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Abstract— This paper develops a set of methods enabling the pairwise-node approximation makes improved cooper-
an information-theoretic distributed control architecture based  atijon possible by approximating the effect of other sensing
on particle filters to facilitate search by a mobile sensor nodes’ planned observations. By using particle filters, vee a

network, permitting the use of nonlinear and non-Gaussian ble t icall imate the t t stat Habili
sensor models. Given a particular configuration sensors, this 20'€ 0 humerically approximate the target state prougbili

technique exploits the structure of the probability distributions ~ distribution, without assumptions about the family of the

of the target state and of the sensor measurements to compute distribution or about the linearity of the dynamics[1].

the control inputs to the mobile sensors leading to future ob- In previous literature, one method minimizes metrics of
servations that minimize, in expectation, the future uncertainty {0 expected estimation covariance to compute trajestorie
of the target state. We compute the mutual information using a to hel timati 21 131, Th h tati Iy effici
particle set representation of the posterior distribution. In order 0 N€IP estimation ['], [3]. Though computationally e e

to control a large number of mobile sensors as a network, single- the approach linearizes measurement models, and relies on a
node and pairwise-node approximation schemes are presented, Gaussian noise assumption and a guessed initial solution.
with analytically bounded error, making the approach scalable This can lead to underestimation of the covariance and
to increasing network sizes, while still planning cooperatively. divergence of the filter [1], [4]. Another method, using
The methods are applied in simulation to bearings-only sensing, id cell di tizati . d | din 15 bI,'

and to localizing an avalanche rescue beacon of a buried gri Ce, ISCretization, ,'S eveloped in [3], en‘q Ing use
victim, using transceivers on quadrotor aircraft to measure the  Of nonlinear, non-Gaussian models. These techniquesrsuffe
magnetic field. Monte Carlo simulations also demonstrate that poor computational time complexity with the dimension of
as network size increases, the sensors more quickly localize the the state, particularly for information theoretic quaatt
target, and the pairwise-node approximation results in superior  |nformation theoretic costs have been used to manage sensor
performance to the single-node approximation. [6], and in [7] the expected alpha-divergence of a particle
filter distribution was used for sensor management, and spe-
cialized to select modes for binary sensors, though sdijabi

Mobile sensor network technology is becoming increagl Sensor network size is not addressed. _
ingly available, making it possible to exploit these plat- We proceed by showing equivalence of searching for a
forms to efficiently and automatically search for targetthwi target and maximizing mutual information. Then, algorithm
unprecedented speed, safety, and reliability. Mobile @enstO compute mutual information using particle filters arenthe
network search is complicated by low prior informationderived, and used in a distributed control algorithm to co-
about the target's state, the frequently nonlinear mappirP€ratively control the vehicles. The methods are apptied i
between sensor observations and the physical world, affinulation to localization using bearings-only sensorgon
non-Gaussian target state representation. planes, and to localization of a buried avalanche victinrngis

This paper addresses these challenges by developind®SCcue beacons on quadrotor aircraft from the STARMAC
set of methods enabling an information-theoretic distadu Project [8]. The results show successful localization unde
control architecture based on particle filters. We deriv@!! circumstances. The pairwise-node approximation léads
methods to compute information-theoretic quantities gisinaSter localization than using the single-node approxionat
particle filters, and approximations that enable scalgbili @1d increasing the size of the network speeds localization.
in network size for real-time control. Given a particularSuccessful localization of the rescue beacon's magnetit fie
configuration of sensors, this technique exploits the tirec SOUrce exemplifies the utility of these techniques.
of the probability distributions of the target state and of Il. PROBLEM FORMULATION
the sensor measurements to compute qontrol inputs leadiRg pobile Sensor Motion and Measurement Models
to future obse_rvatlons that minimize, in expectation, t.he Consider a set of, vehicles carrying sensors to locate a
future uncertainty of the target s?ate: The appro?('m_at'ofhrget in the search domai®. The location of the target,
schemes presented have polynomial time complexity in t}*@aE ® C R™, is unknown to the vehicles. A motion model

ne(tjwork SIze, a?_d ar|1al3(/jt|catlly boundeg error. :ﬁlagolle tis used for non-stationary targets [9]. A prior distributio
node approximation leads 1o cooperafive control due 00(9), is provided, using any information availakaepriori.

common knowledge of the target state distribution, Whereﬁjs The state of the'” vehicle, at time index, is X]Ei) € R™.

