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About These Notes

These course notes covered material taught in my Fall 1997 class on
Model Theory, and some of the material in its continuation class given
the following semester. In thinking about the topic of model theory,
I was lead to turn away from the standard presentations for several
reasons:

1. The main thrust of contemporary model theory is to return to clas-
sical mathematics with worked-out methods and results originat-
ing in mathematical logic. Although this goal is quite admirable,
it would not be possible here at Indiana University to go very far
in that direction. Not only are there no follow-up courses, but
we also see very few talks in the classical areas of model theory.
So preparing people for (say) stability theory seemed a bit odd.
(I am reminded of my years as a mediocre violin student, strug-
gling through concertos that I clearly would never play with any
orchestra.)

2. On the other hand, it seems to me that there is a wealth of topics
that have much the same spirit as classical model theory: the
concern with classes of structures, logics, completeness theorems,
correspondences between syntax and semantics. This kind of work
usually gets done in computer science or philosophy classes, but the
mathematics involved is significant and interesting. In addition,
this general area is one that our students will be exposed to, both
in classes and in seminar talks. (Later I took up several styles of
folk music and enjoy fiddling.)

As a result, I decided to re-fashion the Model Theory course into
something else. Exactly what wasn’t so clear, and the titles that came
to mind were thigns like: Old-Fashioned Model Theory, Applied Model
Theory, and even Everything But Model Theory. Right now, the best
title seems to be Structures of Applied Logic.
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The specific goals that I have in mind for such a class are as follows:

1. To give students lots of experience with completeness theorems.

2. To introduce the basics of modal logic, dynamic logic, equational
logic, and other logical systems.

3. To use the experiences with those logical systems as a way into
category theory, then to teach just the basics of that subject and
use it in the remainder of the course.

4. To use dynamic logic as a starting point for looking at dynamic
logics in natural language semantics, as well as in logics of knowl-
edge.

5. To teach aspects of classical model theory in the direction of finite
model theory, such as game-theoretic methods and zero-one laws.

6. To introduce applied logic by stressing how topics in the course
relate to areas of ongoing research, and also to teach something
about the process of making mathematical models and how logic
relates to that.

Most of these goals are not addressed in any way by the standard
courses in model theory. Logic students typically see two completeness
proofs: for propositional logic and for first-order logic. They also do not
see most of the particular logics covered in the class, and some of the
work on first-order logic itself is probably too new to have found its way
into the standard curriculum.

The notes at this point cover the first semester of the course. Ac-
tually, they were revised a bit after the semester was over, and a few
sections were added. Also, some of the longer chapters were split into
shorter ones. My experience has been that the class covered about ten
pages of text each week. Also, I assigned about half of the homework
problems every week or two.

My thanks to the students in the course for teaching me so much:
Sundar Balasubramaniam, Stefano Borgo, Andrew Ellett, Trevor Irwin,
Kai-Uew Kuehnberger, Maricarmen Martinez, Jay G. Mersch, Steven E.
Pav, Nik Swoboda, Ario Teoli, Alex Tsow, Walter Warwick, Chi Wen,
and Yiwei Zheng; and also to those who attended it: Moreena Tiede,
and Professors Steve Johnson, Wendy MacCaul, and Slawek Solecki.
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Natural Logic

For most of its history, logic was concerned with syllogisms. One simple
example, perhaps the most famous one, is:

All men are mortal.
Socrates is a man.
Socrates is mortal.

The idea is that the sentences above the line should semantically entail
the one below the line. Specifically, in every model in which All men
are mortal and Socrates is a man are true, it must be the case that
Socrates is mortal is also true. We have to say what semantically entail
means, and this will come in due course. The matter might be clearer
with another example. Suppose someone accepts as true the following
sentences:

1. All raredos are slonados.
2. John is a raredo.

3. Mary is an alphatoric.
4. John is Mary.

Then they should also accept as true the conclusion Some slonado is
an alphatoric. We have purposely used nonsense words here; the whole
point is that the inference depends only on the form of the argument. In
this case, the key elements of the form include the worlds All and Some,
and two different uses of is. So rather than deal with actual words, we
instead consider things schematically. Assuming

1. Al X are Y.
2. Jisan X.
3. MisalZ.
4. J is M.

We should accept Some Y is a Z.



Natural Logic is concerned with a mathematical model of these kinds
of inferences. We'’d like to know when a given sentence would be a good
conclusion to a given argument, and when it would not. (Incidentally,
the same question arises for the traditional syllogisms. But those are
three-line arguments, and the question of which syllogisms are intuitively
valid is a special case of the question we ask in this chapter.)

