Abstract. We assume that people have a need to make statements, and construct a model in which this need is the sole determinant of voting behavior. In this model, an individual selects a ballot that makes as close a statement as possible to her ideal point, where abstaining from voting is a possible (null) statement. We show that in such a model, a political system that adopts approval voting may be expected to enjoy a significantly higher rate of participation in elections than a comparable system with plurality rule.
A set of parties $T = \{1, \ldots, m\}$, each party $j \in T$ is characterized by its positions on the various issues of concern $I = \{1, \ldots, n\}$.

A set of parties $T = \{1, \ldots, m\}$, each party $j \in T$ is characterized by its positions on the various issues of concern $I = \{1, \ldots, n\}$.

$v^j \in \mathbb{R}^n$ be the vector denoting party j’s positions. $v^j_i \in \mathbb{R}$ is the degree to which organization j supports issue i.
A set of parties \(T = \{1, \ldots, m\} \), each party \(j \in T \) is characterized by its positions on the various issues of concern \(I = \{1, \ldots, n\} \).

\(\nu^j \in \mathbb{R}^n \) be the vector denoting party \(j \)'s positions. \(\nu^j_i \in \mathbb{R} \) is the degree to which organization \(j \) supports issue \(i \).

The voter considers every possible ballot she may cast as a vector \(x = (x_1, \ldots, x_m) \in \mathbb{R}_+^m \), where \(x_j \) is the degree to which the ballot supports party \(j \). The voting system determines a subset \(F \subset \mathbb{R}_+^m \) of feasible values for \(x \).
1. Abstention corresponds to the null statement $0 \in \mathbb{R}^n$;
2. A voter for a single party corresponds to the position $v^j \in \mathbb{R}^n$ of that party; and
3. A voter approving of a non-empty set of parties corresponds to the arithmetic average of their positions.
1. Abstention corresponds to the null statement $0 \in \mathbb{R}^n$;
2. A voter for a single party corresponds to the position $v^j \in \mathbb{R}^n$ of that party; and
3. A voter approving of a non-empty set of parties corresponds to the arithmetic average of their positions.

A ballot $x \in \mathbb{R}^m_+$ makes the statement

$$Vx = \sum_{j \in T} x_j v^j \in \mathbb{R}^n$$
Plurality rule, in which a voter selects a single party. In this case the degree of support is \(x^j = 1 \) for the selected party and \(x^j = 0 \) for the others. \(F^M = \{0\} \cup \{e^j\}_{j \leq m} \) where \(e^j \) is the vector with 1 in the \(j \)th position.
Plurality rule, in which a voter selects a single party. In this case the degree of support is $x^j = 1$ for the selected party and $x^j = 0$ for the others. $F^M = \{0\} \cup \{e^j\}_{j \leq m}$ where e^j is the vector with 1 in the jth position.

Approval voting, in which a voter may choose any subset of parties as her vote. We model an individual who selects a non-empty subset $S \subset T$ as choosing the vector

$$x = \frac{1}{|S|} \sum_{j \in S} e^j$$

that is, as supporting each party to degree $\frac{1}{|S|}$.

This reflects the fact that the strength of the statement made in favor of a party by endorsing it depends on the other parties one endorses.
A voter with an ideal point \(w \in \mathbb{R}^n \) may be modeled as solving the following problem:

\[
\min_{x \in F} \left\| \sum_{j \in A} x^j v^j - w \right\|
\]
A voter with an ideal point \(w \in \mathbb{R}^n \) may be modeled as solving the following problem:

\[
\min_{x \in F} \left\| \sum_{j \in A} x^j v^j - w \right\|
\]

If the solution to this problem is \(x = 0 \in \mathbb{R}^m \), the voter will abstain.

Abstention does not result from the cost of voting, but rather from the fact that the voter feels dissatisfied with any statement that the political systems allows her to make.
Issue 1 is free trade and issue 2 is legalized abortions.
Issue 1 is free trade and issue 2 is legalized abortions.

Party R takes the position $(1, 1)$ meaning that it supports free trade agreements and legalized abortions.
Issue 1 is free trade and issue 2 is legalized abortions.