) ) with n, vehicle states. The discrete time dynamics are
T This research was supported by ONR under the CoMotion MURI (

contract N00014-02-1-0720, and by the NASA Joint Univgritogram. x = 19 ) 1)

I. INTRODUCTION



whereu!” € U® ¢ R™ is the set ofn, control inputs, prar (6 = pe(0)pryaye(216) @)
U® is their domain, and the time step is. A minimum * S pe(0D) 1) (2]6))do@
(C]

separation ofi is required between all vehicles. Lﬁf) be . _ . .
the subset of thé!" vehicle’s states that correspond to its12King the log-likelihood of each side yields

position. The collision avoidance constraint is, H(O |2041) = H(O) — I(2e41:0;") (5)
o =2l 2d  Vje{l,...,n,:j#i} (2) Wwhere | | |
Sensor measurements for tifé vehicle,z\"” € z() ¢ H(O)) = - / pi(6%)) log pi(6*))df (6)
R™=, are taken at rateAL. The domain of observations is 9cO
Z® with dimensionn.. The measurement model is, HOD |204,) =
2 = h{" (x{",0,n") (3) — [ P (09, 2) log pry 1 (09 |2)d0dz  (7)
provided a priori to all vehicles. The observation noise is ZE?

Y e R with assumed distributionp” ~ p,(n). @
The noise distribution need not be Gaussian. The problem I(ze41;0,7) =
formulation admits a broad class of measurement models, as f proe+(

hgi) could be a nonlinear or discontinuous mapping of the ZE?

states and measurement noise onto the observation space.

(ONEE strib
The vehicles are equipped with communication deviceér(gt ) '.S) the entropy of the target state distribution,

_ _ o . . L
such that each vehicle can incorporate the measuremeﬁ{éltﬂ,@t ) is the mutual information between tl’il)e distri-
made by all other vehicles in the estimation process at eafHtions of the target state and the sensors, Hl}" |z 1)

time step. One such reliable technology is demonstrated i theconditional entropy of the distribution — the expected

G(i),z)log—pt’t“(e(i)’z) dfdz  (8)

Pt,e4+1(00D)pyy1(z)

the 802.11b network used in the STARMAC project. entropy of the target state when conditioning with ; [11].
_ ) The entropy of a probability distribution is a metric of
B. Information Seeking the uncertainty of that distribution. The mutual infornoati

Each vehiclej, maintains its own minimum mean squareis a metric of the expected divergence (Kullback-Liebler)
error (MMSE) estimate of the current target staég? € between the independent and joint distributionsx‘),iﬂt and
R™, and of the posterior distribution, (#(Y)). The poste- z.1. It is large when two distributions have strong interde-
rior distribution is the prior distribution conditioned adl pendence, and zero when they are independent.
new observations that vehicle has made or received, i.e.,The control inputsu,, and vehicle statesg;, influence
pt,1|t(¢9(")|z).1 These distributions, at each aircraft, basethe observationsz;., through Equations (1) and (3). To
on all shared observations, can be assumed nearly identicqainimize the expected future uncertainty of the targetestat