To make life simple here, we are only going to consider a few very
restricted forms of English sentences. These are the ones we list in
Figure 1.1 below. We are going to be fairly strict in restricting attention
to just sentences of those forms. The only deviation is that we write a
or an following the usual uses in English, as we did in (2) and (3) just
above.

To define wvalidity of an argument, we first say what the semantics
of individual sentences is. This again is given in Figure 1.1. Here is an
example. Let M be the set {1,2,3,4,5}. Let [X] = {1,3,4}, [Y] =
{1,5}, [Z] = {5}, [J] = 3, and [M] = 1. Then [J is an X] = T, but
for all three other assumptions R, [R] = F.

Let T be our set of four assumptions, and let S be Some Y is a Z.
Then I' = S means that all models M satisfying all sentences in I' also
satisfy S. The example in the previous paragraph did not satisfy all
sentences in I'. But if we change [Y] to {1,2,3,4}, [Z] to {5}, and [M]
to 3, we would satisfy all the assumptions in I'. We would also satisfy
S.

This last model is just one example, and we want to know whether
all models of T are models of S. The idea is that we cannot determine
this by looking at examples; there are “too many”. Besides, the reason
that someone would accept S on the basis of I' does not have so much
to do with examples as with reasons. This is what our proof system
intends to model. The second part of Figure 1.1 defines proof trees. For
the same I" and 9, here is a proof tree which shows that I' - S:

Al X areY Jisan X MisaZ JisM
JisaY Jisan Z
SomeY isa Z (1.1)

The idea is that what counts as a proof tree is an entirely syntactic mat-
ter: the meaning of the English words such All and Some is completely
irrelevant. A computer, or a speaker of some other language, could check
whether a given labeled tree obeyed the conditions in the definition.
This is probably a good place to mention the ways in which we are
(and are not) strict with rules. In writing this chapter, I have tried to
be completely strict about the left-right match in rules. So since one of
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Syntax: We start with variebles X,Y | ..., representing plural com-
mon nouns of English. We also also names J, M, .... Then we
consider sentences S of the following very restricted forms:

All X are X, Some X are X, No X are X, Jis an X, J is M.

Semantics: One starts with a set M, a subset [X] C M for each
variable X, and an element [J] € M for each name J. This gives a
model M = (M, ]).

We then assign a semantics [S] € {T, F} to the sentence S in a model
M, as follows:

[Al X are Y] =T iff [X] C[Y]
[Some X are Y] =T iff [X]N[Y]#0
[No X areY] =T it  [X]n[Y]=0
[Jisan X] =T it [J] €[X]
[JisM]=T it  [J] =[M]

We write M |= S if [S] =T. And if T is a set of sentences, then we
write M =T to mean that M |= S for all S € T.

Main semantic definition: T |= S means that every model which
makes all sentences in the set I' true also makes S true. We say I’
semantically implies S.

Inference rules of the logical system: The complete set of rules
may be found in Figure 1.7 at the end of this chapter. Rules for
various fragments are presented as needed.

Proof trees: A proof tree over I is a finite tree whose nodes are
labeled with sentences in our fragment, with the additional property
that each node is either an element of I' or comes from its parent(s)
by an application of one of the rules.

Formal proofs: T S means that there is a proof tree over I' whose
root is labeled S. We say I' proves, or derives, S.

FIGURE 1.1 The main definitions in this chapter.




the rules is
Misan X Jis M

Jis an X (1.2)

I would not make a tree like
JisM M isan X
Jisan X

This kind of strictness is not essential, however. You should feel free
to loosen it. It is more important to note that the rules are to be read
schematically: one is allowed to substitute other variables or names for
the ones in the statement of the rules. We already did this in (1.1):
into the actual rule in (1.2) we substituted Z for X (and kept the other
variables as they are in (1.2)).

Here is another example, chosen to make some different points: Let
T be

{All A are B, All Q are A, All B are D, All C are D, All A are Q}

Let S be All Q are D. Here is a proof tree showing that I' - S:
AllA are B All B are B
All A are B All B are D
All Q are A All A are D
All Q are D

Note that all of the leaves belong to I' except for one that is All B are B.
Note also that some elements of I' are not used as leaves. This is per-
mitted according to our definition. The proof tree above shows that
I' H S. Also, there is a smaller proof tree that does this, since the use
of All B are B is not really needed. (The reason why we allow leaves to
be labeled like this is so that that we can have one-element trees labeled
with sentences of the form All A are A.)