Party R takes the position $(1, 1)$ meaning that it supports free trade agreements and legalized abortions.

Party L takes the position $(-1, 1)$ standing for an opposition to free-trade agreement, but support for legalized abortions.
Issue 1 is free trade and issue 2 is legalized abortions.

Party R takes the position $(1, 1)$ meaning that it supports free trade agreements and legalized abortions.

Party L takes the position $(-1, 1)$ standing for an opposition to free-trade agreement, but support for legalized abortions.

Consider a voter with ideal point $w = (0, 0.8)$.
Under plurality, she has to choose the statements
\{(0, 0), (1, 1), (−1, 1)\}

(0, 0) is closest to (0, .8), so the voter will abstain.

Under approval voting, endorsing both
\(R\) and \(L\) results in the
statement
\(0.5(1, 1) + 0.5(−1, 1) = (0, 1)\),
which is closer to (0, .8) than is (0, 0).

Conclusion: the individual will participate under Approval Voting, but not under Plurality.
Under plurality, she has to choose the statements
\{(0, 0), (1, 1), (−1, 1)\}

(0, 0) is closest to (0, .8), so the voter will abstain.

Under approval voting, endorsing both \(R \) and \(L \) results in the statement
\[0.5(1, 1) + 0.5(−1, 1) = (0, 1),\]
which is closer to (0, 0.8) than is (0, 0).
Under plurality, she has to choose the statements
\{(0, 0), (1, 1), (−1, 1)\}

(0, 0) is closest to (0, .8), so the voter will abstain.

Under approval voting, endorsing both R and L results in the
statement $0.5(1, 1) + 0.5(−1, 1) = (0, 1)$, which is closer to (0, 0.8)
than is (0, 0).

Conclusion: the individual will participate under Approval Voting,
but not under Plurality.
Imagine that there are three issues and three parties. The voter's position is \((1, 1, 1)\).
Imagine that there are three issues and three parties. The voters position is \((1, 1, 1)\)

Each party agrees with the voter on two issues, and disagrees on the last. Thus, their position vectors are \((-1, 1, 1)\), \((1, -1, 1)\), and \((1, 1, -1)\).
Imagine that there are three issues and three parties. The voter's position is (1, 1, 1).

Each party agrees with the voter on two issues, and disagrees on the last. Thus, their position vectors are (−1, 1, 1), (1, −1, 1), and (1, 1, −1).

The voter will prefer to abstain rather than to vote to any single party (for instance, $||(0, 0, 0) − (1, 1, 1)|| = \sqrt{3} < ||(−1, 1, 1) − (1, 1, 1)|| = 2$).
Imagine that there are three issues and three parties. The voter's position is \((1, 1, 1)\).

Each party agrees with the voter on two issues, and disagrees on the last. Thus, their position vectors are \((-1, 1, 1)\), \((1, -1, 1)\), and \((1, 1, -1)\).

The voter will prefer to abstain rather than to vote to any single party (for instance,
\[\|(0, 0, 0) - (1, 1, 1)\| = \sqrt{3} < \|(-1, 1, 1) - (1, 1, 1)\| = 2\])

By contrast, approving of all three parties yields the vector \((1/3, 1/3, 1/3)\) which is closer to \((1, 1, 1)\) than is \((0, 0, 0)\).
Assumptions: (1) Each party has to take a position on each issue (without it a party may position itself at the origin, in which case no voter would strictly prefer to abstain under either voting system)

(2) each individual has an ideal point $w \in \mathbb{R}^n$ that reflects a position on every issue ($w_i \in \{-1, 1\}$ for every i)
Assumptions: (1) Each party has to take a position on each issue (without it a party may position itself at the origin, in which case no voter would strictly prefer to abstain under either voting system)

(2) each individual has an ideal point $w \in \mathbb{R}^n$ that reflects a position on every issue ($w_i \in \{-1, 1\}$ for every i)

Under these assumptions, there are two results that attempt to capture the fact that a richer set of possible statements will make more individuals vote.
Assumptions: (1) Each party has to take a position on each issue (without it a party may position itself at the origin, in which case no voter would strictly prefer to abstain under either voting system)

(2) each individual has an ideal point $w \in \mathbb{R}^n$ that reflects a position on every issue ($w_i \in \{-1, 1\}$ for every i)

Under these assumptions, there are two results that attempt to capture the fact that a richer set of possible statements will make more individuals vote.