The main goal of a multi-vehicle search team is tdlistribution, with respect toau, is to minimize Equation
minimize the total time to localize a target with a given(5). The actual uncertainty depends on the real measurement
likelihood, by making observations at some fixed rate. Theranade ofz;, ;. The prior uncertainty is independent of the
fore, the goal is tacontrol sensor locations to minimize the  future control inputs, so to minimize the expected posterio
expected number of future observations needed to ascertain  uncertainty, one must maximize the observation infornmatio
the target’s state. A set of observations can be interpretedwith respect to the control inputs. It expands as,

in an information-theoretic sense, as a code word, with an I(ztﬂ-&t(i)) = H(zpy1) — H(zt+1|9§i)) 9)
alphabet comprised of all possible quantized outputs of the - ~—— —_—
n. sensors. These encode the target state, which is repre- OBservation g%?:grr}’gitr']?;‘ obsersg{?gglﬂrr]n%lertainty

s;:nted bcc:mputa::onallgélbgtar_l alpr(;ab%tl of a f_|n_|te ?Iumtbefhus, minimizing the expected posterior uncertainty is\equ
° S)t"g tost sucThas f Its in a dou tr? preC|S|or:j oa Ileent to maximizing the difference between the uncertainty
point data type. Therefore, to minimize the expected nUMb@L., any particular observation will be made, and the uncer-

of remaining observations is to maximize the expected IOqc'atinty of the measurement model. In order to seek informa-

likelihood of the posterior distribution with each obsdioa tion, the network computes its control inputs by maximizing
of the vehicles, as derived in [10]. With constraints e ;nutual information utility function

control authority, the optimal observation positions may n
be reachable in one time step, leading to a greedy algorithm VO (x,,uy,08Y) = I(zy41;60) (10)
that moves the vehicles toward the best reachable locationg qescribed in the next section.
In order to compute the posterior probability distribution
following an observation, assuming that the target state I1l. M ETHODOLOGY
represents the complete state of the target and the syst@Mparticle Filter

is Markov, Bayes’ Rule can be used, , , . .
y Each vehicle approximates (")) with an onboard par-

IThe subscript of probability distribution functions indtes the time ticle filter, incorporating the observations shared by & v

steps of the random variable arguments. For instangg+.1+1(alb,c;d)  hicles, with a set ofV' particles, (6.}, w'")), indexed by,
is the distribution of random variableat timet¢+ 1 conditioned on random 2 b

variablesb at timet andc at timet + 1, parameterized byl. whereét(i,z, € O is the state of the particle, andil,l e Ry



is the likelihood weight The particles approximate, ()  which can then be evaluated by numerical quadrature [14].

by the probability mass function, Next, similar methods are applied to compute
N
. i i i ~(3 H Z 0 = . . .
pt(9( )) = ZW§7I)€§(9( ) — E}l) (11) — (f+]§t‘+t1)7t(z, OR u, X¢) logptﬂ‘t(zw(l); ut,xt)dzde(l)
k=1 Z,0
whered(-) is the Dirac delta function. a7)

By maintaining a set of particles locally aboard each The joint distribution can be expanded using the chain rule
vehicle, only the observations need to be communicated, aad assuming conditional independence,
opposed to the values of the entire set of particles. The ny
particle filter iteratively incorporates new observatidmg — p;y1..(z, 0% us,x;) = py (69 Hptﬂ‘t(z(j)w(i);uhxt)
predicting the state of each particle, updating the lilamith j=1
weights with the likelihood of new observations, and then
resampling the particles, as described in detail in [17], [9
A low variance sampler [4] is used for this work, with time
complexity of O(N). The MMSE estimate is

18
Substituting Equation (18) into Equation (17) and éppl)ying
the approximation of Equation (11), yields the conditional
observation entropy of the distribution represented by the
particle filter approximation at thé" vehicle,

N
o) = / 00p(00)d0W ~ > wilf) (12 H(zl6) ~
(S

k=1 N N My . . e
B. Determining Mutual Information from Particle Sets - WEZ;)C I1 pt+1\t(z(j)‘9(l):9t(2~;utaxt) (19)
To evaluate the mutual information utility function, Equa- 7 k=t . =t
tion (10), with the particle filter representation, expand i log [] pt+1|t(z(j)|9(i):9~t(_il)q;utvxt) dz
according to Equation (9). Consider the first term, j=1 ’

Hz _ _/ 71, %) 10 z:u;,%,)dz (13 Thus, the mutual information utility function, Equation
(Be41) zptﬂ( o %e) log Pr (2 wy, x1)da (13) (10), can be found by using Equations (16), (19), and (9).

