1. Linear time models: A linear time model is a tuple $\mathcal{M} = \langle T, \langle V \rangle$ where T is a set of time points (or moments), $\langle \subseteq T \times T$ is the precedence relation: s < t ("time point occurs earlier than t") is irreflexive and transitive, and $V : \mathsf{At} \to \wp(T)$ is a valuation function (describing when the atomic propositions are true). The linear time language is given by the following grammar:

$$p \mid \neg \varphi \mid \varphi \land \psi \mid G\varphi \mid H\varphi$$

where $p \in At$ (a countable set of atomic propositions). Truth is defined as follows:

• $\mathcal{M}, t \models p \text{ iff } t \in V(p)$

Logic and AI

- $\mathcal{M}, t \models \neg \varphi$ iff $\mathcal{M}, t \not\models \varphi$
- $\mathcal{M}, t \models \varphi \land \psi$ iff $\mathcal{M}, t \models \varphi$ and $\mathcal{M}, t \models \psi$
- $\mathcal{M}, t \models G\varphi$ iff for all $s \in T$, if t < s then $\mathcal{M}, s \models \varphi$
- $\mathcal{M}, t \models H\varphi$ iff for all $s \in T$, if s < t then $\mathcal{M}, s \models \varphi$

We define $F\varphi := \neg G \neg \varphi$ and $P\varphi := \neg H \neg \varphi$, so truth for these operators is:

- $\mathcal{M}, t \models F\varphi$ iff there is $s \in T$ such that t < s and $\mathcal{M}, s \models \varphi$
- $\mathcal{M}, t \models P\varphi$ iff there is $s \in T$ such that s < t and $\mathcal{M}, s \models \varphi$

We say φ is valid on a temporal model $\mathcal{M} = \langle T, \langle V \rangle$ provided $\mathcal{M}, t \models \varphi$ for all $t \in T$, and φ is valid on a temporal frame $\langle T, \langle \rangle$, provided φ is valid on every model based on $\langle T, \langle \rangle$ (these are standard definitions — see the notes on modal logic).

(a) A temporal frame $\langle T, < \rangle$ is **past-linear** provided for all $s, x, y \in T$, if x < s and y < s, then either x < y or x = y or y < x.

Claim 1 $FP\varphi \to (F\varphi \lor \varphi \lor P\varphi)$ is valid on $\langle T, < \rangle$ iff $\langle T, < \rangle$ is past-linear.

Proof. Suppose that $\mathcal{T} = \langle T, < \rangle$ is past-linear and $\mathcal{M} = \langle T, <, V \rangle$ is a model based on \mathcal{T} . We must show $FP\varphi \to (F\varphi \lor \varphi \lor P\varphi)$ is valid on \mathcal{M} . Let $t \in T$ be any moment and suppose that $\mathcal{M}, t \models FP\varphi$. Then, there is a $s \in T$ such that t < s and $\mathcal{M}, s \models P\varphi$. This implies there is a s' such that s' < s with $\mathcal{M}, s' \models \varphi$. Since \mathcal{T} is past-linear and t < s and s' < s we have three cases: either t < s' or t = s' or s' < t. In the first case $\mathcal{M}, t \models F\varphi$, in the second case $\mathcal{M}, t \models \varphi$ and in the third case $\mathcal{M}, t \models P\varphi$. Hence, $\mathcal{M}, t \models F\varphi \lor \varphi \lor P\varphi$, as desired.

Suppose that $\mathcal{T} = \langle T, < \rangle$ is not past-linear. Then, there are moments s, s', and t such that s < t, s' < t but $s \neq s', s \not\leq s'$ and $s' \not\leq s$. Let $\mathcal{M} = \langle T, <, V \rangle$ be a model based on T where $V(p) = \{s'\}$. Since, s' < t and $\mathcal{M}, s' \models p$, we have $\mathcal{M}, t \models Pp$. Then, since s < t, we have $\mathcal{M}, s \models FPp$. Note that $\mathcal{M}, s \models \neg Pp \land p \land \neg Fp$ (this follows since the only state satisfying p is s' and s' is incomparable with s). Hence, $\mathcal{M}, s \not\models FPp \rightarrow (Pp \lor p \lor Fp)$. QED