The main theoretical question for this chapter is: what is the relation
the semantic notion I' | S with the proof-theoretic notion I' + S?
This kind of question will present itself for all of the logical systems in
this course. Probably the first piece of work for you is to be sure you
understand the question.

Lemma 1.1 (Soundness) IfTF S, thenT E S.

Proof By strong induction on the number of nodes of proof trees T
over I'. If 7 is a tree with one node, let S be the label. Either S belongs
to T, or else S is of the form All A are A or J is J. In the first case, every
model satisfying every sentence in I' clearly satisfies S, as S belongs to
I". And in the second case, every model whatsoever satisfies 5.

Let’s suppose that we know our result for all proof trees over I with
fewer than n nodes, and let 7 be a proof tree over I with n nodes. The
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argument breaks into cases depending on which rule is used at the root.
Suppose the root and its parents are labeled

All X are Z AllZ areY
All X areY

Let 7; and 75 be the subtrees ending at All X are Y and AllY are Z.
Then 77 and 75 are proof trees over I' themselves. For some variable
Y, the root of 77 is labeled All X are Y, and the root of 75 is labeled
AllY are Z. Now 7; and 73 both have fewer nodes than 7. By our
induction hypothesis, I' = All X are Y, and alsoT' = AllY are Z. We
claim that I' = All X are Z. To see this, take any model M in which
all sentences in I' are true. Then [X] C [Y] by our first point above.
And [Y] C [Z] by second. So [X] C [Z] by transitivity of the inclusion
relation on sets. Since the model M here is arbitrary, we conclude that
I'=All X are Z.

The other cases on the label of the root of 7 are similar. Of special
interest might be the case for the rule

Some X areY No X areY
R

(The intuitive point here is that every sentence R follows from the con-
tradictory hypotheses.) Let 7 be a proof tree over I' ending up with
an application of this rule. We claim that there are no models of T.
To see this, suppose toward a contradiction that M = T. By induction
hypothesis, the sentences Some X are Y and No X are Y are true in M.
That is, [X]N[Y] = 0, and also [X]N[Y] # @. This is a contradiction,
and from it, we see that there are no models of T'. So vacuously, every
model of T' is a model of the root S. 4

So at this point, we know that our logic is sound: If we have a tree
showing that ' + S, then S follows semantically from I". This means
that the formal logical system is not going to give us any bad results.
Now this is a fairly weak point. If we dropped some of the rules, it
would still hold. Even if we decided to be conservative and say that
T' F S never holds, the soundness fact would still be true. So the more
interesting question to ask is whether the logical strong enough to prove
everything it should. We want to know if I = S implies that I F §; if
it does for all T and S, then we say that our system is complete. As it
happens, our system is complete. We show this in Section 1.5. There
are several reasons why we do not present the completeness result in
one fell swoop. First of all, doing so would not give you any idea of
what is going on in the proof. So we have divided things up into smaller
steps. And second, considering fragments of the logic gives us additional

9



information (that is, additional completeness theorems) that we would
not be able to obtain from the overall completeness result.

Exercise 1.1 Check that
{Some X are Y,SomeY are Z} [£ Some X are Z
by building a model in which [X]N[Y] # 0 and [Y] N [Z] # 0, but
[XIn[Z] =0.
Exercise 1.2 Check that
{Some X areY,SomeY are Z} tf Some X are Z
by examining proofs.

Exercise 1.3 This exercise asks you to come up with definitions and to
check their properties.

1. Define the appropriate notions of submodel and homomorphism of
models.

2. Which sentences S in our language have the property that if M is
a submodel of M’ and M’ |= §, then also M |= 57

3. Which sentences S in our language have the property that if M
is a surjective homomorphic image of M’ and M [ 3, then also
M = 5?

4. Would anything change if we changed “if” to “iff”?

1.1 Al

To begin, we’ll only deal with sentences All X are Y. We call the set
of sentences of this form, or of some other restricted form, a fragment
of our overall language. As with all our fragments, we get a soundness
result immediately from Lemma 1.1. In fact, any subsystem of a sound
logical system is itself sound.

Theorem 1.2 The logic of Figure 1.2 is complete for the fragment with
All

Proof Let Zi,...,Z; be all the variables that occur in T" or in S. Let
S be All X are Y. Define a model by M = {*},! and
[z] = { M T+ Al X are Z;

¢ otherwise (1.3)

It is important that in (1.3), the X is the same variable as in the sen-
tence S from the statement of our result. We claim that if I contains

1This just means that M is some one-element set. It doesn’t matter which one-
element set. Actually, it doesn’t even matter that M has just one element: any
non-empty set M would work.
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All X are Z AllZ areY
All X are X All X areY

FIGURE 1.2 The logic of All X are Y.