This cannot be directly evaluated, becapse: (z;ur,x;) i This optimization remains highly coupled between the
not available as a continuous function. Rather, the observi@hicles. The degree of cooperation between the vehicles is
tion distribution must be determined from the particle set a analyzed to determine a scalable control strategy.

sensor model. First, expand the distribution as,
C. Approximately Decoupling Mutual Information

Pre1 (250, X)) = /Pt+1\t(z\9(l)§ uy, x;)p(6%)do" The mutual information between the random varialgiés
<) and z;; quantifies the expected reduction in uncertainty.
ny However, the computational complexity of using a particle
:/ pe(0D) T | pesae(z9710%;us, %) | d6) (14)  set representation to evaluate this quantity grows exponen
S j=1 tially n., due to integration over each dimension.

where the second step expands the joint distribution using & Present two different approximations to mutual infor-
the assumption that the likelihoods of sensor observatioms mation that allow it to be evaluated in polynomlal time with
conditionally independent given the target state distigpu  "€SPect to the number of sensors. This makes the network
This is exact when the sensors lack correlated noise. Theif@lable, yet capable of exploiting the descriptiveness of
Monte Carlo integration techniques can be used[13]. Subste particle filter. First, in the single-node approximafia

tuting Equation (11) into Equation (14) yields the particlesensmg noo_le’s utility function uses the _previo_us obséermat
filter approximation at thet” vehicle of all sensing nodes, but only considers its own future

Pes1 (z30p, Xp) ~ observations. This is a generalization of an increasingly
+N ’ " " . popular technique (e.g., [2]). Second, in the pairwiseenod
3 WEZI)C I1 pt+1|t(z(j)|9(i)=9~§?)€;Ut,Xt) approximation, a sensing node_ additiqna_lly considers_ _the

k=1 j=1 effect of plans of each other vehicle, pairwise, on thetytili
Substituting Equation (15) back into Equation (13) yield$f its own future observation.

the observation entropy of the distribution representethey  Proposition 1: The mutual information utility function

(15)

particle filter approximation at th&" vehicle, can be approximated using tisgle-node approximation:
H(z ~
( tH)N o ™ Dot 50 VO (xe,up,0,) = I(2();01") (20)
_ v J ) =p\Y. )
g ,;::1 Wik jl;llpt“'t(z 10792613 e, x2) with an error from the true value of
N 5 T ) R ) } Ny ) ; . -
- log (Z <W§I)¢ [1 Pt+1\f,(z(3)|9(’): 9157,1; ut,Xt))) } dz el = ¢l 4 Z (I(zg_)l; zg_gl,zg_i_)h . >Z§i-1 ))) (21)
k=1 j=1 j=2

(16) J#i
(4) ;
2The second subscript of any variable denotes the index opénticle where c; encompasses the terms that. are constant with
to which the variable belongs. respect to the’” mobile sensor’s control inputs.



Proof: Without loss of generality, consider the case oExchanging conditioning variables in the summation (see
approximating the mutual information from the perspectivéppendix), canceling the resulting terms that sum to zero,
of vehiclei = 1. The mutual information can be expandedand splitting the remaining summation, yields
using the chain rule [11], and then rewritten by exchanglngI(g(l) zf+1) Vp(l)(xf,ut,G(l))
conditioning variables (see Appendix) to yield

2 1)
W 0. . +Z ( (0 Z£+)17~- 2 ‘Zt+172£21)
1(0; s 2e41) = Z 1(6; Zt+1|Zt+1v~--aZti:1 ) 1. (2 1), (1
—I(&g )§z£+)1>~-~» gH ‘Zg ) ))
= Z ( ( Zii)l) (9(1)7 5217-- Zi(‘i-ll)) Exchanging conditioning variables inside the summation,
j=1 ‘ ‘ canceling terms summing to zero, and assuming conditional
+I(0t(1>; zﬁr)l, . ,ziﬁr’ll)\ziﬂl)) independence of observations given the target state yields