2. **Branching-time temporal models**: Given a temporal model $\langle T, <, V \rangle$ a branch b is a maximal linearly ordered set of moments. We say $s \in T$ is on a branch b of T provided $s \in b$ (we also say "b is a branch going through t"). The branching time language is given by the following grammar:

$$p \mid \neg \varphi \mid \varphi \wedge \psi \mid G\varphi \mid H\varphi \mid \Box \varphi$$

where $p \in At$. Truth is defined at pairs t/b where t is a moment on branch b:

• $\mathcal{M}, t/b \models p \text{ iff } t/b \in V(p)$

Logic and AI

- $\mathcal{M}, t/b \models \neg \varphi$ iff $\mathcal{M}, t/b \not\models \varphi$
- $\mathcal{M}, t/b \models \varphi \land \psi$ iff $\mathcal{M}, t/b \models \varphi$ and $\mathcal{M}, t/b \models \psi$
- $\mathcal{M}, t/b \models G\varphi$ iff for all $s \in T$, if s is on b and t < s then $\mathcal{M}, s/b \models \varphi$
- $\mathcal{M}, t/b \models H\varphi$ iff for all $s \in T$, if s is on b and s < t then $\mathcal{M}, s/b \models \varphi$
- $\mathcal{M}, t/b \models \Box \varphi$ iff for all branches c through $t, \mathcal{M}, s/c \models \varphi$

For each of the following formulas, determine which are valid on all temporal frames (for those that are not valid, provide counterexamples):

(a) $\diamond F \varphi \to F \diamond \varphi$ is not valid.

Proof. Let $T = \{t_1, t_2, t_3\}$ with $t_1 < t_2$ and $t_1 < t_3$, so there are two branches $b = \{t_1, t_2\}$ and $b' = \{t_1, t_3\}$. Let $V(p) = \{t_2/b\}$. Then, $\mathcal{M}, t_1/b \models Fp$ and so $\mathcal{M}, t_1/b' \models \Diamond Fp$. However, since b' is the only branch going through t_3 and $\mathcal{M}, t_3/b' \not\models p$, we have $\mathcal{M}, t_3/b' \not\models \Diamond p$. Furthermore, since t_3 is the only moment on b' such that $t_1 < t_3$, we have $\mathcal{M}, t_1/b' \not\models F \Diamond p$. Hence, $\Diamond Fp \to F \Diamond p$ is not valid. This model is pictured below:

QED

(b) $\Box F \varphi \to F \Box \varphi$ is not valid.

Proof. Suppose that $T = \{t_1, t_2, t_3, t_4\}$ with $t_1 < t_2 < t_3$ and $t_1 < t_2 < t_4$. There are two branches: $b_1 = \{t_1, t_2, t_3\}$ and $b_2 = \{t_1, t_2, t_4\}$. Suppose that $V(p) = \{t_2/b_1, t_4/b_2\}$. Then, since $t_1 < t_2$ and $t_1 < t_4$, we have $\mathcal{M}, t_1/b_1 \models Fp$ and $\mathcal{M}, t_1/b_2 \models Fp$. Hence, $\mathcal{M}, t_1/b_1 \models \Box Fp$. However, since $\mathcal{M}, t_3/b_1 \not\models \Box p$ (this follows from the fact that $\mathcal{M}, t_3/b_1 \not\models p$ and b_1 is the only branch through t_3) and $\mathcal{M}, t_2/b_1 \not\models \Box p$ (this follows since $\mathcal{M}, t_2/b_2 \not\models p$), we have $\mathcal{M}, t_1/b_1 \not\models F \Box p$. Therefore, $\Box F \varphi \to F \Box \varphi$ is not valid. This model is pictured below:

QED

(c) $F \diamondsuit \varphi \to \diamondsuit F \varphi$ is valid.

Proof. Suppose that $\mathcal{M}, t/b \models F \diamond \varphi$. Then there is a $t' \in b$ such that t < t' and $\mathcal{M}, t'/b \models \diamond \varphi$. This implies there is a branch c going through t' such that $\mathcal{M}, t'/c \models \varphi$. Since t' is t < t', any branching going through t' must also go through t (recall that branches are *maximal* sets of linearly ordered moments), so c is a branching going through t. Since $\mathcal{M}, t'/c \models \varphi$ and t < t', we have $\mathcal{M}, t/c \models F\varphi$. Since both c and b go through t, we have $\mathcal{M}, t/b \models \diamond F\varphi$. Hence, $F \diamond \varphi \to \diamond F \varphi$ is valid. QED

(d) $F \Box \varphi \rightarrow \Box F \varphi$ is not valid.

