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Plan for the week

1. Monday Basic Concepts.

2. Tuesday Epistemics.

3. Wednesday Fundamentals of Epistemic Game Theory.

4. Thursday Tree, Puzzles and Paradoxes.

5. Friday More Puzzles, Extensions and New Directions.

• Admissibility continued.
• The Brandenburger-Kiesler Paradox.
• Nash Equilibrium?
• Concluding remarks.
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LPS: (µ0, µ1, . . . , µn−1) (each µi is a probability measure with
disjoint supports)

(si , ti ) is rational provided (i) si lexicographically maximizes i ’s
expected payoff under the LPS associated with ti , and (ii) the LPS
associated with ti has full support.

A player assumes E provided she considers E infinitely more likely
than not-E .

The key notion is rationality and common assumption of
rationality (RCAR).
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But, there’s more...
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“Under admissibility, Ann considers everything possible. But this is
only a decision-theoretic statement. Ann is in a game, so we
imagine she asks herself: “What about Bob? What does he
consider possible?” If Ann truly considers everything possible, then
it seems she should, in particular, allow for the possibility that Bob
does not! Alternatively put, it seems that a full analysis of the
admissibility requirement should include the idea that other players
do not conform to the requirement.” (pg. 313)

A. Brandenburger, A. Friedenberg, H. J. Keisler. Admissibility in Games. Econo-
metrica (2008).
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

The IA set
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

I All (L, bi ) are irrational, (C , bi ), (R, bi ) are rational if bi has
full support, irrational otherwise

I D is optimal then either µ(C ) = µ(R) = 1
2 or µ assigns

positive probability to both L and R.
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

I Fix a rational (D, a) where a assumes that Bob is rational.
(a 7→ (µ0, . . . , µn−1))

I Let µi be the first measure assigning nonzero probability to
{L} × TB (i 6= 0 since a assumes Bob is rational).
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

I Let µi be the first measure assigning nonzero probability to
{L} × TB (i 6= 0).

I for each µk with k < i : (i) µk assigns probability 1
2 to

{C} × TB and 1
2 to {R} × TB ; and (ii) U,M,D are each

optimal under µk .
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T 4,0 4,1 0,1
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D 3,0 2,1 2,1

I for each µk with k < i : (i) µk assigns probability 1
2 to

{C} × TB and 1
2 to {R} × TB ; and (ii) T ,M,D are each

optimal under µk .

I D must be optimal under µi and so µi assigns positive
probability to both {L} × TB and {R} × TB .
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

I D must be optimal under µi and so µi assigns positive
probability to both {L} × TB and {R} × TB .

I Rational strategy-type pairs are each infinitely more likely that
irrational strategy-type pairs. Since, each point in {L} ×TB is
irrational, µi must assign positive probability to irrational
pairs in {R} × TB .
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Irrationality

2

1

L C R

T 4,0 4,1 0,1

M 0,0 0,1 4,1

D 3,0 2,1 2,1

I µi must assign positive probability to irrational pairs in
{R} × TB .

I This can only happen if there are types of Bob that do not
consider everything possible.
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Brandenburger-Kiesler Paradox

The Brandenburger-Keisler Paradox
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Brandenburger-Kiesler Paradox

2

1

l c r

t 4,4 1,1 0,0

m 1,1 5,5 0,0

d 0,1 0,1 6,0

b

l 1

c 0

r 0

a

t 1

m 0

d 0

The projection of RCBR is {(t, l)}
This is not the entire ISDS set

“Game independent” conditions
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Brandenburger-Kiesler Paradox

2

1

l c r

t 4,4 1,1 0,0

m 1,1 5,5 0,0

d 0,1 0,1 6,0

b

l 1

c 0

r 0

a

t 1

m 0

d 0

I The projection of RCBR is {(t, l)}
I This is not the entire ISDS set

I “Game independent” conditions and rich type structures
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Brandenburger-Kiesler Paradox

A Question

I For any given set S of external states we can use a Bayesian
model or a type space on S to provide consistent
representations of the players’ beliefs.