(1), (1) (1) (1)
Exchanging conditioning variables on the latter two terms, L0 200) = Vo (a0, w4, 007) + 6

and Cance"ng terms that sum to zero, Thus, the mUtua_l |nf0rmat|pn Utlllty fUnCtion can be evalu-
) ) ) ) ated using Equation (22) with error given by Equation (23).
10,7 ;2¢41) = Vs (xhut 0;7) + cs n
1) Z=1 9(1 Now we examine the effect that this added computational
+ Z (Zt+1vzf+17"'7 t+1 | ) . .
complexity has on the error terms, as a function of the value
—I(z9),; 2 291y of the i*" vehicle’s control inputs.
2158441y 0By

Proposition 3: The magnitude of the error terms, that
vary with thei*” vehicle’s control inputs, in the single-node
approximation, is greater than or equal to the magnitude of
the pairwise-node approximation error terms, and equal onl

Applying the assumptlon that observations are conditioRgnen the vehicle’s observations are independent of allrothe
ally independent given the target state, the first term in thgahicles. That is,

with constant:{") = Z 1(z§331, )).

summation is zero. Thus, generalizing to tHevehicle, the e — @] > |€](j>| (24)
mutual information utility function can be evaluated using  proof:  Subtract from the single-node approximation
Equation (20) with error given by Equation (21). error, Equation (21), the terms that do not vary with the

B ;) vehicle’s control inputse!”, and apply the chain rule
The computational complexity of the single-node approxfOr mutual information [11],

imation to the mutual information utility function is coasit 129 gD O (i—1)
with respect ton,. To improve on this approximation, (zt+1’zt+1’zt+1""(’f) 1() 1) (25)
considering the pairwise interactions of all vehicles etda I(zt+1vzt+1)+I(Zt+17zt+1"' Zt+1 |z t+1)

utility function approximation that more accurately capti Mutual information is always greater than or equal to zero,
the effect of group control inputs on mutual information,and is equal only if the distributions are independent. So,
with computational complexity linear in,,. (@ . 6 Q) (-1

Proposition 2 The mutual information utility function I(z”l’ztﬂ’(zé“’@')"ZtH ()Zl .
can be approximated using thairwise-node approximation: I(zf);2, 287 1)) (26)

(i) (i) W) a0 The magnitudes of the sum of the left and right sides of this
Voo (xe,u, 60,7) = (2 _HZ%) (I(th,G ) equation, fromj = 1 to j = n,, are equal to, respectively,
- Z ( (2, 2900 ))) (22)  the left and right sides of Equation (24).

|
i The pairwise-node approximation yields an estimate of
whenn, > 2, with an error from the true value of the mutual information gain as good or better than the
o ‘ single-node approximation. When the vehicles’ sensors make
el) = Z <I(z§ﬁ1,z§fl,.. zgll \zgl)) (23) uncorrelated measurements, the single-node approximatio
=2 computes faster and yields the same result as the pairwise-
7 node approximation. However, if the observations are cor-

Proof: Without loss of generality, consider the case ofelated, as is more frequently true, then the pairwise-node
approximating the mutual information from the perspectiv@pproximation yields a closer estimate. Although the mag-
of vehiclei = 1. The mutual information can be expandedhitude of the pairwise-node approximation error is less, it
using an application of the chain rule, separating the firs¢ not possible to guarantee that the optimization is not
term in the summation, and applying the chain rule again,skewed by some systematic error between the exact solution

(1) (1), (1) and the single-node error. However, using the pairwise-

I(0; s 2e41) = 1(0; 52, 01)+ 2 S :
", 4 node approximation still yields an approximate expected mu
Z ( (9(1), E}Ql,zgi)l Ei)l, e ,zgi_ll)) tual information surpassing what seemed possible using the
=2 1. 1) 1 (@) G-1) single-node approximation, and in experiments, the pagwi
—1(0y 3241|2000 5 2 )) node approximation yields better results.