Proof. Suppose that $T = \{t_1, t_2, t_3, t_4\}$ with $t_1 < t_2 < t_3$ and $t_1 < t_2 < t_4$. There are two branches: $b_1 = \{t_1, t_2, t_3\}$ and $b_2 = \{t_1, t_2, t_4\}$. Suppose that $V(p) = \{t_3/b_1\}$. Since $\mathcal{M}, t_3/b_1 \models p$ and b_1 is the only branch through t_3 , we have $\mathcal{M}, t_3/b_1 \models \Box p$. Hence, $\mathcal{M}, t_1/b_1 \models F \Box p$. However, since $\mathcal{M}, t_4/b_2 \not\models p$ and $\mathcal{M}, t_2/b_2 \not\models p$, we have $\mathcal{M}, t_1/b_2 \not\models Fp$ and so $\mathcal{M}, t_1/b_1 \not\models \Box Fp$. This model is pictured below:

QED

3. Logics of Ability: The logics of ability models of Brown are tuples $\langle W, R, V \rangle$ where $R \subseteq W \times \wp(W)$ is a relation between states and subsets of W (which Brown calls "clusters") and $V : At \rightarrow \wp(W)$ a valuation function. The ability language is generated by the following grammar:

$$p \mid \neg \varphi \mid \varphi \land \psi \mid \langle \! [\] \! \rangle \varphi \mid \langle \! \langle \! \langle \! \rangle \! \rangle \varphi$$

where $p \in At$. The intended meaning is that $\langle \rangle \varphi$ expresses "the agent is able to bring about a state where φ is true" and $\langle \langle \rangle \varphi \varphi$ is the weaker claim that "the agent is able to do something consistent with φ ". Truth is defined as follows:

- $\mathcal{M}, w \models p \text{ iff } w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi$
- $\mathcal{M}, w \models \varphi \land \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, t \models \langle \! [] \! \rangle \varphi$ iff there is a $X \subseteq W$ such that wRX and for all $v \in X, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, t \models \langle\!\langle \rangle\!\rangle \varphi$ iff there is a $X \subseteq W$ such that wRX and there is a $v \in X$ such that $\mathcal{M}, v \models \varphi$

Answer the following questions:

- (a) Give a counter-model to $\langle\![\] \rangle (\varphi \lor \psi) \to (\langle\![\] \rangle \varphi \lor \langle\![\] \rangle \psi)$. **Answer**. Let $W = \{w_1, w_2\}$ and suppose that $V(p) = \{w_1\}$ and $V(q) = \{w_3\}$. Let $R \subseteq W \times \wp(W)$ be such that $w_1 R\{w_1, w_2\}$. Then we have $\mathcal{M}, w_1 \models \langle\![\] \rangle (p \lor q)$ since $wR\{w_1, w_2\}$ and $\{w_1, w_2\} \subseteq [p \lor q]_{\mathcal{M}} = [p]_{\mathcal{M}} \cup [q]_{\mathcal{M}} = \{w_1\} \cup \{w_2\} = \{w_1, w_2\}$. However, $\mathcal{M}, w_1 \not\models \langle\![\] p$ since $\{w_1, w_2\} \not\subseteq [p]_{\mathcal{M}} = \{w_1\}$, and similarly $\mathcal{M}, w_1 \not\models \langle\![\] pq$. Hence, $\mathcal{M}, w_1 \not\models \langle\![\] p(p \lor q) \to (\langle\![\] p \lor \langle\![\] p \lor \langle\![\] pq]\rangle$.
- (b) Prove that $\langle \rangle (\varphi \lor \psi) \to (\langle \langle \rangle \varphi \lor \langle \rangle \psi)$ is valid.