I Every state in a belief model or type space induces an infinite
hierarchy of beliefs, but not all consistent and coherent
infinite hierarchies are in any finite model. It is not obvious
that even in an infinite model that all such hierarchies of
beliefs can be represented.

I Which type space is the “correct” one to work with?
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Brandenburger-Kiesler Paradox

Some Literature

A. Brandenburger and E. Dekel. Hierarchies of Beliefs and Common Knowledge.
Journal of Economic Theory (1993).

A. Heifetz and D. Samet. Knoweldge Spaces with Arbitrarily High Rank. Games
and Economic Behavior (1998).

L. Moss and I. Viglizzo. Harsanyi type spaces and final coalgebras constructed
from satisfied theories. EN in Theoretical Computer Science (2004).

A. Friendenberg. When do type structures contain all hierarchies of beliefs?.
working paper (2007).
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Brandenburger-Kiesler Paradox

The General Question

Does there exist a space of “all possible” beliefs?
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Brandenburger-Kiesler Paradox

Ann’s States Bob’s States

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type?
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Brandenburger-Kiesler Paradox

Ann’s States Bob’s States

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type? It depends...
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Brandenburger-Kiesler Paradox

A Paradox

Ann believes that Bob assumes∗ that
Ann believes that Bob’s assumption is wrong.

Does Ann believe that Bob’s assumption is wrong?

∗ An assumption (or strongest belief) is a belief that implies all
other beliefs.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in
Games. Studia Logica (2006).
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A Paradox
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Then according to Ann, Bob’s assumption is right.
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So, the answer must be no.
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Ann believes that Bob assumes∗ that
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Does Ann believe that Bob’s assumption is wrong? No.

Then Ann does not believe that Bob’s assumption is wrong.

Then, in Ann’s view, Bob’s assumption is wrong.

Eric Pacuit and Olivier Roy 12



Brandenburger-Kiesler Paradox

A Paradox

Ann believes that Bob assumes∗ that
Ann believes that Bob’s assumption is wrong.

Does Ann believe that Bob’s assumption is wrong? No.

Then Ann does not believe that Bob’s assumption is wrong.

Then, in Ann’s view, Bob’s assumption is wrong.

So, the answer must be yes.
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Brandenburger-Kiesler Paradox

S. Abramsky and J. Zvesper. From Lawvere to Brandenburger-Keisler: interac-
tive forms of diagonalization and self-reference. Proceedings of LOFT 2010.

EP. Understanding the Brandenburger Keisler Pardox. Studia Logica (2007).
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Brandenburger-Kiesler Paradox

Impossibility Results

Language: the (formal) language used by the players to
formulate conjectures about their opponents.

Completeness: A model is complete for a language if every
(consistent) statement in a player’s language about an opponent is
considered by some type.
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Brandenburger-Kiesler Paradox

Qualitative Type Spaces: 〈Ta,Tb, λa, λb〉

λa : Ta → ℘(Tb)
λb : Tb → ℘(Ta)

x believes a set Y ⊆ Tb if {y | y ∈ λa(x)} ⊆ Y

x assumes a set Y ⊆ Tb if {y | y ∈ λa(x)} = Y
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Brandenburger-Kiesler Paradox

Impossibility Results

Impossibility 1 There is no complete interactive belief structure
for the powerset language.

Proof. Cantor: there is no onto map from X to the nonempty
subsets of X .

Impossibility 2 (Brandenburger and Keisler) There is no complete
interactive belief structure for first-order logic.
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Brandenburger-Kiesler Paradox

Suppose that CA ⊆ ℘(TA) is a set of conjectures about Ann and
CB ⊆ ℘(TB) a set of conjectures about Bob states.