D. Mobile Sensor Network Control

The mobile sensor network control is structured as a set
of local optimal control problems for each sensing node,
coupled through interconnecting constraints. The locai op
mization problem is formed holding the actions of the other
vehicles fixed, and an iterative algorithm is implemented
based on [15] ensuring convergenceetfeasible solutions
that satisfy the necessary conditions for Pareto optignalit

An inexact penalty function is defined for each vehicle as,

Pix”,ug x ™ ui™) =
Sy ma(0, g0 (e uf? =, uf=0)7)
wherem indexes the set ohg) interconnecting inequality
constraints,g(*™) that affect vehiclei, and —i is the set
of all vehicles other than. The penalty functions are zero Fig. 1. Mean and quartile bars of the probability that thes ttarget state

wherever the constraints are satisfied. and are diffetglatia is within 1 unit of the MMSE estimate, for sets of 1000 trialfieTvehicles
’ each make an observation at each time step. (a) Resulis,fer 4. Single-

for all v > 2, € Ry. Then, — 1 collision avoidance node approximation is dashed line, pairwise-node approiomas solid

(27)

constraints from Equation (2) are rewritten as, line. (b) Results using pairwise-node approximation foryireg number of
(i,m) - () (m) search vehicles: 2, 3, 4 and 10.
g™ =d— [z — x| <0 (28)

Vme{l,...,n, : m#i}

The penalty function is added to the individual vehicle co
scaled by penalty paramet@gr varying the tradeoff between .
constraint violation and the information-theoretic casith A bearings-only sensor, such as a camera, measures the
an update3 := of3 at each iteration, whera € (0,1) is a bearing to the target only. The measurement equation is,
design parameter. The local optimization problem based on i), G i i i

h (", 0,m(") = 6" +mf?

IV. APPLICATIONS
S/&. Bearings-Only Sensing

the single-node approximation, Equation (20), is @
x) = " ).0= ( T ),m(i) ~ N(0,02)
Single-Node Local Optimization Program: Y Ys
. i) () () pli)|(—8) . (=i where 5 is the angle of the ray from the" vehicle’s
uPeu® position, ,;”, y; '), to the target’s position,af(;, ys). The
+%p(xgi)’ ul? x5 ul™) additive Gaussian noise has variamGe The search domain,
©, spans a unitless 40 by 40 square. The prior distribution
subiect to x. — (i)(X(i) u(i)) is uniform over the domain. The vehicles are modeled
J Gt T e @ as airplanes, with fixed speeds, limited turning rates, and
Zyyy = hy (Xpi0, 07, m7) initially close proximity.

(29)

The algorithm results in the rapid localization of the targe
The decentralized penalty method requires costs dependifigSPite complete prior uncertainty, consistently in aearg
only on local variables, as in the single-node approxinmatio "Umber of trials. Use of the pairwise-node approximation,
For the pairwise-node approximation, Equation (22), slackigure 1a, reduced time-to-convergence compared to the
variables are added to decouple the local sensor costé)gle-node approximation, on average. The pairwise-node
resulting in additional interconnecting constraints tolie ~ @PProximation yielded more consistent performance com-
in the penalty function. Define the slack variabig”), as Pared to the single-node approximation, shown by narrower
the vector of all sensors’ control inputs computed by tie €70 bands. When applied to varying sizes of vehicle fleets,
sensor. Agreement among mobile sensing nodeﬁi@nis the algorithm successfully exploits the additional a\allgy

realized through the penalty function enforced constraint °f @9ents, as shown in Figure 1b. The time-to-convergence
~@)_ ~() . o, is reduced, on average, as vehicles are added to the fleet.
u,’ = Vije{l,...,n,: j#i} (30)