Proof. Suppose that $\mathcal{M}, w \models \langle [] (\varphi \lor \psi)$ then there is a $X \subseteq W$ such that wRX and $X \subseteq [\![\varphi \lor \psi]\!]_{\mathcal{M}} = [\![\varphi]\!]_{\mathcal{M}} \cup [\![\psi]\!]_{\mathcal{M}}$. Note that either $X \cap [\![\varphi]\!]_{\mathcal{M}} \neq \emptyset$ or $X \cap [\![\varphi]\!]_{\mathcal{M}} = \emptyset$. In the first case, $\mathcal{M}, w \models \langle \langle \rangle \rangle \varphi$. In the second case, since $X \cap [\![\varphi]\!]_{\mathcal{M}} = \emptyset$ and $X \subseteq [\![\varphi]\!]_{\mathcal{M}} \cup [\![\psi]\!]_{\mathcal{M}}$, we have $X \subseteq [\![\psi]\!]_{\mathcal{M}}$. Hence, $\mathcal{M}, w \models \langle [\![\varphi]\!]_{\mathcal{V}}$ Thus, in either case, $\mathcal{M}, w \models \langle \langle \rangle \varphi \lor \langle [\![] \psi]\!]_{\mathcal{V}}$. And so, $\mathcal{M}, w \models \langle [\![\varphi]\!]_{\mathcal{Q}} \lor \langle \langle [\![] \psi]\!]_{\mathcal{V}}$. QED

(c) Is $\langle\!\!\langle \rangle\!\!\rangle \varphi \to \langle\!\!\langle \rangle\!\!\rangle \varphi$ valid? If it is, give a proof, and if it is not valid, give a property that would make it valid.

Answer. No, $([]) \varphi \to \langle \langle \rangle \rangle \varphi$ is not valid. Let $\mathcal{M} = \langle W, R, V \rangle$ be a model where there is a state w with $wR\emptyset$. Then for any formula φ , we have $\mathcal{M}, w \models \langle [] \rangle \varphi$, but $\mathcal{M}, w \not\models \langle \langle \rangle \rangle \varphi$. It is not hard to see that if we assume that for all w we do not have $wR\emptyset$, then $\langle [] \rangle (\varphi \lor \psi) \to (\langle \langle \rangle \rangle \varphi \lor \langle [] \rangle \psi)$ is valid.

- 4. **STIT models**: A stit model is a tuple $\mathcal{M} = \langle T, <, Choice, V \rangle$ where $\langle T, <, V \rangle$ is a temporal model (defined as above), and *Choice* : $\mathcal{A} \times T \to \wp(\wp(H_t))$ is a function mapping each agent to a partition of H_t (H_t is the set of branches going through t) satisfying the following conditions (we write *Choice*^t_i for *Choice*(*i*, *t*):
 - $Choice_i^t \neq \emptyset$
 - $K \neq \emptyset$ for each $K \in Choice_i^t$
 - For all t and mappings $s_t : \mathcal{A} \to \wp(H_t)$ such that $s_t(i) \in Choice_i^t$, we have $\bigcap_{i \in \mathcal{A}} s_t(i) \neq \emptyset$

The STIT language is defined according to the following grammar:

$$\varphi \ = \ p \ | \ \neg \varphi \ | \ \varphi \wedge \psi \ | \ [i \ {\rm stit}] \varphi \ | \ \Box \varphi$$

where $p \in At$. Truth is defined as follows:

- $\mathcal{M}, t/h \models p \text{ iff } t/h \in V(p)$
- $\mathcal{M}, t/h \models \neg \varphi$ iff $\mathcal{M}, t/h \not\models \varphi$
- $\mathcal{M}, t/h \models \varphi \land \psi$ iff $\mathcal{M}, t/h \models \varphi$ and $\mathcal{M}, t/h \models \psi$
- $\mathcal{M}, t/h \models \Box \varphi$ iff $\mathcal{M}, t/h' \models \varphi$ for all $h' \in H_t$
- $\mathcal{M}, t/h \models [i \text{ stit}]\varphi \text{ iff } \mathcal{M}, t/h' \models \varphi \text{ for all } h' \in Choice_i^t(h) \ (Choice_i^t(h) \text{ is the partition cell of } Choice_i^t \text{ containing } h)$

Define $\langle i \text{ stit} \rangle \varphi$ to be $\neg [i \text{ stit}] \neg \varphi$ and $\diamond \varphi$ to be $\neg \Box \neg \varphi$. Answer the following two questions: Suppose that there are only two agents $\mathcal{A} = \{1, 2\}$, then

(a) Prove that $\Diamond \varphi \to \langle 1 \text{ stit} \rangle \langle 2 \text{ stit} \rangle \varphi$ is valid.