AllV are W, then [V] C [W]. For this, we may assume that [V] # 0
(otherwise the result is trivial). So [V] = M. Thus '+ All X are V.
So we have a proof tree? as on the left below:

AlX are V. AUV are W
All X are W

The tree overall has as leaves All V are W plus the leaves of the tree
above All X are V. QOverall, we see that all leaves are labeled by sen-
tences in I'. This tree shows that I' - All X are W. From this we
conclude that [W] = M. In particular, [V] C [W].

Now our claim implies that the model M we have defined makes all
sentences in I' true. So it must make the conclusion true. Therefore
[X] C[Y]- And [X] = M, since we have a one-point tree for All X
are X. Hence [Y] = M as well. But this means that ' All X are Y,
just as desired. -

A Stronger Result Theorem 1.2 proves the completeness of the logical
system. But it doesn’t give us all the information we would need to have
an efficient procedure to decide whether or not T' - S in this fragment.?

Lemma 1.3 Let T" be a set of sentence, and define < from T by
ULV 4ff THAIU areV (1.4)
Then < is a pre-order:
1. ForallU,U <U.
2. If ULV and V<W, thenU < W.

Define a relation < on the variables in question by: V < W if T
contains as an element AIl V are W. Let <* be the reflexive-transitive
closure of <. Once again, we note that <* depends on T'.

2The vertical dots : mean that there is some tree over I' establishing the sentence
at the bottom of the dots.

3The reason is that we still have to examine all possible models on a one element
set in order to check whether I' |= S or not. It might look like there are very few
such models. But if the sequent I' |= S contains k of our X variables, then there are
2% models to consider. The question of efficient decidability is for us the question of
whether a polynomial-time algorithm exist. For that, we need to do further work.
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(X, ,U) (X,y,v) (U,V,2)
(X,Y,X) (X,V)Y) (X,Y,Z)
FIGURE 1.3 The logic of All X which are Y are Z, written here (X,Y, Z).

Theorem 1.4 Let T' be any set of sentences in this fragment, let <*
be defined from I' as above. Let X and Y be any variables. Then the
following are equivalent:

1. THFAIl X are Y.
22.TEAI X are?Y.
3. X <X*Y.

Proof (1)=(2) is by soundness, and (3)=>(1) is by induction on
=<*. The most significant part (2)==-(3). Consider the model M whose
universe is a singleton {*}, and with [Z] = M iff X <* Z. We claim
that all sentences in I" are true in M. Consider All V' are W. We may
assume that [V] = M, or else our claim is trivial. Then X <* V. But
V X W, so we have X <* W, as desired. This verifies that M = T
And since [X] = M, we have [Y] = M as well. Thus X <* Y, as
needed for (3). —|

The original definition of the entailment relation I' = S involves
looking at all models of the language. Theorem 1.4 is important because
part (3) gives a criterion the entailment relation that is algorithmically
sensible. To see whether I' = All X areY or not, we only need to
construct <*. This is the reflexive-transitive closure of a syntactically
defined relation, so it is computationally very manageable.

1.1.1 A digression: All X which are Y are Z

At this point, we digress from our main goal of the examination of
the syllogistic system with which we began. Instead, we consider the
logic of All X which areY are Z. To save space, we abbreviate this
by (X,Y,Z). We take this sentence to be true in a given model M if
[X]IN[Y] C [Z]- Note that All X are Y is semantically equivalent to
(X, X,Y).

Theorem 1.5 The logic of All X which are Y are Z in Figure 1.3 is

complete.

Proof SupposeT | (X,Y, Z). Consider the interpretation M given by
M = {x}, and for each variable Z, [Z] = {«x} if '} (X,Y, Z). We claim
that for (U, V,W) e T, [U]N[V] C [W]. For this, we may assume that
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Some X areY Some X areY
SomeY are X Some X are X

ANlY are Z Some X areY
Some X are Z

FIGURE 1.4 The logic of Some and All, in addition to the logic of Al

M =[U]N[V]. So we use the proof tree

(X,V,U) (X,Y,V) (U, V,W)
(X, Y,w)
This shows that [W] = M, as desired.
Returning to our sentence (X,Y,Z), our overall assumption that

I'E=(X,Y, Z) tells us that (X,Y, Z) is true in M. The first two axioms
show that * € [X] N [Y]. Hence % € [Z]. That is, T F (X,Y, Z). -

Exercise 1.4 Let I" be a set of sentences in this fragment.