The pairwise-node local optimization program is definedp- Rescue Beacon Sensing
analogously to the single-node program, with optimization To rescue a victim buried in snow due to an avalanche,
instead over the entire control vectcﬁnff) el. each vehicle uses a beacon receiver to measure the local
The distributed algorithm uses an iterative approachrientation an electromagnetic (EM) field transmitted by th
where interim solutions of control inputs are communicatedtandard avalanche rescue beacon, carried by the victien. Th
amongst the vehicles in between local optimizations. Thigosition and orientation of the beacon are unknown.
process can be hierarchical, synchronous, or asynchronousThe magnetic fieldH, of an EM source is modulated
Detailed algorithms and proof of convergence are in [15].to minimize interference by snow and rocks. Measurements




(b)

using particle filters. Formulae were derived to compute
information-theoretic quantities using particle filter@nd
single-node and pairwise-node approximations were derive
to enable scalability in network size. The methods were
applied in simulation. The results of search using bearings
only sensing demonstrate the utility of the techniques, and
the results of search using the avalanche rescue beacon
demonstrate the ability to handle problems that would pose
significant hurdles to previous strategies. The techniques

40‘[ e 40
30| %o  30
‘ :
> 20 - > 20 -
10 wB 10
R
S S R A A S O e 0
0 20 40 0 20 40
X X
(© (d)
40; 40
> 203* = > 20
e A [
E ROy
o— 0
0 20 40 0 20 40 (2]
X X
Fig. 2. Four quadrotor aircraft search for a rescue beacangube
pairwise-node approximation. The particles are shown ag Bhes indicat-
ing position and orientation, with darkness indicating plagticles’ weights. (3]
The MMSE estimate is the black X, the red dots are the vehiclgwiat
history, and the red square is the true target locationriis orientation is
7~ The plots (a) through (d) are at time 1, 2, 5, and 20. [4]
are made of the near-field at spherical coordinates,(®) [5]
relative to the antenna, with components[16],
3 4 1 g
Hy = §01 |y + gbye | cos()e ™ oy, 6]
Hy= -2qn|L - i 1 lgn()e 0 +
v Tt B T B2 T e Mt
. . . 7
where § = 27” is a constant of the signal modulatiof, 71

is the antenna current,is the equivalent length, angl is
measurement noise. Measurements of signal strength froffl
two orthogonal antennas in the receiver give a measured
direction, ¢, of the field line. The measurement model is

h(i) (Xgi)’ 0, Wgz)) = 5(X§i)v 0, nti))

beac [9]
() z )
X = (#) 0= Ya yTle =~ N(Ov ET)
Yt Ya [10]
where ¢\, y{”) is theit" vehicle’s position, anda,, v.) o
11

is the beacon antenna’s position, with rotation anglein
the horizontal plane. The covariance of the Gaussian nsiseyi
Y... The search domair®, spans a unitless 40 by 40 square,
with 1, € [0, 27). The prior distribution is uniform over the
domain. The search vehicle is modeled as a quadrotor aircrgfa]

[8]. They accelerate laterally proportional to their tiltjth ~ [14]
constraints on speed, acceleration, and proximity. [15]
The proposed method quickly localizes the target, as

shown in Figure 2. The quadrotors move to locations that
reinforce one another's measurements, in a behavior suﬁé]
stantially more complicated than that required for range or
bearing sensors. The posterior distribution, visualizgdhe
particles, demonstrates the ability of this method to handl
complicated posterior beliefs. It successfully exploite t
structure of the distribution to reduce uncertainty.

V. CONCLUSION

A set of methods were developed to enable informatio
theoretic distributed control of mobile sensor networkska

open the door to a variety of future applications.
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APPENDIX

To exchange conditioning variables in mutual information,
use random variables, b, andc. Then,
I(a;b) — I(a;blc) = H(a) — H(alb) — H(a|c) + H(alb,c)

= I(a;c) — I(a;c|b)

qherefore,[(a; ble) = I(a;b) — I(a;c) + I(a;c|b).