For a given number of issues n, let $K_M(n)$ ($K_A(n)$) be the minimal number of parties that guarantee that each individual casts a ballot in a plurality (approval) system.

Theorem. $K_M(n)$ is bounded below by an exponential function of n, whereas $K_A(n)$ is bounded above by 4.
Let $U(A)$ be the set of real-valued “utility functions” defined over A, an aggregation function is

$$F : U(A)^n \rightarrow \wp(A) - \{\emptyset\}$$
Let $U(A)$ be the set of real-valued “utility functions” defined over A, an aggregation function is

$$F : U(A)^n \rightarrow \wp(A) - \{\emptyset\}$$

Assumes the existence of an absolute scale over which the utilities of individuals are measured and compared.
Let $U(A)$ be the set of real-valued “utility functions” defined over A, an aggregation function is

$$F : U(A)^n \to \wp(A) - \{\emptyset\}$$

Assumes the existence of an absolute scale over which the utilities of individuals are measured and compared.

At the other extreme, rule out any kind of cardinal information and interpersonal comparability, partitions $U(A)^n$ into cells which are *ordinally equivalent*:

$$F : W(A)^n \to \wp(A) - \{\emptyset\}$$

where $W(A)$ is the set of *weak orderings* on A.
Approval Voting

\[F : W(A \cup \{0\})^n \rightarrow \wp(A) - \{\emptyset\} \]

where 0 separates the “good” and “bad” elements.
Approval Voting

\[F : \mathcal{W}(A \cup \{0\})^n \to \mathcal{P}(A) - \{\emptyset\} \]

where 0 separates the “good” and “bad” elements.

“approval is not a strategic actions but has an intrinsic meaning: It refers to the alternatives which are qualified as good.”
Voting Mechanism

- the specific form of the voters’ and judges’ *inputs*, the *messages* used to exert their wills, and
- the procedure by which the inputs or messages are amalgamated or transformed into a final decision, social choice, or *output*.
Grading

In many situations, people use measures or grades that are well defined **absolute common languages of evaluation** to define decision mechanisms:

- in figure skating (new system), diving and gymnastics competitions;
- in piano, ute and orchestra competitions;
- in classifying wines at wine competitions;
- in ranking university students;
- in classifying hotels and restaurants, e.g., the Michelin *
Grading

“Judges and voters have complex aims, ends, purposes, and wishes: their preferences or utilities. A judge’s or a voter’s preferences may depend on many factors, including his beliefs about what is right and wrong, about the common language, about the method that transforms input messages into decisions, about the other judges’ or voters’ acts and behaviors, in addition to his evaluations of the competitors or candidates. But the judges’ or voters’ input messages—the grades they give—are assuredly not their preferences: a judge may dislike a wine, a dive, or a part of a skater’s performance yet give it a high grade because of its merits; or a judge may like it yet give it a low grade because of its demerits.” (pg. 3)
Majority Grade

The *majority-grade* is the (assuming an odd number of judges) *median* grade (the grade that is in the middle of the list when the grades or ordered). If there is an even number of judges, then the majority grade is the lowest grade in the middle interval.
Majority Grade

The *majority-grade* is the (assuming an odd number of judges) *median* grade (the grade that is in the middle of the list when the grades or ordered). If there is an even number of judges, then the majority grade is the lowest grade in the middle interval.

Eg., Consider a common language of ten integers \{0, 3, 5, 6, \ldots, 11, 13\}
Majority Grade

The *majority-grade* is the (assuming an odd number of judges) *median* grade (the grade that is in the middle of the list when the grades or ordered). If there is an even number of judges, then the majority grade is the lowest grade in the middle interval.

Eg., Consider a common language of ten integers
\{0, 3, 5, 6, \ldots, 11, 13\}

\{7, 7, 8, 8, 8, 9, 10, 11, 11\}: The majority grade is 8.
Majority Grade

The *majority-grade* is the (assuming an odd number of judges) *median* grade (the grade that is in the middle of the list when the grades or ordered). If there is an even number of judges, then the majority grade is the lowest grade in the middle interval.

