $\mathcal{M}, t_{4} / b_{2} \not \vDash p$ and $\mathcal{M}, t_{2} / b_{2} \not \vDash p$, we have $\mathcal{M}, t_{1} / b_{2} \not \models F p$ and so $\mathcal{M}, t_{1} / b_{1} \not \models \square F p$. This model is pictured below:

QED
3. Logics of Ability: The logics of ability models of Brown are tuples $\langle W, R, V\rangle$ where $R \subseteq W \times \wp(W)$ is a relation between states and subsets of W (which Brown calls "clusters") and V : At $\rightarrow \wp(W)$ a valuation function. The ability language is generated by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi|\mathbb{I} D \varphi|\langle\rangle \varphi \varphi
$$

where $p \in \mathrm{At}$. The intended meaning is that $\mathbb{\downarrow}\rangle \varphi$ expresses "the agent is able to bring about a state where φ is true" and $\langle\rangle\rangle \varphi$ is the weaker claim that "the agent is able to do something consistent with φ ". Truth is defined as follows:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$
- $\mathcal{M}, w \vDash \neg \varphi$ iff $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, t \models \mathbb{} \downarrow \varphi$ iff there is a $X \subseteq W$ such that $w R X$ and for all $v \in X, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, t \models\langle\langle \rangle\rangle \varphi$ iff there is a $X \subseteq W$ such that $w R X$ and there is a $v \in X$ such that $\mathcal{M}, v \models \varphi$

Answer the following questions:
(a) Give a counter-model to $\mathbb{\} \downarrow(\varphi \vee \psi) \rightarrow(\mathbb{I} \downarrow \varphi \vee \mathbb{I} D \psi)$.

Answer. Let $W=\left\{w_{1}, w_{2}\right\}$ and suppose that $V(p)=\left\{w_{1}\right\}$ and $V(q)=\left\{w_{3}\right\}$. Let $R \subseteq W \times \wp(W)$ be such that $w_{1} R\left\{w_{1}, w_{2}\right\}$. Then we have $\mathcal{M}, w_{1} \models \mathbb{\}(p \vee q)$ since $w R\left\{w_{1}, w_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\} \subseteq \llbracket p \vee q \rrbracket_{\mathcal{M}}=\llbracket p \rrbracket_{\mathcal{M}} \cup \llbracket q \rrbracket_{\mathcal{M}}=\left\{w_{1}\right\} \cup\left\{w_{2}\right\}=$ $\left\{w_{1}, w_{2}\right\}$. However, $\mathcal{M}, w_{1} \notin \llbracket \rrbracket p$ since $\left\{w_{1}, w_{2}\right\} \nsubseteq \llbracket p \rrbracket_{\mathcal{M}}=\left\{w_{1}\right\}$, and similarly

(b) Prove that $\langle\mathbb{} \backslash(\varphi \vee \psi) \rightarrow(\langle\rangle\rangle \varphi \vee\langle\mathbb{}\rangle \psi)$ is valid.