Proof. Suppose that $\mathcal{M}, t/h \models \Diamond \varphi$ then there is a $h' \in H_t$ such that $\mathcal{M}, t/h' \models \varphi$. Consider the selection $s_t(1) = Choice_t^1(h)$ (agent 1's choice at h/t) and $s_t(2) = Choice_t^2(h')$ (agent 2's choice at t/h'). Then by the independence property, $s_t(1) \cap s_t(2) \neq \emptyset$. So, there is a history $h'' \in s_t(1) \cap s_t(2) = Choice_t^1(h) \cap Choice_t^2(h')$. Then, since $h' \in Choice_t^2(h'')$ (recall, $Choice_t^2$ is a partition) and $\mathcal{M}, t/h' \models \varphi$, we have $\mathcal{M}, t/h'' \models \langle 2 \operatorname{stit} \rangle \varphi$. Since $h'' \in Choice_t^1(h)$, we have $\mathcal{M}, t/h \models \langle 1 \operatorname{stit} \rangle \langle 2 \operatorname{stit} \rangle \varphi$.

(b) Conclude that $\Box \varphi$ is definable as $[1 \text{ stit}][2 \text{ stit}]\varphi$ (argue that $\Box \varphi \leftrightarrow [1 \text{ stit}][2 \text{ stit}]\varphi$ can be derived from the above axiom using the **S5** axioms for \Box and [i stit], and the axiom $\Box \varphi \rightarrow [i \text{ stit}]\varphi$).

Proof. We derive $\Box \varphi \leftrightarrow [1 \text{ stit}][2 \text{ stit}]\varphi$ using the STIT axioms:

We make use of the following rules of propositional logic:

$$\begin{array}{c} A \to B \\ B \to C \\ \hline A \to C \end{array}$$

Prop Reasoning: Equiv

 $\frac{A \leftrightarrow B}{\varphi[C/A] \leftrightarrow \varphi[C/B]} (\varphi[C/A] \text{ is } \varphi \text{ with all occurrences of } C \text{ replaced with } A)$

Below is a derivation of $\Box \varphi \rightarrow [1 \text{ stit}][2 \text{ stit}]\varphi$:

1.	$\Box \varphi \to [2 \text{ stit}] \varphi$	Axiom $\Box \rightarrow [2 \text{ stit}]$
2.	$\Box(\Box\varphi\to [2 \text{ stit}]\varphi)$	Nec_{\Box} 1.
3.	$\Box(\Box\varphi \to [2 \text{ stit}]\varphi) \to (\Box\Box\varphi \to \Box[2 \text{ stit}]\varphi)$	Axiom K_{\Box}
4.	$\Box\Box\varphi\to\Box[2 \text{ stit}]\varphi$	MP 2,3
5.	$\Box \varphi \to \Box \Box \varphi$	Axiom 4_{\Box}
6.	$\Box \varphi \to \Box [2 \text{ stit}] \varphi$	Prop Reasoning: Trans 4, 5
7.	$\Box[2 \text{ stit}]\varphi \to [1 \text{ stit}][2 \text{ stit}]\varphi$	Axiom $\Box \rightarrow [1 \text{ stit}]$
8.	$\Box \varphi \to [1 \text{ stit}][2 \text{ stit}]\varphi$	Prop Reasoning: Trans 6, 7

Below is a derivation of $[1 \text{ stit}][2 \text{ stit}]\varphi \to \Box \varphi$:

1.	$\Diamond \neg \varphi \rightarrow \langle 1 \text{ stit} \rangle \langle 2 \text{ stit} \rangle \neg \varphi$	Axiom
2.	$\neg \langle 1 \text{ stit} \rangle \langle 2 \text{ stit} \rangle \neg \varphi \rightarrow \neg \Diamond \neg \varphi$	Prop reasoning
3.	$\neg\neg[1 \text{ stit}]\neg\neg[2 \text{ stit}]\neg\neg\varphi \to \neg\Diamond\neg\varphi$	[i stit]-dual
4.	$[1 \text{ stit}][2 \text{ stit}]\varphi \to \neg \Diamond \neg \varphi$	Prop reasoning $(\neg \neg \varphi \leftrightarrow \varphi)$
5.	$[1 \text{ stit}][2 \text{ stit}]\varphi \to \Box \varphi$	\Box -dual

QED

The homework is DUE Tuesday, November 22 (put you answers in my mailbox).