Eg., Consider a common language of ten integers \{0, 3, 5, 6, \ldots, 11, 13\}

\{7, 7, 8, 8, 8, 9, 10, 11, 11\}: The majority grade is 8.

\{7, 7, 8, 8, 11, 11, 11, 13\}: The majority interval is \{8, 9, 10, 11\}, so the majority grade is 8.
The *majority-grade* is the (assuming an odd number of judges) *median* grade (the grade that is in the middle of the list when the grades are ordered). If there is an even number of judges, then the majority grade is the lowest grade in the middle interval.

Eg., Consider a common language of ten integers
\{0, 3, 5, 6, \ldots, 11, 13\}
\{7, 7, 8, 8, \textbf{8}, 9, 10, 11, 11\}: The majority grade is 8.
\{7, 7, 8, \textbf{8}, 11, 11, 11, 13\}: The majority interval is \{8, 9, 10, 11\}, so the majority grade is 8.

Suppose A’s grades are \{7, 7, 8, 8, 11, 11, 11, 13\}
Suppose B’s grades are \{9, 9, 9, 9, 10, 10, 10\}
B should be ranked higher than A
Dealing with ties

When two competitors have different majority-grades, the competitor with the higher grade is naturally ranked higher.
Dealing with ties

When two competitors have different majority-grades, the competitor with the higher grade is naturally ranked higher.

A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}
Dealing with ties

When two competitors have different majority-grades, the competitor with the higher grade is naturally ranked higher.

A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}

The second majority grade is found:
A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}
Dealing with ties

When two competitors have different majority-grades, the competitor with the higher grade is naturally ranked higher.

A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}

The second majority grade is found:
A’s grades: \{7, \textbf{9}, 9, 11, 11\}
B’s grades: \{8, \textbf{9}, 9, 10, 11\}

The third majority grade is found:
A’s grades: \{7, 9, 9, \textbf{11}, 11\}
B’s grades: \{8, 9, 9, \textbf{10}, 11\}
Dealing with ties

When two competitors have different majority-grades, the competitor with the higher grade is naturally ranked higher.

A's grades: \{7, 9, 9, 11, 11\}
B's grades: \{8, 9, 9, 10, 11\}

The second majority grade is found:
A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}

The third majority grade is found:
A’s grades: \{7, 9, 9, 11, 11\}
B’s grades: \{8, 9, 9, 10, 11\}

So, A is ranked above B.
The Model

A common language Λ: a set of strictly ordered grades: $\alpha, \beta, \gamma, \ldots$;

A finite set of m competitors (alternatives, candidates, performances, competing goods) $C = \{A, B, \ldots, I, \ldots, Z\}$; and

A finite set of n judges $J = \{1, \ldots, j, \ldots, n\}$.

A problem is specified by a profile $\Phi = \Phi(C, J)$: $m \times n$ matrix of grades assigned to the competitors (rows) by the judges (columns).
Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I, II, and III. The grades that the voters may assign are A, B, C, D, or F (from best to worst).
Example

Suppose that there are five voters, 1, \ldots, 5 and three candidates I, II, and III. The grades that the voters may assign are A, B, C, D, or F (from best to worst).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>II</td>
<td>B</td>
<td>B</td>
<td>F</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>III</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
</tbody>
</table>
Example

Suppose that there are five voters, 1, \ldots, 5 and three candidates I, II, and III. The grades that the voters may assign are A, B, C, D, or F (from best to worst).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>II</td>
<td>B</td>
<td>B</td>
<td>F</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>III</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
</tbody>
</table>

Candidates I, II, and III receive *majority grades* (median grades) C, B and C, respectively. Thus Candidate II would be declared the winner.
Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I, II, and III. The grades that the voters may assign are A, B, C, D, or F (from best to worst).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>II</td>
<td>B</td>
<td>B</td>
<td>F</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>III</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
</tbody>
</table>

Candidate II is ranked above candidate I: Is this reasonable? If asked their preference, then candidate I is preferred to II by 4 judges.
The Thesis