Assume For all X ∈ CA there is a x0 ∈ TA such that

1. λA(x0) 6= ∅: “in state x0, Ann has consistent beliefs”

2. λA(x0) ⊆ {y | λB(y) = X}: “in state x0, Ann believes that
Bob assumes X ”

Lemma. Under the above assumption, for each X ∈ CA there is an
x0 such that

x0 ∈ X iff there is a y ∈ TB such that y ∈ λA(x0) and x0 ∈ λB(y)
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Brandenburger-Kiesler Paradox

Claim. x0 ∈ X iff ∃y ∈ TB , y ∈ λA(x0) and x0 ∈ λB(y)

For all X ∈ CA there is a x0 ∈ TA such that

1. λA(x0) 6= ∅

2. λA(x0) ⊆ {y | λB(y) = X}

Suppose that X ∈ CA. Then there is an x0 ∈ TA satisfying 1 and 2.

Suppose that x0 ∈ X . By 1., λA(x0) 6= ∅ so there is a y0 ∈ TB

such that y0 ∈ λA(x0). We show that x0 ∈ λB(y0). By 2., we have
y0 ∈ λA(x0) ⊆ {y | λB(y) = X}. Hence, x0 ∈ X = λB(y0).

Suppose that there is a y0 ∈ TB such that y0 ∈ λA(x0) and
x0 ∈ λB(y0). By 2., y0 ∈ λA(x0) ⊆ {y | λB(y) = X}. Hence,
x0 ∈ λB(y0) = X .
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x0 ∈ λB(y0) = X .
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Brandenburger-Kiesler Paradox

Consider a first-order language L containing binary relational
symbols RA(x , y) and RB(x , y) defining λA and λB , respectively.

L is interpreted over qualitative type structures where the
interpretation of RA is {(t, s) | t ∈ TA, s ∈ TB , and s ∈ λA(t)}.

Consider the formula ϕ in L:

ϕ(x) := ∃y(RA(x , y) ∧ RB(y , x))

¬ϕ(x) := ∀y(RA(x , y)→ ¬RB(y , x)): “Ann believes that Bob’s
assumption is wrong.”
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Brandenburger-Kiesler Paradox

Proof of the Theorem

Suppose that X ∈ CA is defined by the formula
¬ϕ(x) := ¬∃y(RA(x , y) ∧ RB(y , x)).

There is an x0 ∈ TA such that

1. λA(x0) 6= ∅: Ann’s beliefs at x0 are consistent.

2. λA(x0) ⊆ {y | λB(y) = X}: At x0, Ann believes that Bob
assumes X = {x | ¬ϕ(x)} (i.e., Ann believes that Bob
assumes that Ann believes that Bob’s assumption is wrong.)

¬ϕ(x0) is true iff (def. of X ) x0 ∈ X
iff (Lemma) there is a y ∈ TB with y ∈ λA(x0)

and x0 ∈ λB(y)
iff (def. of ϕ(x)) ϕ(x0) is true.
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I RCBR and iterated strict dominance

I CKRat and backwards induction

I RCAR and iterated weak dominance
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Nash Equilibrium and Mixed Strategies

Nash Equilibrium

A B

a 1, 1 0, 0

b 0, 0 1, 1

I The profiles aA and bB are two pure-strategy Nash equilibria
of that game.

Definition
A strategy profile σ is a Nash equilibrium iff for all i and all s ′i 6= σi :

ui (σ) ≥ ui (si , σ−i )

Eric Pacuit and Olivier Roy 22



Nash Equilibrium and Mixed Strategies

More Specific Expectations

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann believes that Bob plays A, the only rational choice for
her is a.

I The same hold for Bob.

I If, furthermore, these beliefs are true, then aA is played.

Eric Pacuit and Olivier Roy 23



Nash Equilibrium and Mixed Strategies

More Specific Expectations

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann believes that Bob plays A, the only rational choice for
her is a.

I The same hold for Bob.

I If, furthermore, these beliefs are true, then aA is played.

Eric Pacuit and Olivier Roy 23



Nash Equilibrium and Mixed Strategies

More Specific Expectations

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann believes that Bob plays A, the only rational choice for
her is a.