Proof. Suppose that $\mathcal{M}, w \models \mathbb{\}(\varphi \vee \psi)$ then there is a $X \subseteq W$ such that $w R X$ and $X \subseteq \llbracket \varphi \vee \psi \rrbracket_{\mathcal{M}}=\llbracket \varphi \rrbracket_{\mathcal{M}} \cup \llbracket \psi \rrbracket_{\mathcal{M}}$. Note that either $X \cap \llbracket \varphi \rrbracket_{\mathcal{M}} \neq \emptyset$ or $X \cap \llbracket \varphi \rrbracket_{\mathcal{M}}=$ \emptyset. In the first case, $\mathcal{M}, w \models\langle\langle \rangle\rangle \varphi$. In the second case, since $X \cap \llbracket \varphi \rrbracket_{\mathcal{M}}=\emptyset$ and $X \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}} \cup \llbracket \psi \rrbracket_{\mathcal{M}}$, we have $X \subseteq \llbracket \psi \rrbracket_{\mathcal{M}}$. Hence, $\mathcal{M}, w \models\langle\mathbb{}$. ψ Thus, in either case, $\mathcal{M}, w \models\langle\langle \rangle\rangle \varphi \vee \backslash[\rrbracket \psi$. And so, $\mathcal{M}, w \models \backslash \mathbb{}\rangle,(\varphi \vee \psi) \rightarrow(\langle\langle \rangle \varphi \vee \backslash \mathbb{D} \psi)$. QED
(c) Is $\mathbb{\square} \varphi \rightarrow\langle\rangle\rangle \varphi$ valid? If it is, give a proof, and if it is not valid, give a property that would make it valid.
Answer. No, $\langle[\rrbracket \varphi \rightarrow\langle\rangle\rangle \varphi$ is not valid. Let $\mathcal{M}=\langle W, R, V\rangle$ be a model where there is a state w with $w R \emptyset$. Then for any formula φ, we have $\mathcal{M}, w \models\langle[D \varphi$, but $\mathcal{M}, w \not \vDash\langle\langle \rangle\rangle$. It is not hard to see that if we assume that for all w we do not have $w R \emptyset$, then $\llbracket \rrbracket(\varphi \vee \psi) \rightarrow(\langle\rangle\rangle \varphi \vee \llbracket \rrbracket \psi)$ is valid.
4. STIT models: A stit model is a tuple $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where $\langle T,<, V\rangle$ is a temporal model (defined as above), and Choice : $\mathcal{A} \times T \rightarrow \wp\left(\wp\left(H_{t}\right)\right)$ is a function mapping each agent to a partition of $H_{t}\left(H_{t}\right.$ is the set of branches going through $\left.t\right)$ satisfying the following conditions (we write Choice ${ }_{i}^{t}$ for Choice (i, t) :

- Choice ${ }_{i}^{t} \neq \emptyset$
- $K \neq \emptyset$ for each $K \in$ Choice $_{i}^{t}$
- For all t and mappings $s_{t}: \mathcal{A} \rightarrow \wp\left(H_{t}\right)$ such that $s_{t}(i) \in$ Choice e_{i}^{t}, we have $\bigcap_{i \in \mathcal{A}} s_{t}(i) \neq \emptyset$

The STIT language is defined according to the following grammar:

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi|[i \operatorname{stit}] \varphi| \square \varphi
$$

where $p \in$ At. Truth is defined as follows:

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \not \models \varphi$
- $\mathcal{M}, t / h \models \varphi \wedge \psi$ iff $\mathcal{M}, t / h \models \varphi$ and $\mathcal{M}, t / h \models \psi$
- $\mathcal{M}, t / h \models \square \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in H_{t}$
- $\mathcal{M}, t / h \models[i \operatorname{stit}] \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in$ Choice $_{i}^{t}(h)\left(\right.$ Choice $_{i}^{t}(h)$ is the partition cell of Choice ${ }_{i}^{t}$ containing h)

Define $\langle i$ stit $\rangle \varphi$ to be $\neg[i$ stit $] \neg \varphi$ and $\diamond \varphi$ to be $\neg \square \neg \varphi$. Answer the following two questions: Suppose that there are only two agents $\mathcal{A}=\{1,2\}$, then
(a) Prove that $\diamond \varphi \rightarrow\langle 1$ stit $\rangle\langle 2$ stit $\rangle \varphi$ is valid.

Proof. Suppose that $\mathcal{M}, t / h \models \diamond \varphi$ then there is a $h^{\prime} \in H_{t}$ such that $\mathcal{M}, t / h^{\prime} \models \varphi$. Consider the selection $s_{t}(1)=$ Choice $t_{t}^{1}(h)$ (agent 1's choice at h / t) and $s_{t}(2)=$ Choice $e_{t}^{2}\left(h^{\prime}\right)$ (agent 2's choice at $\left.t / h^{\prime}\right)$. Then by the independence property, $s_{t}(1) \cap$ $s_{t}(2) \neq \emptyset$. So, there is a history $h^{\prime \prime} \in s_{t}(1) \cap s_{t}(2)=$ Choice $_{t}^{1}(h) \cap$ Choice $_{t}^{2}\left(h^{\prime}\right)$. Then, since $h^{\prime} \in$ Choice $_{t}^{2}\left(h^{\prime \prime}\right)$ (recall, Choice ${ }_{t}^{2}$ is a partition) and $\mathcal{M}, t / h^{\prime} \models$ φ, we have $\mathcal{M}, t / h^{\prime \prime} \models\langle 2$ stit $\rangle \varphi$. Since $h^{\prime \prime} \in$ Choice $_{t}^{1}(h)$, we have $\mathcal{M}, t / h \models$ $\langle 1$ stit $\rangle\langle 2$ stit $\rangle \varphi$.