1. Show that if T' = (X,Y, Z), then T' = (Y, X, Z).
2. Show that if T' F (X,Y, Z), then T + (Y, X, Z).
3. Suppose that we remove the axiom (X,Y,Y’), and in its place take
the symmetry rule
Y, X, 2)
(X,Y, 2)

Show that the new system is complete.

Exercise 1.5 For each sentence S = All X are Y, let §* = (X, X,Y).
If T is a set of sentences of the first fragment, let I'* = {S*: S € T'}. It
is easy to check that if I' - S, then I'* - S*. Prove the converse. We say

that the system of this section is a conservative extension of the system
for All.

1.2 All and Some

We want to now enrich our language with sentences Some X are Y.
We call these sentences existentials, since formalizing them in first-order
logic would use the existential quantifier 3. As for all the fragments of
this chapter, the semantics is given in Figure 1.1.

Theorem 1.6 The first two rules in Figure 1.4 give a complete proof
system for Some.

13



Proof Suppose I' = Some X areY. Let M be the set of sets of
unordered pairs (i.e., sets with one or two elements) of variables. Let

[U] = {{U,V} :T contains Some U are V or Some V are U}.

Observe that the elements of [U] are unordered pairs with one ele-
ment being U. If T contains Some U are V', then {U,V} € [U]N[V].
So M satisfies the sentences in I'. By our assumption, M satisfies
Some X are Y. Thus [X]N[Y] # @. We have two cases, depending
on whether X # Y or X = Y. In the first case, by our observation
above we have [X]N[Y] = {X,Y}. This means that either Some X
are Y or Some Y are X belongs to I'. Either way, we easily see that
'+ S. The other case is when X =Y. Then to say that [X] N [Y] is
non-empty is to say the same of [X]. So for some Y, either Some X are
Y or Some Y are X belongs to I'. And now, we again see easily that
' Some X are X. 4

Lemma 1.7 LetT be any set of sentences in Some and All. Then there
is a model M with the following properties:

1. MET.
2. If S is any sentence in Some and M |= S, thenT'F S.
Proof List all of the existential sentences in I' in a list:
Some Vi are Wy, Some V5 are Ws,...,Some V,, are W, (1.5)

Note that we might have repeats among the V’s and W's, and that some
of these might well coincide with the X and Y that we are dealing with

in this proof. For the universe of M we take {1,...,n}, where n is the
number in (1.5). For each variable Z, we define
[Z] = {i:either V;<Zor W; < Z}. (1.6)

(Again, < is defined in (1.4).) This defines the model M.

Consider a sentence All P are @ in I'. Then P < @. It follows
from (1.5) and Lemma 1.3 that [P] C [Q]- Second, take an existential
sentence Some V; are W; on our list in (1.5) above. Then 1 itself belongs
to [Vi] N [W;], so this intersection is not empty.

These facts imply point (1) of our lemma: M = T. For (2), let S be
Some X are Y, and assume that [X] N[Y] # 0. Let ¢ belong to this
set. We have four cases, depending on whether V; < X or V; <Y, and
whether W; < X or W; < Y. One case is when V; < X and W; < Y.
Recalling that Some V; are W; belongs to I', we have a proof tree as

14



follows:
: Some V; are W;
AllV; are X  Some W; are V;
: Some W; are X
AlW; are Y Some X are W;

Some X areY
The other cases are similar. You might like to check the details to see
where the second rule of Some gets used. 4

Theorem 1.8 The system in Figures 1.2 and 1.4 is complete for the
logic of Some and All.

Proof Suppose that I' |= S. There are two cases, depending on whether
S is of the form All X areY or of the form Some X are Y. The cases
are handled differently. We leave the first to you as Exercise 1.6. The
second follows immediately from Lemma 1.7. 4

Exercise 1.6 Complete the proof of Theorem 1.8 by showing that if T’
is a set of sentences in All and Some, and if I' = All X are Y, then also
Al X areY.

Exercise 1.7 Let T be a set of sentences in All and Some, and let S
be a sentence in Some. As we know from Lemma 1.7, if T' I/ S, there is
a M | T" which makes S false. The proof gets a model M whose size
of the M will be the number of existential sentences in I'. Can we do
better?

