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Introduction

The Voting Problem

Given a (finite) set X of candidates
and a (finite) set A of voters

each of whom have a preference over X (for simplicity, assume a
connected and transitive)

devise a method F which aggregates the individual preferences to
produce a collective decision (typically a subset of X).
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Voting Procedures

» Roughly three different types of procedures: ranked,
non-ranked, multi-stage.

» Each procedures specifies a type of vote, or ballot, that is
recognized as admissible by the procedure and a method to
count a vector of ballots (one ballot for each voter) and
select a winner (or winners).
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abstain)
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Many Examples

Plurality (Simple Majority)

» Each voter selects one candidate (or none if voters can
abstain)

» The candidate(s) with the most votes wins.

Negative Voting

» Every voter can select one candidate to voter for or against.

» The candidate(s) with the most votes wins.

(Equivalent to either giving one vote to a single candidate or one
vote to everyone but one candidate)
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Many Examples

Approval Voting

» Each voter selects a proper subset of candidates (empty set
means the voter abstains)

» The candidate(s) with the most votes wins.

Cumulative Voting

» Every voter is given k votes which can be cast arbitrarily
(several votes for the same candidate are allowed)

» The candidate(s) with the most votes wins.
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Many Examples

Plurality with runoff

» Use plurality voting to select the winner(s)

» If two or more candidate tie for the win, they move on to
round two. If there is a unique winner in round 1, that
candidate and the second place winner(s) move on to round
two.

» Use plurality vote on this smaller set of candidates.

(More generally, alternative rules can be used to determine who
moves on to the next round)
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Many Examples

Pairwise Elimination
» In advance, voters are given a schedule for the order in which
pairs of candidates will be compared.

» In the above order, successively eliminate the candidates
preferred by a minority of votes.

» The winner is the candidate who survives.
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Many Examples

Borda Count

» Each voter provides a linear ordering of the candidates.

» The candidate(s) with the most points wins, where points are
calculated as follows: if there are n candidates, n — 1 points
are given to the highest ranked candidates, n — 2 to the
second highest, and so on.
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Many Examples

Borda Count

» Each voter provides a linear ordering of the candidates.

» The candidate(s) with the most points wins, where points are
calculated as follows: if there are n candidates, n — 1 points
are given to the highest ranked candidates, n — 2 to the
second highest, and so on.

The Hare System

» Each voter provides a linear ordering of the candidates.

» Repeatedly delete the candidate or candidates with the least
first-place votes. The last group to be deleted is tied for the
win.
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Comparing Voting Procedures

Arrow’s Theorem shows use that with more than three choices,
there is no “perfect” procedures. How should we compare the
procedures?

» How expressive are the ballots? How practical is the system to
implement?

» A Condorcet winner is a candidate that beats every other
candidate in pairwise contests. A voting procedure is
Condorcet provided it selects the Condorcet winner, if one
exists.

» Is the procedure monotonic? More votes should always be
better!

» How susceptible is the procedure to manipulation?
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Failure to elect the Condorcet candidate

# voters 3 5 7 6
a a b c
b ¢ d b
c b ¢ d
d d a a

Condorcet: c beats each candidate in a pairwise comparisons.
Plurality: a is the plurality winner.
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Failure to elect the Condorcet candidate

#voters 3 5 7 6
3 a a b c
2 b ¢ d b
1 c b c d
0 d d a a

Borda:
» BC(a) =3x3+3x5+0x7+0x6=24
» BC(b) =2x3+1x54+3x7+2x6=44
» BC(c)=1x34+2x541x7+3x6=29
» BC(d)=0x3+0x5+2x74+1x6=20
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1 c b c d
0 d d a a
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Failure to elect the Condorcet candidate

#voters 3 5 7 6
a a b c
b ¢ d b
c b c d
d d a a

Condorcet: c beats each candidate in a pairwise comparisons.
Plurality: a is the plurality winner.
Borda: b is the Borda winner.