I The same hold for Bob.

I If, furthermore, these beliefs are true, then aA is played.

Eric Pacuit and Olivier Roy 23



Nash Equilibrium and Mixed Strategies

More Specific Expectations

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann believes that Bob plays A, the only rational choice for
her is a.

I The same hold for Bob.

I If, furthermore, these beliefs are true, then aA is played.

Eric Pacuit and Olivier Roy 23



Nash Equilibrium and Mixed Strategies

Knowledge of Strategies and Nash Equilibrium

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann and Bob are rational and have correct beliefs about
each others’ strategy choices, then aA is played.

I For any two-players strategic game and model for that game,
if at state w both players are rational and know the other’s
strategy choice, then σ(w) is a Nash equilibrium.

R. Aumann and A. Brandenburger, “Epistemic Conditions for Nash Equilibrium”.
Econometrica. 1995.

Eric Pacuit and Olivier Roy 24



Nash Equilibrium and Mixed Strategies

Knowledge of Strategies and Nash Equilibrium

A B

a 1, 1 0, 0

b 0, 0 1, 1

I If Ann and Bob are rational and have correct beliefs about
each others’ strategy choices, then aA is played.

I For any two-players strategic game and model for that game,
if at state w both players are rational and know the other’s
strategy choice, then σ(w) is a Nash equilibrium.

R. Aumann and A. Brandenburger, “Epistemic Conditions for Nash Equilibrium”.
Econometrica. 1995.

Eric Pacuit and Olivier Roy 24



Nash Equilibrium and Mixed Strategies

Hard Knowledge of Strategies and Nash Equilibrium

Theorem
(Aumann and Brandenburger, 1995) For any two-players strategic
game and model for that game, if at state w both players are
rational and know other’s strategy choice, then σ(w) is a Nash
equilibrium.

I Remarks:

• Close to the intuitive explanation: Best response given the
choices of others, or no regret.

• No higher-order information needed... for 2 players (more on
this in a moment).

• Hard knowledge, or even correct beliefs, about actions taken?
Does Nash equilibrium undermine strategic uncertainty?
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Nash Equilibrium and Mixed Strategies

Nash equilibrium, the general case

(Aumann and Brandenburger, 1995) In an n-player game, suppose
that the players have a common prior, that their payoff functions
and their rationality are mutually known, and that their conjectures
are commonly known. Then for each player j , all the other players
i agree on the same conjecture σj about j , and the resulting profile
(σ1, .., σn) of mixed actions is a Nash equilibrium.

I Remarks:

• Higher-order information after all: common knowledge of
conjectures.

• The result is “tight”. Fails if we drop any of the conditions.
• Epistemic Interpretation of mixed strategies.
• If the payoffs are common knowledge, then rationality is also

common knowledge (Ben Polak, Econometrica, 1999).
• But still, CKR does not imply Nash Equilibrium.
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Some Concluding Remarks
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Some Concluding Remarks

Common Knowledge of Rationality

I Variety of individual attitudes: Beliefs, conditional beliefs,
safe/robust beliefs, strong beliefs, lexical probability systems...

I Different modes of collective attitudes: mutual beliefs, finite
levels, distributed knowledge...

I Different choice rules: admissibility, minmax, minmax Regret,
more abstract notions...

In which direction to go?

I Towards normatively plausible theories.

I Towards descriptively adequate theories.

These need not always to be different directions, or at least
independent from one another...
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Some Concluding Remarks

The point of view of this model is not normative; it is not meant
to advise the players what to do. The players do whatever they do;
their strategies are taken as given.

Neither is it meant as a
description of what human beings actually do in interactive
situations. The most appropriate term is perhaps “analytic”; it
asks, what are the implications of rationality in interactive
situations? Where does it lead? This question may be as
important as, or even more important than, more direct “tests” of
the relevance of the rationality hypothesis.

R. Aumann. Irrationality in Game Theory. 1992.
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Some Concluding Remarks

Thank you for listening!
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