1. Show that there is a model as desired whose size is at most 2.
2. Show that 2 is the smallest we can get by showing that if we only
look at one-element models, then

{Some X areY,SomeY are Z} |= Some X are Z

Exercise 1.8 Let I' be the set {All X are Y}. Prove that there is no
model M such that for all sentences S in the fragment of this section,
M E Siff T + S. The point of this problem is that there is some M’
with the property that for all S of the form Some U are V, M |= S iff
' S. But it is not possible to extend this result to sentences with All
So we cannot hope to avoid the split in the proof of Theorem 1.8 due to
the syntax of S.

Exercise 1.9 Give an algorithm which takes finite sets I' in the frag-
ment of this section and also single sentences S and tells whether ' = S
or not. [You may be sketchy, as we were in our discussion of this matter
at the end of Section 1.1.]
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M is J
J is J Jis M

JisM MisF Jisan X JisaY
J is F Some X areY

Al X areY Jisan X Misan X JisM
JisaY Jisan X

FIGURE 1.5 The logic of names, on top of the logic of All and Some.

Exercise 1.10 Suppose that one wants to say that All X are Y is true
when [X] C [Y] and also [X] # 0. Then the following rule becomes

sound:
All X areY

Some X areY

Show that if we add this rule to the proof system for this section, then
we get a complete system for the modified semantics. [Hint: Given T, let
T be T together with all sentences Some X are Y such that All X are Y
belongs to I'. Show that T' F S in the modified system iff T I S in the
old system.]

Exercise 1.11 What would you do to the system to add sentences of
the form Some X exists?

1.3 Adding Names

We continue by adding names so that we can deal with sentences like
John is a secretary and John is Mary. To our formal language we add
names J, M, ..., Ji, ..., Jn, ..., etc. The sentences we add to the
fragment are J is an X and J is M, where J and M are names and X
is a variable. The semantics may be found in Figure 1.1. To get a proof
system, we add the remaining rules in Figure 1.5.
Fix a set ' of sentences in this fragment. Let = be the relation on
names defined by
J=M if TFHJisM. (1.7)

Lemma 1.9 = is an equivalence relation.

Lemma 1.10 Let T be any set of sentences in Some, All, and names.
Then there is a model M with the following properties:

1. MET.
2. If S is any sentence in Some or names and M |= S, thenT I S.

Proof As before, we define < to be from (1.4). We also have the
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equivalence relation = from (1.7). Let the existential sentences in I' be
listed asin (1.5). Let the set of equivalence classes of = be [J1],. .., [Jm].

We take M to be {1,...,n}U{[J1],...,[Im]}. We assume these sets
are disjoint. We define

[Z] = {i:either V; < Z or W; < Z}

U {[J]: for some M € [J], T+ M is a Z} (1.8)

To finish defining our model, we take [J] = [J]. That is, the semantics
of J is the equivalence class [J].

It is easy to see that the semantics is monotone in the sense that
if V. < W, then [V] C [W]. This implies that all of the universal
assertions of I' are true in our model M. The existential assertions in
I" are Some V; is W; for i < n, and for each i, the number ¢ belongs to
[Vil N [W;]- The identity sentences J is M from T' are clearly true in
M. Finally, consider a sentence J is a Z in I'. Then '+ J is a Z. So
[J] =[J] € [Z]. This means that our sentence J is a Z is true in M.

Let M |= Some X are Y. If there is some number ¢ in [X] N [Y],
then the proof of Theorem 1.8 shows that I' - Some X are Y. The only
alternative is when for some J, [J] € [X]N[Y]. By the definition in
(1.8), there are M € [J] and N € [J] such that I' F M is an X and
' N is a Y. We thus have a proof tree over I':

MisJ JisN

: NisaY M is N
M is an X MisaY

Some X areY

SoI'F Some X areY, as desired.

Continuing, let M |= J is M. Then [J] = [M]. So by Lemma 1.9,
'Jis M.

Finally, suppose M |= J is an X. Then for some M, M € [J] and
' Misan X. So we see that I' F J is an X using the last rule in
Figure 1.5. =

Exercise 1.12 Prove that the logic of Figures 1.2, 1.4, and 1.5 is com-
plete for All, Some, and names.

1.4 Alland No

In this section, we consider the fragment with No X are Y on top of
All X are Y. In addition to the rules of Figure 1.2, we take the rules in
Figure 1.6.
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Lemma 1.11 Let I be any set of sentences in All and No. Then there
is a model M with the following properties:

1. M[ET.
2. If S is any sentence in All or No, and M | S, then T+ S.

Proof We take for M the set of sets a of variables satisfying the
following conditions:

(a) fV €aand V< W, then W € a.
(b) ¥ V,W € a,thenT tf No V are W.

