A Proof of Arrow’s Impossibility Theorem

Navid Hassanpour
Department of Philosophy
Stanford University

October 03, 2008

Logical Methods in the Humanities
http://ai.stanford.edu/~epacuit/lmh/

Arrow's Impossibility Theorem, Origins and Beyond

Social Choice & Individual Values by Kenneth J. Arrow (1951)
Arrow’s Impossibility Theorem

Let X be a finite set of Alternative preferences with \textit{at least three elements}.

Assume each individual has a transitive and complete preference over X (ties are allowed).

Consider a society with N individuals, each with a transitive preference over X.

A constitution is a function which associates with each N-tuple (or profile) of preferences a transitive preference called the social preference.
Arrow’s Theorem, Preliminaries

- Transitivity
- Unanimity: if every individual puts α strictly above β, society also puts α strictly above β
- Independence of Irrelevant Alternatives (IIA): If the social relative ranking of two alternatives α and β only depends on their relative ranking by every individual
- Dictatorship by individual n if for every pair α and β society strictly prefers α to β whenever n strictly prefers α to β.
Arrow's Theorem

Theorem (Arrow, 1951) Any constitution that respects transitivity, independence of irrelevant alternatives, and unanimity is a dictatorship.

Does not apply to

- Majority voting: transitivity
- Borda count: IIA
Arrow’s Theorem: Proof 1 (Geanakoplos, 2005)-I

- Assume $X = \{A, B, \ldots, C\}$
- Lemma: For any profile in which every individual puts alternative B at the very top or the very bottom of his ranking, society must as well.
- Proof: If not then B is in an intermediate position. For example $A \geq B$ and $B \geq C$. By IIA this holds if all the individuals move C above A, because this can be done without changing any A, B or B, C relations; this follows from B being at the extremes of each individual’s personal preferences. By unanimity $C > A$ while by transitivity $A \geq C$: contradiction. So B should be either at the top or the bottom of the social preference.
Arrow’s Theorem: Proof 1 (Geanakoplos, 2005)-II

• There exists an individual $n^* = n(B)$ that by changing her vote at some profile she can move B from the bottom of the social ranking to the top.

• Let’s assume each individual puts B at the bottom of their ranking, by unanimity, the society does the same.

• Now beginning from the individual 1, we start to move B from the bottom of each individual’s ranking to the the top. According to the above lemma, B’s social ranking will be either at top or the bottom. Assume n^* is the the first individual whose moving B causes the social ranking of B to flip (by unanimity the change will happen the latest with $n^* = N$)
Arrow’s Theorem: Proof 1 (Geanakoplos, 2005)-III

- Name the profile of rankings just before the individual \(n^* \) moves \(B \) profile I, the one after her moving \(B \) to the top profile II (in profile I, \(B \) is at the bottom of social ranking, in profile II at the top)
- Now we argue that \(n^* \) is the dictator over any pair \(A, C \) not involving \(B \).
- To see this, let’s assume \(n^* \), moves \(A \) above \(B \) in profile II to have \(A >_{n^*} B >_{n^*} C \) and let other individuals \(n \neq n^* \) rearrange all their rankings of \(A \) and \(C \) while keeping \(B \)s in place. By IIA \(A > B \) because all \(A, B \) relations are like in profile I. The same way \(B > C \) because all \(B, C \) relations are like profile II. By transitivity society should have \(A > C \) agreeing with \(n^* \)’s preferences.
For any other pairs such as A, B, using the same argument as above there is a n^*_C that is the dictator, but n^*_B can dictate A, B rankings in profiles I and II, therefore n^*_C and n^*_B should be the same.