1. The traditional model is a bad model, in theory and in practice
2. The majority judgement is a better alternative to all other known methods, in theory and in practice
ELECTING VS. RANKING: CONDORCET’S RANKING

Condorcet-ranking (also known as Kemeny’s rule) associates a score to each possible rank ordering:

- A voter contributes k Condorcet-points to a rank-ordering if his input agrees in k pair-by-pair comparisons.
- The Condorcet-score of a rank-ordering is the sum of its Condorcet-points over all voters.
- The Condorcet-ranking is the ranking that maximizes the Condorcet-score.
Electing vs. Ranking

Is Bordas method good for designating a winner, or a ranking, or both?

Is Condorcets method good for designating a winner, or a ranking, or both?
Electing vs. Ranking

Is Bordas method good for designating a winner, or a ranking, or both?

Is Condorcets method good for designating a winner, or a ranking, or both?

- Given a method of ranking, the first-placed candidate is the winner.
- Given a method of designating a winner (or loser), he is the first-ranked (or last-ranked); the second-ranked is the winner among the remaining candidates, and so on.
Are ranking and designating winners two sides of one coin?

<table>
<thead>
<tr>
<th>333</th>
<th>333</th>
<th>333</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

According to Borda: A is the winner, B is the loser. Thus, society's order is A ≻ C ≻ B.

According to Condorcet: A ≻ B ≻ C and C ≻ A ≻ B are tied for first.

▶ No reasonable ranking function must choose A ≻ C ≻ B.

▶ Any reasonable choice function must choose A ≻ C ≻ B.

There is a fundamental incompatibility between electing and ranking.
Are ranking and designating winners two sides of one coin?

<table>
<thead>
<tr>
<th>333</th>
<th>333</th>
<th>333</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

According to Borda: A is the winner, B is the loser. Thus, society’s order is \(A \succ C \succ B \)
Are ranking and designating winners two sides of one coin?

\[
\begin{array}{cccc}
333 & 333 & 333 & 1 \\
A & B & C & A \\
B & C & A & C \\
C & A & B & B \\
\end{array}
\]

According to Borda: A is the winner, B is the loser. Thus, society’s order is \(A \succ C \succ B \)

According to Condorcet: \(A \succ B \succ C \) and \(C \succ A \succ B \) are tied for first.
Are ranking and designating winners two sides of one coin?

\[
\begin{array}{cccc}
333 & 333 & 333 & 1 \\
A & B & C & A \\
B & C & A & C \\
C & A & B & B \\
\end{array}
\]

According to Borda: \(A \) is the winner, \(B \) is the loser. Thus, society’s order is \(A \succ C \succ B \)

According to Condorcet: \(A \succ B \succ C \) and \(C \succ A \succ B \) are tied for first.

- No reasonable **ranking function** must choose \(A \succ C \succ B \)
- Any reasonable **choice function** must choose \(A \succ C \succ B \)

There is a fundamental incompatibility between electing and ranking.
Conclusion: The traditional model’s inputs are inadequate messages and must be reformulated.

Strategic Grading

The median grade encourages sincere grading.
Strategic Grading

The *median grade* encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.
Strategic Grading

The *median grade* encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.

If an examiner were informed of the grades awarded by the other examiners, she would have no incentive to change her grade.
Strategic Grading

The *median grade* encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.

If an examiner were informed of the grades awarded by the other examiners, she would have no incentive to change her grade.

If the examiner’s grade coincides with the median, there is no incentive to change
Strategic Grading

The *median grade* encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.

If an examiner were informed of the grades awarded by the other examiners, she would have no incentive to change her grade.

If the examiner’s grade coincides with the median, there is no incentive to change.

If the examiner’s grade turns out to be lower than the median, there is no incentive to change: lowering the grade would not change the result, raising the grade may result in a *higher* median grade.
Strategic Grading

The *median grade* encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.

If an examiner were informed of the grades awarded by the other examiners, she would have no incentive to change her grade.

If the examiner’s grade coincides with the median, there is no incentive to change.

If the examiner’s grade turns out to be lower than the median, there is no incentive to change: lowering the grade would not change the result, raising the grade may result in a *higher* median grade.