(Note as a special case of (b) that if V € a, then ' I/ No V are V.) We
set
[Vl = {aeM:V ea}. (1.9)

We claim that M | T. Condition (a) implies that if All V are W
belongs to I', then [V] C [W]. Suppose that No V' are W belongs to
I'. Let a € [V]. Then V € a. By condition (b), W ¢ a. So a ¢ [W].
This argument shows that [V] N [W] = 0.

With (1) proved, we turn to (2). Let M = S. We first deal with the
case that S is the of the form All X are Y. Let

o« = {Z:X<2Z).

Case I: a ¢ M. Then there are VW € a such that ' - No V are W.
In this case,

All X areV. NoV are W
No X are W
All X are W No W are X
No X are X
All X areY (1.10)

Case IT: @ € M. Then since a € [X], we have a € [Y]. (1.9) tells us
that Y € a, and so '+ All X are Y, as desired.

This concludes our work when S is All X are Y. Suppose that S is
No X areY. Let

a = {Z:X<ZorY<Z}

Note that X,Y € a. We claim that s ¢ M. For if a € M, we would have
a € [X]N[Y]. And then [X]N[Y] # @. But this contradicts M [ S.
So indeed, a ¢ M. So there are V,W € a such that '+ No V are W.
There are four cases, depending on whether I' - All X are V or T'
All'Y are V, and similarly for W.
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All X are Z No Z areY No X areY
No X areY NoY are X

No X are X No X are X
No X areY All X areY

FIGURE 1.6 The logic of No X are Y on top of All X are Y.

Case . TH All X are V,and T'F All'Y are W. We have the tree:

: Al X are V. NoV are W
AllY are W No X are W
No X areY (1.11)

Case IL T+ All X are V,and T' F All X are W. In this case, take
the proof tree in (1.10) and change the root to No X are Y.
The remaining two cases are similar. 4

Theorem 1.12 The logic of Figures 1.2 and 1.6 is complete for All and
No.

1.5 The Full Logic

We now consider the full logic of Figure 1.1. We take all the rules in
Figures 1.2, 1.4, 1.5, and 1.6. We also must add a principle relating
Some and No. For the first time, we face the problem of potential
inconsistency: to say Some X are Y is to deny that No X are Y. There
are no models of Some X areY and No X are Y. We see that according
to our semantics, any sentence S whatsoever follows from these two. We
thus add the following rule to our proof system:
Some X areY No X areY
S (1.12)

So we have all the rules in Figure 1.7.

Definition A set I is inconsistent if I’ - S for all S. Otherwise, T is
consistent.

Theorem 1.13 The logic in Figure 1.7 is complete for the set of sen-
tences considered in this chapter.

Proof Let I be a set of sentences. Suppose that I' = S. We show that
' S. We may assume that I' is consistent, or else our result is trivial.

Divide T into four parts in the obvious way: Ty, T'some, I'No,
T pames- There are a number of cases.
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First suppose that S is a sentence in Some or Names. Let M be
from Lemma 1.10 for T 453 U Tsome U Tnames-

Case I: M |=T'n,. Then by hypothesis, M = S. Then Lemma 1.10
shows that ' - S, as desired.

Case II: There is some No A are B in I'y, such that [A] N [B] #
(. And again, Lemma 1.10 shows that Ty U Tsome U Tnames F
Some A are B. So I is inconsistent.

We also consider the case when S is a sentence in All or No. Let M
be from Lemma 1.11 for T' 45 U T yo.

Here is how we interpret a name J in M. Let

ay = {X:THJisan X}

We claim that a; € M. Clearly a is closed upwards in <. If a ¢ M,
then there are U, V € ay such that I' F No U are V. But now we see
that T is inconsistent:

J is-aU J is-aV
Some U are V NoU areV
T

This contradiction shows that ay € M. We take [J] = ay. It is easy to
check that now M satisfies all sentences in I';qmes-

Case I: M satisfies all sentences in I'gome. Then by hypothesis M |=
S. By Lemma 1.11, T+ S.

Case II: there is some sentence Some A are B in I'some such that
M £ Some A are B. But then M |= No A are B. By Lemma 1.11,
' - No A are B. So again using the rule in (1.12), we see that T' is
inconsistent and hence proves S. -

1.6 Additional Exercises
In these exercises, we are concerned with the full proof system.

Exercise 1.13 Prove that if I' - S, then there are infinitely many proof
trees which establish that I' - S.