QED
(b) Conclude that $\square \varphi$ is definable as $[1 \mathrm{stit}][2 \mathrm{stit}] \varphi$ (argue that $\square \varphi \leftrightarrow[1 \mathrm{stit}][2 \mathrm{stit}] \varphi$ can be derived from the above axiom using the $\mathbf{S} 5$ axioms for \square and $[i$ stit], and the axiom $\square \varphi \rightarrow[i \operatorname{stit}] \varphi)$.

Proof. We derive $\square \varphi \leftrightarrow[1 \mathrm{stit}][2$ stit] φ using the STIT axioms:

Prop: all instances of propositional tautologies	
$\underline{\text { S5 for } \square}$	S5 for [i st
$K_{\square}: \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$	$\overline{K_{\text {stit }}: \text { [i stit }}$
$T_{\square}: \square \varphi \rightarrow \varphi$	$T_{\text {stit }}$: [i stit $]$
$4_{\square}: \square \varphi \rightarrow \square \square \varphi$	$4_{\text {stit }}$: [i stit
$5_{\square}: \neg \square \varphi \rightarrow \square \neg \square \varphi$	$5_{\text {stit }}: \neg[i$ sti $]$
$N e c_{\square}$: for φ, infer $\square \varphi$	Nec stit : for
$\square \rightarrow[i$ stit $]: \square \varphi \rightarrow[i$ stit $] \varphi$	
Ind: $\left(\bigwedge_{i \in \mathcal{A}} \diamond[i\right.$ stit $\left.] \varphi_{i}\right) \rightarrow \diamond\left(\bigwedge_{i \in \mathcal{A}}[i\right.$ stit $\left.] \varphi_{i}\right)$	

We make use of the following rules of propositional logic:

Prop Reasoning: Trans
$A \rightarrow B$
$\frac{B \rightarrow C}{A \rightarrow C}$

Prop Reasoning: Equiv
$\frac{A \leftrightarrow B}{\varphi[C / A] \leftrightarrow \varphi[C / B]}(\varphi[C / A]$ is φ with all occurrences of C replaced with $A)$
Below is a derivation of $\square \varphi \rightarrow[1 \mathrm{stit}][2$ stit] φ :

1. $\square \varphi \rightarrow[2$ stit $] \varphi$
2. $\square(\square \varphi \rightarrow[2$ stit] $\varphi)$
3. $\square(\square \varphi \rightarrow[2$ stit $] \varphi) \rightarrow(\square \square \varphi \rightarrow \square[2$ stit $] \varphi)$
4. $\square \square \varphi \rightarrow \square[2$ stit $] \varphi$
5. $\square \varphi \rightarrow \square \square \varphi$
6. $\square \varphi \rightarrow \square[2 \mathrm{stit}] \varphi$
7. $\square[2$ stit $] \varphi \rightarrow[1$ stit $][2$ stit $] \varphi$
8. $\square \varphi \rightarrow[1$ stit][2 stit] φ

Axiom $\square \rightarrow[2$ stit $]$
$N e c_{\square} 1$.
Axiom K_{\square}
MP 2,3
Axiom 4ロ
Prop Reasoning: Trans 4, 5
Axiom $\square \rightarrow[1$ stit $]$
Prop Reasoning: Trans 6, 7

Below is a derivation of $[1 \mathrm{stit}][2$ stit $] \varphi \rightarrow \square \varphi$:

1. $\diamond \neg \varphi \rightarrow\langle 1$ stit $\rangle\langle 2$ stit $\rangle \neg \varphi \quad$ Axiom
2. $\neg\langle 1$ stit $\rangle\langle 2$ stit $\rangle \neg \varphi \rightarrow \neg \diamond \neg \varphi \quad$ Prop reasoning
3. $\neg \neg[1$ stit $] \neg \neg[2$ stit $] \neg \neg \varphi \rightarrow \neg \diamond \neg \varphi \quad[i$ stit $]$-dual
4. $\quad[1$ stit $][2$ stit $] \varphi \rightarrow \neg \diamond \neg \varphi \quad$ Prop reasoning $(\neg \neg \varphi \leftrightarrow \varphi)$
5. [1 stit][2 stit] $\varphi \rightarrow \square \varphi \quad \square$-dual

The homework is DUE Tuesday, November 22 (put you answers in my mailbox).

