
Logic and AI Fall 2011Problem Set # 5 Answers

1. Prove that the following axiom of ceteris paribus logic is valid (see slide 22 of lecture
21 on 11/16):

(α ∧ 〈Γ〉≤(α ∧ ϕ))→ 〈Γ ∪ {α}〉≤ϕ

Proof. Let M be a preference model and w a state in M. Suppose that M, w |=
α ∧ 〈Γ〉≤(α ∧ ϕ). Then, M, w |= α and there is a v such that w ≡Γ v and w ≤ v and
M, v |= α ∧ ϕ. Now we have for all ϕ ∈ Γ, M, w |= ϕ iff M, v |= ϕ and M, w |= α
andM, v |= α. Hence, w ≡Γ∪{α} v. Since w ≤ v, we haveM, w |= 〈Γ∪ {α}〉≤ϕ. Since
M and w were arbitrary, (α ∧ 〈Γ〉≤(α ∧ ϕ))→ 〈Γ ∪ {α}〉≤ϕ is valid. qed

2. Let X, Y be subsets of W and suppose that ≤ is a reflexive, connected and transitive
order over W . Say X ≤∀∀ Y provided for all x ∈ X and for all y ∈ Y , we have x ≤ y.
Assume that ≤ is reflexive, transitive and complete, is ≤∀∀ also reflexive, transitive,
and complete? If so, prove it and if not, give a counterexample.

Proof. Suppose that ≤⊆ W ×W is reflexive, transitive and connected. We show that
≤∀∀ is transitive but not reflexive nor connected.

≤∀∀ is not reflexive: Suppose that W = {1, 2, 3, 4} with 1 < 2 < 3 < 4 (where i < j
means i ≤ j but j 6≤ i). Consider X = {1, 2}, then X 6≤∀∀ X since 2 6≤ 1.

≤∀∀ is transitive for all nonempty sets: First of all, not that for any sets X and Y ,
X ≤∀∀ ∅ and ∅ ≤∀∀ Y . Transitivity would imply X ≤∀∀ Y , but it is easy to find coun-
terexamples to this. Suppose that X, Y , and Z are nonempty. Suppose that X ≤∀∀ Y
and Y ≤∀∀ Z, we must show that X ≤∀∀ Z. Let x ∈ X and z ∈ Z. Since Y is
nonempty there is an element y ∈ Y . Since X ≤∀∀ Y , we have x ≤ y. Since, Y ≤∀∀ Z,
we have y ≤ z. Since ≤ is transitive, we have x ≤ z. Since x and z were arbitrary
elements of X and Z, respectively, we have X ≤∀∀ Z.

≤∀∀ is not connected: Suppose that W = {1, 2, 3, 4} with 1 < 2 < 3 < 4 (where i < j
means i ≤ j but j 6≤ i). Let X = {1, 3} and Y = {2, 4} then X 6≤∀ Y and Y 6≤∀∀ X.

qed

Can you think of any other interesting principles that ≤∀∀ satisfies? One interesting
set of principles are downward and upwards monotonicity:

• If X ≤∀∀ Y and Z ⊆ X, then Z ≤∀∀ Y .

• If X ≤∀∀ Y and Z ⊆ X, then Z ≤∀∀ Z.
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3. Recall the model of knowledge and preference from Lecture 22 (on 11/21): M =
〈W,∼,�, V 〉 where ∼ is an equivalence relation and � is a reflexive, transitive and
total preference relation. Truth is defined as follows:

• M, w |= Kϕ iff for all v ∈ W , if w ∼ v then M, v |= ϕ

• M, w |= 〈�〉ϕ iff there is a v ∈ W with w � v and M, v |= ϕ

• M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ

• M, w |= 〈∼ ∩ �〉ϕ iff there is a v ∈ W such that w ∼ v and w � v withM, v |= ϕ

Given an example to show that K(ψ → 〈�〉ϕ) and K(ψ → 〈∼ ∩ �〉ϕ) or not equiv-
alent (i.e., find a model and state where one of the formulas is true, but the other is
not true). It is easy to see that A(ψ → 〈�〉ϕ) → K(ψ → 〈�〉ϕ) is valid (this is an
instance of the validity Aϕ→ Kϕ), but what is the relationship between A(ψ → 〈�〉ϕ)
and K(ψ → 〈∼ ∩ �〉ϕ (does one imply the other or are the two formulas independent)?

Answer. We can construct a model where K(p→ 〈�〉q) is true but K(p→ 〈� ∩ ∼〉q)
is false. The model is drawn below (with the undirected lines denoting the information
relation ∼ and the arrows denoting the preference relation where an arrow from w to
v means w � v).

p,¬q

w

p,¬q

v

p, qv′

∼

��

� �

�

Then, M, w |= K(p→ 〈�〉q), but M, w 6|= K(p→ 〈� ∩ ∼〉q)

Claim 1 K(ψ → 〈� ∩ ∼〉ϕ)→ K(ψ → 〈�〉ϕ) is valid

Proof. Suppose that M, w |= K(ψ → 〈� ∩ ∼〉ϕ). Suppose that there is a v such
that w ∼ v. We must show M, v |= ψ → 〈�〉ϕ. Suppose that M, v |= ψ. Since,
M, w |= K(ψ → 〈� ∩ ∼〉ϕ) and w ∼ v, we have M, v |= ψ → 〈� ∩ ∼〉ϕ. This
implies M, v |= 〈� ∩ ∼〉ϕ. Hence, there is a v′ such that v(� ∩ ∼)v′ and M, v′ |= ϕ.
Since, (� ∩ ∼) ⊆�, we have v � v′. Hence, M, v |= 〈�〉ϕ, as desired. Hence,
M, w |= K(ψ → 〈�〉ϕ). qed
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Claim 2 A(ψ → 〈�〉ϕ) and K(ψ → 〈∼ ∩ �〉ϕ are independent

Proof. We can construct two models: one where A(p→ 〈�〉q) is true but K(p→ 〈�
∩ ∼〉q) is false, and vice versa. The models are drawn below (with the undirected lines
denoting the information relation ∼ and the arrows denoting the preference relation
where an arrow from w to v means w � v).

Example 1
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Then we have M, w |= A(p→ 〈�〉q) but M, w 6|= K(p→ 〈∼ ∩ �〉q)

Example 2

p,¬q
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p, q

v
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Then we have M, w 6|= A(p→ 〈�〉q) but M, w |= K(p→ 〈∼ ∩ �〉q)

qed
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