1. Prove that the following axiom of ceteris paribus logic is valid (see slide 22 of lecture 21 on $11 / 16$):

$$
(\alpha \wedge\langle\Gamma\rangle \leq(\alpha \wedge \varphi)) \rightarrow\langle\Gamma \cup\{\alpha\}\rangle \leq \varphi
$$

Proof. Let \mathcal{M} be a preference model and w a state in \mathcal{M}. Suppose that $\mathcal{M}, w \models$ $\alpha \wedge\langle\Gamma\rangle \leq(\alpha \wedge \varphi)$. Then, $\mathcal{M}, w \models \alpha$ and there is a v such that $w \equiv_{\Gamma} v$ and $w \leq v$ and $\mathcal{M}, v \models \alpha \wedge \varphi$. Now we have for all $\varphi \in \Gamma, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}, v \models \varphi$ and $\mathcal{M}, w \models \alpha$ and $\mathcal{M}, v \models \alpha$. Hence, $w \equiv_{\Gamma \cup\{\alpha\}} v$. Since $w \leq v$, we have $\mathcal{M}, w \models\langle\Gamma \cup\{\alpha\}\rangle \leq \varphi$. Since \mathcal{M} and w were arbitrary, $(\alpha \wedge\langle\Gamma\rangle \leq(\alpha \wedge \varphi)) \rightarrow\langle\Gamma \cup\{\alpha\}\rangle \leq \varphi$ is valid. QED
2. Let X, Y be subsets of W and suppose that \leq is a reflexive, connected and transitive order over W. Say $X \leq_{\forall \forall} Y$ provided for all $x \in X$ and for all $y \in Y$, we have $x \leq y$. Assume that \leq is reflexive, transitive and complete, is $\leq_{\forall \forall}$ also reflexive, transitive, and complete? If so, prove it and if not, give a counterexample.

Proof. Suppose that $\leq \subseteq W \times W$ is reflexive, transitive and connected. We show that \leq_{b} is transitive but not reflexive nor connected.
$\leq_{\forall \forall}$ is not reflexive: Suppose that $W=\{1,2,3,4\}$ with $1<2<3<4$ (where $i<j$ means $i \leq j$ but $j \not \leq i)$. Consider $X=\{1,2\}$, then $X \not \leq \forall X$ since $2 \not \leq 1$.
\leq_{\forall} is transitive for all nonempty sets: First of all, not that for any sets X and Y, $X \leq_{\forall} \emptyset$ and $\emptyset \leq_{\forall} Y$. Transitivity would imply $X \leq_{\forall} Y$, but it is easy to find counterexamples to this. Suppose that X, Y, and Z are nonempty. Suppose that $X \leq_{\forall \forall} Y$ and $Y \leq_{\forall} Z$, we must show that $X \leq_{\forall} Z$. Let $x \in X$ and $z \in Z$. Since Y is nonempty there is an element $y \in Y$. Since $X \leq_{\forall} Y$, we have $x \leq y$. Since, $Y \leq_{\forall} Z$, we have $y \leq z$. Since \leq is transitive, we have $x \leq z$. Since x and z were arbitrary elements of X and Z, respectively, we have $X \leq \forall 甘$.
\leq_{\forall} is not connected: Suppose that $W=\{1,2,3,4\}$ with $1<2<3<4$ (where $i<j$ means $i \leq j$ but $j \not \leq i)$. Let $X=\{1,3\}$ and $Y=\{2,4\}$ then $X \not \mathbb{Z}_{\forall} Y$ and $Y \not \mathbb{Z}_{\forall} X$.

QED

Can you think of any other interesting principles that \leq_{\forall} satisfies? One interesting set of principles are downward and upwards monotonicity:

- If $X \leq_{\forall} Y$ and $Z \subseteq X$, then $Z \leq_{\forall} Y$.
- If $X \leq_{\forall \forall} Y$ and $Z \subseteq X$, then $Z \leq_{\forall \forall} Z$.