10
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Scoring Rules

Fix a nondecreasing sequence of real numbers

with sp < sp_1

Voters rank the candidates, giving sy points to the one ranked last,
51 to the one ranked next to last, and so on. A candidate with the
maximal total score is elected.
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Scoring Rules

Fix a nondecreasing sequence of real numbers

with sp < 5,1

Voters rank the candidates, giving sy points to the one ranked last,
51 to the one ranked next to last, and so on. A candidate with the
maximal total score is elected.

Theorem (Fishburn) There are profiles where the Condorcet
winner is never elected by any scoring method.
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AV is more flexible

Fact There is no fixed rule that always elects a unique Condorcet

winner.

# voters 2 2 1
a b c
d d a
b a b
c c d

The unique Condorcet winner is a.
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AV is more flexible

Fact There is no fixed rule that always elects a unique Condorcet
winner.

# voters 2 2 1
a b ¢
d d a
b a b
c c d

Vote-for-1 elects {a, b}, vote-for-2 elects {d}, vote-for-3 elects

{a, b}.
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AV is more flexible

Fact There is no fixed rule that always elects a unique Condorcet
winner.

# voters 2 2 1
b c

d d a

b a b

c c d

({a}, {b},{c, a}) elects a under AV.
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AV is more flexible

Fact Condorcet winners are always AV outcomes, but a Condorcet
looser may or may not be an AV outcome.
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The Spoiler Effect

# voters 35 33 32

a b C
c a b
b C a

Candidate c is a spoiler.
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The Spoiler Effect

# voters 35 33 32

a b X
X X b
b C a

Without ¢, both Plurality and Borda both pick b.
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The profiles are monotonic (in a).
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Failure of Monotonicity

# voters 6 5 4 2
a ¢c b b
b a ¢ a
c b a c

The profiles are monotonic (in a).
a wins the first election.
¢ wins the second election.

# voters 6 5 4 2
a ¢ b a
b a c b
c b a ¢
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Failure of Monotonicity

# voters 6 5 4 2
a ¢c b b
b a ¢ a
c b a c

The profiles are monotonic (in a).
a wins the first election.
¢ wins the second election.

# voters

X o 0o|lo

L 0 X |

0O X WIN
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No-show Paradox

Totals Rankings Hover W W over H
417 BHW 417 0
82 BWH 0 82
143 HBW 143 0
357 HWB 357 0
285 WBH 0 285
324 W HB 0 324
1608 917 691

Fishburn and Brams. Paradoxes of Preferential Voting. Mathematics Magazine

(1983).
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Totals Rankings Hover W W over H
417 BHW 417 0
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No-show Paradox

Totals Rankings H over W W over H

417 XHW 417 0
82 XWH 0 82
143 HXW 143 0
357 HW X 357 0
285 W X H 0 285
324 WHX 0 324
1608 917 691

H Wins

17
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No-show Paradox

Totals Rankings H over W W over H
419 BHW 417 0
82 BWH 0 82
143 HBW 143 0
357 HWB 357 0
285 WBH 0 285
324 WHB 0 324
1610 917 691

Suppose two more people show up with the ranking B H W
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No-show Paradox

Totals Rankings B over W W over B

419 BXW 419 0
82 BWX 82 0
143 XBW 143 0
357 XWB 0 357
285 W B X 0 285
324 W XB 0 324
1610 644 966

B: 419 + 82 = 501
H: 143 + 357 = 500
W: 285 + 324 = 609
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No-show Paradox

Totals Rankings B over W W over B

419 BXW 419 0
82 BWX 82 0
143 XBW 143 0
357 XW B 0 357
285 W B X 0 285
324 W XB 0 324
1610 644 966

W Wins!

21



Introduction

Multiple Districts

Totals Rankings East West
417 BHW 160 257
82 BWH 0 82
143 HBW 143 0
357 HWB 0 357
285 WBH 0 285
324 WHB 285 39

1608 588 1020
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Multiple Districts

Totals Rankings

417 BHX
82 BXH
143 HBW
357 HXB
285 XBH
324 XHB
1608

B would win both districts!

