1 Arrow’s Theorem

Notation

- X is a (finite or infinite) set of alternatives (or candidates).
- $N = \{1, \ldots, n\}$ is a set of voters.
- Preferences: $\mathcal{P} = \{R \mid R \subseteq W \times W \text{ where } R \text{ is reflexive, transitive and connected}\}$
- Given $R \in \mathcal{P}$, let P be the strict preference generated by R: xPy iff xRy and not yRx (we write P_R if necessary).
- A profile is a tuple $(R_1, \ldots, R_n) \in \mathcal{P}^n$.
- Social Welfare Function: $F : D \rightarrow \mathcal{P}$ where $D \subseteq \mathcal{P}^n$ is the domain.

Axioms

- Universal Domain (UD): The domain of F is \mathcal{P}^n (i.e., $D = \mathcal{P}^n$).
- Independence of Irrelevant Alternatives (IIA): F satisfies IIA provide for all profiles $\vec{R}, \vec{R}' \in D$, if $xR_i y$ iff $xR'_i y$ for all $i \in N$, then $xF(\vec{R}) y$ iff $xF(\vec{R}') y$.
- (weak) Pareto (P): For all profiles $\vec{R} \in D$, if $xP_i y$ for all $i \in N$ then $xP_{F(\vec{R})} y$.

• Agent i is a **dictator** for F provided for every preference profile and every pair $x, y \in X$, $xP_i y$ implies $xF(\vec{R}) y$.

Arrows (Im)possibility theorem: Suppose that $|X| \geq 3$ and F satisfies UD, IIA and P. Then there is some $i \in N$ that is a dictator for F.

Key Lemmas

First, some key definitions. To simplify the notation, for a $\vec{R} \in D$, we write S for the social ordering given by F, i.e., $F(\vec{R}) = Q$.

For a set of voters $S \subseteq \{1, \ldots, n\}$, we say

- S is **decisive for** x **over** y if for some preference profile \vec{R} we have $xP_i x$ for all $i \in S$, $yP_i x$ for all $i \notin S$ and $xP_Q y$.

- S is **strictly decisive for** x **over** y if for every preference profile \vec{R} satisfying $xP_i y$ for all $i \in S$, we have $xP_Q y$

- S is **decisive** if it is strictly decisive for every pair of distinct alternatives.

Lemma 1 Suppose that for some x and y, S is decisive for x over y, then S is decisive.

Lemma 2 If S and T are decisive then so is $S \cap T$

Lemma 3 If S is not decisive, then $S^C = N - S$ is decisive.

Arrow’s Theorem: There is a singleton decisive set.

2 Sen’s Theorem

Notation

- *Linear Preferences*: $\mathcal{L} = \{> | < \subseteq X \times X$ is a linear order$\}$

- *Social choice function*: $C : \mathcal{L}^n \rightarrow X$
Axioms

- **(weak) Unanimity**: C satisfies weak unanimity provided if for every preference profile $\succ \in \mathcal{L}^n$, if there is a pair of alternatives x and y such that $x >_i y$ for all $i \in N$, then $C(\succ) \neq y$.

- **Liberalism**: C satisfies liberalism provided if for every individual i, there exists two distinct alternatives $x, y \in X$ such that i is two-way decisive on x and y: If $x >_i y$, then $C(\succ) \neq y$; and if $y >_i x$, then $C(\succ) \neq x$.

Sen’s Impossibility of the Paretian Liberal: No social choice function satisfies both liberalism and the weakly unanimity conditions.

3 Muller-Satterthwaite Theorem

Axioms

- **Monotonicity**: C is monotonic provided if for every preference profile $\succ \in \mathcal{L}^n$ such that $C(\succ) = x$, if \succ' is another profile such that $x >'_i y$ whenever $x >_i y$ for every agent i and alternative y, then $C(\succ') = x$.

- **Dictator**: A voter i is a dictator in a social choice function C if C always selects i's top choice: for every preference profile \succ, $C(\succ) = a$ iff for all $y \in X$ different from x, $x >_i y$.

Muller-Satterthwaite Theorem: If $|X| \geq 3$, then any social choice function that is weakly unanimous and monotonic is also dictatorial.

Proof

- A set of voters S is winning if, for any profile $\succ \in \mathcal{L}^n$ in which every $i \in S$ ranks some alternative x on top of her preference, $C(\succ) = x$.

• A set of voters S is **blocking** if there exists some profile $> \in \mathcal{L}^n$ such that $C(>) = x$ and x is ranked on the top by all $i \in S$ and ranked at the bottom for all $i \in N - S$.

• **Theorem** (Tang and Sandholm). If $|X| \geq 3$, then for any social choice function satisfying weak unanimity and strong monotonicity, a coalition is winning iff it is blocking.
