Arrow’s Theorem
Eric Pacuit
September 20, 2012

Notation

- X is a (finite or infinite) set of alternatives (or candidates).
- $N = \{1, \ldots, n\}$ is a set of voters
- Preferences: $\mathcal{P} = \{R \mid R \subseteq W \times W \text{ where } R \text{ is reflexive, transitive and connected}\}$.
- Given $R \in \mathcal{P}$, let P be the strict preference generated by R: xPy iff xRy and not yRx (we write P_R if necessary).
- A profile is a tuple $(R_1, \ldots, R_n) \in \mathcal{P}^n$.
- Social Welfare Function: $F : \mathcal{D} \to \mathcal{P}$ where $\mathcal{D} \subseteq \mathcal{P}^n$ is the domain.

Axioms

- Universal Domain (UD): The domain of F is \mathcal{P}^n (i.e., $\mathcal{D} = \mathcal{P}^n$)
- Independence of Irrelevant Alternatives (IIA): F satisfies IIA provide for all profiles $\vec{R}, \vec{R}' \in \mathcal{D}$, if xR_iy iff xR'_iy for all $i \in N$, then $xF(\vec{R})y$ iff $xF(\vec{R}')y$
- (weak) Pareto (P): For all profiles $\vec{R} \in \mathcal{D}$, if xP_iy for all $i \in N$ then $xP_{F(\vec{R})}y$
- Agent i is a dictator for F provided for every preference profile and every pair $x, y \in X$, xP_iy implies $xP_{F(\vec{R})}y$.

Arrows Impossibility Theorem: Suppose that $|X| \geq 3$ and F satisfies UD, IIA and P. Then there is some $i \in N$ that is a dictator for F.

1