Exercise 1.14 Let 7 be a proof tree over I' with more than one node.
Prove that either 7 is a proof tree over (), or else every variable and
name which occurs in 7 also occurs in some sentence in I

Exercise 1.15 Show that I' has a model iff T is consistent.

Exercise 1.16 Let I' U {Some X are Y} be inconsistent. Show that
'k No X areY. Similarly, let TU{No X are Y} be inconsistent. Show
that T'F Some X are Y. [Here it is important to give a proof-theoretic
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argument. Prove the first part by induction on the length of the shortest
path in a proof tree from a leaf labeled Some X are Y to a node labeled
with an instance of the rule in (1.12).]

Exercise 1.17 Let T" be a consistent set. Using Exercise 1.16, prove
that there is a consistent IV D T" such that for all X and Y, I contains
either Some X areY or No X areY, but I does not contain more
sentences than T in All or names. We call such a T a strong ertension
of I'. [You may work with the case of T" a finite set (even though the
result holds in general), since the details in the finite case contain all the
real work of the general case.]

The rest of the exercises outline a different proof of Theorem 1.13.
It is important not to use completeness in working those exercises.

Exercise 1.18 Let T" be a consistent set of sentences, and write I" as
1—‘All U I‘Some U 1—‘No U Fnames-

Let S be a sentence in All or No. Assume that ' = S, and prove
semantically that T' 4;UT' v, = S as well. [That is, take M = T 44Ul n,.
Find a model M™ so that M is a submodel of M*, and M+ =T. Our
assumption on T tells us that M* = S. And the submodel condition
implies that M | S.]

Exercise 1.19 Let I be consistent. Let M be the model from the proof
of Lemma 1.10 for T 451 U some U Tnames- Show that M |=T.

It follows from this fact that every consistent set I' has a model.

Exercise 1.20 Use Exercises 1.16, 1.18, and 1.19 to give a different
proof of the Completeness Theorem 1.13. [You’ll need to show that if T’
is consistent and I' = S, then I' - S. For this, we again need a split into
cases. The cases of All and No use Theorem 1.12.]

Exercise 1.21 The classical syllogisms also considered sentences Some
X is not a Y. In our setting, it makes sense also to add other sentences
with negative verb phrases: J is not an X, and J is not M. Give some
sound proof rules for these sentences (on top of the system we already
have).

Exercise 1.22 Adding your rules to those in Figure 1.7, prove the com-
pleteness of your system. [It will probably be easiest to use the method
of Exercise 1.20. Having the extra sentences around adds a balance
to the system and often makes it easier to prove theoretical properties
like completeness, despite the additional cases that come from a bigger
syntax.]

Exercise 1.23 Consider the language £ with All X are Y, Some X
are Y, No X are Y ,Some X are not Y, and sentence involving names
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as we’ve seen them. But
R = All X which areY are Z

is not part of the language £. The problem here is to show that it cannot
be expressed L. That is, there is no set I' of sentences in £ such that
for all M, M =T iff M = R. Here is an outline of the proof.

1. Consider the model M with universe {z,y,a} with [X] = {z,a},
[Y] = {y,a}, [Z] = {a}, and also [U] = 0 for other variables
U, and [J] = = for all names J. Consider also a model N with
universe {z,y,a,b} with [X] = {z,a,b}, [Y] = {y,a,b}, [Z] =
{a}, and the rest of the structure the same as in M. Show that
for all sentences S'in L, M = Siff N = S.

2. Suppose towards a contradiction that we could express R, say by
the set T'. Then since M and N agree on all sentences of £, they
agree on I'. But M = R and N }£ R, a contradiction.

Exercise 1.24 As a continuation of Exercise 1.23, show that in £ we
cannot express No X which are Y are Z.

Exercise 1.25 For any sentence S, let S[J/M] be the same as S except
that all J’s are replaced by M’s. Suppose that the set I" has the property
that if S € T, then S[J/M] € T. Show that for all S, if ' = S, then
T = S[J/M].
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All X are X

Some X areY
SomeY are X

AllY are Z Some X areY
Some X are Z

M is J
Jis M

Jisan X JisaY
Some X areY

Misan X JisM
Jisan X

No X areY
NoY are X

No X are X

Al X are Z AllZ areY
All X areY

Some X are Y
Some X are X

Jis J

JisM MisF
Jis F

All X areY Jisan X
JisaY

AllX are Z No Z areY
No X areY

No X are X
No X areY

Some X areY No X areY

All X areY

S

FIGURE 1.7 The rules of the system in this chapter.
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