Similarly, if the examiner’s grade turns out to be higher than the median grade.
If the judges act sincerely, then z is the winner.

Both 1 and 2 would prefer that x wins.

1 can downgrade z to D, then x will win.

2 can upgrade x from C to A, then x will win.

3 cannot do anything about this.
If the judges act sincerely, then \(z \) is the winner
If the judges act sincerely, then z is the winner.

Both 1 and 2 would prefer that x wins.
If the judges act sincerely, then z is the winner.

Both 1 and 2 would prefer that x wins.

1 can down grade z to D, then x will win.
If the judges act sincerely, then z is the winner

Both 1 and 2 would prefer that x wins

1 can down grade z to D, then x will win

2 can upgrade x from C to A, then x will win
If the judges act sincerely, then z is the winner.

Both 1 and 2 would prefer that x wins.

1 can downgrade z to D, then x will win.

2 can upgrade x from C to A, then x will win.

3 cannot do anything about this.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>y</td>
<td>D</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>D</td>
<td>A</td>
</tr>
</tbody>
</table>

- If the judges act sincerely, then \(z \) is the winner.
- Both 1 and 2 would prefer that \(x \) wins.
- 1 can downgrade \(z \) to \(D \), then \(x \) will win.
- 2 can upgrade \(x \) from \(C \) to \(A \), then \(x \) will win.
- 3 cannot do anything about this.
Region I

\[
\begin{array}{cccc}
 x & 21 & A & 31 \ B & 48 \ C & 1 \ D \\
 y & 40 & A & 11 \ B & 48 \ C & 2 \ D \\
\end{array}
\]

\textit{Winner: } y
Region I

\[
\begin{array}{cccc}
 x & 21 & A & 31 & B & 48 & C & 1 & D \\
y & 40 & A & 11 & B & 48 & C & 2 & D \\
\end{array}
\]

Winner: \textit{y}

Region II

\[
\begin{array}{cccc}
 x & 1 & A & 46 & B & 14 & C & 40 & D \\
y & 1 & A & 45 & B & 33 & C & 22 & D \\
\end{array}
\]

Winner: \textit{y}
Region I

\[
\begin{array}{cccc}
 x & 21 & A & 31 & B & 48 & C & 1 & D \\
 y & 40 & A & 11 & B & 48 & C & 2 & D \\
\end{array}
\]

Winner: y

Region II

\[
\begin{array}{cccc}
 x & 1 & A & 46 & B & 14 & C & 40 & D \\
 y & 1 & A & 45 & B & 33 & C & 22 & D \\
\end{array}
\]

Winner: y

Region III

\[
\begin{array}{cccc}
 x & 40 & B & 20 & C & 41 & D \\
 y & 48 & B & 3 & C & 50 & D \\
\end{array}
\]

Winner: y
<table>
<thead>
<tr>
<th>Region I</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x 21 A 31 B 48 C 1 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 40 A 11 B 48 C 2 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winner: y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region II</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x 1 A 46 B 14 C 40 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 1 A 45 B 33 C 22 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winner: y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region III</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x 40 B 20 C 41 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 48 B 3 C 50 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winner: y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Merged</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x 22 A 117 B 82 C 82 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y 41 A 104 B 84 C 74 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winner: x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voters who are indifferent between all candidates may decide to abstain from voting, or to express their indifference actively.
Voters who are indifferent between all candidates may decide to abstain from voting, or to express their indifference actively.

\[
\begin{array}{ccc}
 x & 3 & 4 & 4 \\
 y & 2 & 5 & 5 \\
\end{array}
\]

Winner: \(y\)
Voters who are indifferent between all candidates may decide to abstain from voting, or to express their indifference actively.

\[
\begin{array}{ccccc}
 x & 3 & 4 & 4 & \text{Winner: } y \\
 y & 2 & 5 & 5 & \\
\end{array}
\]

\[
\begin{array}{ccccc}
 x & 1 & 1 & 3 & 4 & 4 & \text{Winner: } x \\
 y & 1 & 1 & 2 & 5 & 5 & \\
\end{array}
\]