3. Recall the model of knowledge and preference from Lecture 22 (on 11/21): $\mathcal{M}=$ $\langle W, \sim, \preceq, V\rangle$ where \sim is an equivalence relation and \preceq is a reflexive, transitive and total preference relation. Truth is defined as follows:

- $\mathcal{M}, w \models K \varphi$ iff for all $v \in W$, if $w \sim v$ then $\mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models\langle\preceq\rangle \varphi$ iff there is a $v \in W$ with $w \preceq v$ and $\mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models A \varphi$ iff for all $v \in W, \mathcal{M}, v \models \varphi$
- $\mathcal{M}, w \models\langle\sim \cap \preceq\rangle \varphi$ iff there is a $v \in W$ such that $w \sim v$ and $w \preceq v$ with $\mathcal{M}, v \models \varphi$

Given an example to show that $K(\psi \rightarrow\langle\preceq\rangle \varphi)$ and $K(\psi \rightarrow\langle\sim \cap \preceq\rangle \varphi)$ or not equivalent (i.e., find a model and state where one of the formulas is true, but the other is not true). It is easy to see that $A(\psi \rightarrow\langle\preceq\rangle \varphi) \rightarrow K(\psi \rightarrow\langle\preceq\rangle \varphi)$ is valid (this is an instance of the validity $A \varphi \rightarrow K \varphi$), but what is the relationship between $A(\psi \rightarrow\langle\preceq\rangle \varphi)$ and $K(\psi \rightarrow\langle\sim \cap \preceq\rangle \varphi$ (does one imply the other or are the two formulas independent)?

Answer. We can construct a model where $K(p \rightarrow\langle\preceq\rangle q)$ is true but $K(p \rightarrow\langle\preceq \cap \sim\rangle q)$ is false. The model is drawn below (with the undirected lines denoting the information relation \sim and the arrows denoting the preference relation where an arrow from w to v means $w \preceq v$).

Then, $\mathcal{M}, w \models K(p \rightarrow\langle\preceq\rangle q)$, but $\mathcal{M}, w \not \vDash K(p \rightarrow\langle\preceq \cap \sim\rangle q)$
Claim $1 K(\psi \rightarrow\langle\preceq \cap \sim\rangle \varphi) \rightarrow K(\psi \rightarrow\langle\preceq\rangle \varphi)$ is valid

Proof. Suppose that $\mathcal{M}, w \models K(\psi \rightarrow\langle\preceq \cap \sim\rangle \varphi)$. Suppose that there is a v such that $w \sim v$. We must show $\mathcal{M}, v \models \psi \rightarrow\langle\preceq\rangle \varphi$. Suppose that $\mathcal{M}, v \models \psi$. Since, $\mathcal{M}, w \models K(\psi \rightarrow\langle\preceq \cap \sim\rangle \varphi)$ and $w \sim v$, we have $\mathcal{M}, v \vDash \psi \rightarrow\langle\preceq \cap \sim\rangle \varphi$. This implies $\mathcal{M}, v \models\langle\preceq \cap \sim\rangle \varphi$. Hence, there is a v^{\prime} such that $v(\preceq \cap \sim) v^{\prime}$ and $\mathcal{M}, v^{\prime} \models \varphi$. Since, $(\preceq \cap \sim) \subseteq \preceq$, we have $v \preceq v^{\prime}$. Hence, $\mathcal{M}, v \models\langle\preceq\rangle \varphi$, as desired. Hence, $\mathcal{M}, w \models K(\psi \rightarrow\langle\preceq\rangle \varphi)$.

Claim $2 A(\psi \rightarrow\langle\preceq\rangle \varphi)$ and $K(\psi \rightarrow\langle\sim \cap \preceq\rangle \varphi$ are independent

Proof. We can construct two models: one where $A(p \rightarrow\langle\preceq\rangle q)$ is true but $K(p \rightarrow\langle\preceq$ $\cap \sim\rangle q$) is false, and vice versa. The models are drawn below (with the undirected lines denoting the information relation \sim and the arrows denoting the preference relation where an arrow from w to v means $w \preceq v$).

Example 1

Then we have $\mathcal{M}, w \models A(p \rightarrow\langle\preceq\rangle q)$ but $\mathcal{M}, w \not \vDash K(p \rightarrow\langle\sim \cap \preceq\rangle q)$

$$
\text { Example } 2
$$

Then we have $\mathcal{M}, w \not \vDash A(p \rightarrow\langle\preceq\rangle q)$ but $\mathcal{M}, w \vDash K(p \rightarrow\langle\sim \cap \preceq\rangle q)$

QED