East West
160 257
0 82

143 0
0 357
0 285
285 39
588 1020

23
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Young's Theorem

Reinforcement: If two disjoint groups of voters Ny and N, face
the same set of candidates and N; selects B;. If By N By # (), then
Ny U N> should select By N Bs.

Continuity Suppose N; elects candidate a and a disjoint group N>
elects b # a. Then there is a n such that (nN;) U Na chooses a.

Theorem (Young) A voting correspondence is a scoring method iff
it satisfies anonymity, neutrality, reinforcement and continuity.

Young. Social Choice Scoring Functions. SIAM Journal of Applied Mathematics
(1975).
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Approval Voting

Theorem (Fishburn) A voting correspondence is approval voting
iff it satisfies anonymity, neutrality, reinforcement and

If a profile consists of exactly two ballots (sets of
candidates) A and B with AN B = (), then the procedure
selects AU B.

Fishburn. Axioms for Approval Voting: Direct Proof. Journal of Economic
Theory (1978).
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The Danger of Manipulation

Setting the Agenda:

# voters 35 33 32

a b c
C a b
b C a

The order: 1. a vs. b; 2. the winner vs. c¢ elects ¢
The order: 1. a vs. c; 2. the winner vs. b elects b
The order: 1. b vs. ¢; 2. the winner vs. a elects a
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The Danger of Manipulation

Setting the Agenda:

# voters 1

L0 QT
0O QO T W
O T VW O

The order: 1. avs. b; 2. avs. c¢; 3. the winner vs. d elects d
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The Danger of Manipulation

Setting the Agenda:

# voters 1

L O QO T
0O O T o
O T LV 0|

The order: 1. avs. b; 2. avs. ¢; 3. cvs. d elects d
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The Danger of Manipulation

Setting the Agenda:

7 voters

1

The order: 1. avs. b; 2. avs. ¢; 3. c vs. d elects d, but

everyone prefers b to d.

L 0 QO T

O T v O

27
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The Danger of Manipulation

“Insincere Voting”:

# voters 3 3 1
a b ¢
b a a
c c b
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“Insincere Voting”:

# voters 3 3 1
a b c
b a a
c c b

BC will elect a with 10 points (b gets 9 points and ¢ gets 2
points), but the middle group can be insincere.
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The Danger of Manipulation

“Insincere Voting”:

# voters 3 3 1
a b c
b ¢ a
c a b

BC will elect a with 10 points (b gets 9 points and ¢ gets 2 points),
but the middle group can be insincere and make b the winner

28
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The Danger of Manipulation

“Failure of I1A”:

7 voters
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The Danger of Manipulation

“Failure of I1A”:

# voters 3 2 2
a b c
b ¢ a
c a b

The BC ranking is: a (8) > b (7) > ¢ (6)
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The Danger of Manipulation

“Failure of IIA”:

# voters 3 2 2
a b c
b ¢ x
cC X a
X a b

The BC ranking is: a (8) > b (7) > ¢ (6)
Add a new (undesirable) candidate x.
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The Danger of Manipulation

“Failure of II1A”:

7 voters

L X 0 TN
T L X 0N

The BC ranking is: a (8) > b (7) > ¢ (6)
Add a new (undesirable) candidate x.
The new BC ranking is: ¢ (13) > b (12) > a (11) > x (6)

29



Conclusions

» Many different types of voting methods: Plurality, Plurality
with runoff, AV, BC, Hare system (STV), Copeland, Dodgson,
Condorcet, etc.

» Many different dimensions to compare the procedures.

» No voting methods is perfect....
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Thank You!
ai.stanford.edu/~epacuit/lmh

Next Week: Michel Balinski
Next?> Week: Steven Brams (Thursday)
Next3 Week: Manipulability?
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