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Abstract— This paper develops a set of methods enabling
an information-theoretic distributed control architecture based
on particle filters to facilitate search by a mobile sensor
network, permitting the use of nonlinear and non-Gaussian
sensor models. Given a particular configuration sensors, this
technique exploits the structure of the probability distributions
of the target state and of the sensor measurements to compute
the control inputs to the mobile sensors leading to future ob-
servations that minimize, in expectation, the future uncertainty
of the target state. We compute the mutual information using a
particle set representation of the posterior distribution. In order
to control a large number of mobile sensors as a network, single-
node and pairwise-node approximation schemes are presented,
with analytically bounded error, making the approach scalable
to increasing network sizes, while still planning cooperatively.
The methods are applied in simulation to bearings-only sensing,
and to localizing an avalanche rescue beacon of a buried
victim, using transceivers on quadrotor aircraft to measure the
magnetic field. Monte Carlo simulations also demonstrate that
as network size increases, the sensors more quickly localize the
target, and the pairwise-node approximation results in superior
performance to the single-node approximation.

I. I NTRODUCTION

Mobile sensor network technology is becoming increas-
ingly available, making it possible to exploit these plat-
forms to efficiently and automatically search for targets with
unprecedented speed, safety, and reliability. Mobile sensor
network search is complicated by low prior information
about the target’s state, the frequently nonlinear mapping
between sensor observations and the physical world, and
non-Gaussian target state representation.

This paper addresses these challenges by developing a
set of methods enabling an information-theoretic distributed
control architecture based on particle filters. We derive
methods to compute information-theoretic quantities using
particle filters, and approximations that enable scalability
in network size for real-time control. Given a particular
configuration of sensors, this technique exploits the structure
of the probability distributions of the target state and of
the sensor measurements to compute control inputs leading
to future observations that minimize, in expectation, the
future uncertainty of the target state. The approximation
schemes presented have polynomial time complexity in the
network size, and analytically bounded error. Thesingle-
node approximation leads to cooperative control due to
common knowledge of the target state distribution, whereas
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the pairwise-node approximation makes improved cooper-
ation possible by approximating the effect of other sensing
nodes’ planned observations. By using particle filters, we are
able to numerically approximate the target state probability
distribution, without assumptions about the family of the
distribution or about the linearity of the dynamics[1].

In previous literature, one method minimizes metrics of
the expected estimation covariance to compute trajectories
to help estimation [2], [3]. Though computationally efficient,
the approach linearizes measurement models, and relies on a
Gaussian noise assumption and a guessed initial solution.
This can lead to underestimation of the covariance and
divergence of the filter [1], [4]. Another method, using
grid cell discretization, is developed in [5], enabling use
of nonlinear, non-Gaussian models. These techniques suffer
poor computational time complexity with the dimension of
the state, particularly for information theoretic quantities.
Information theoretic costs have been used to manage sensors
[6], and in [7] the expected alpha-divergence of a particle
filter distribution was used for sensor management, and spe-
cialized to select modes for binary sensors, though scalability
in sensor network size is not addressed.

We proceed by showing equivalence of searching for a
target and maximizing mutual information. Then, algorithms
to compute mutual information using particle filters are then
derived, and used in a distributed control algorithm to co-
operatively control the vehicles. The methods are applied in
simulation to localization using bearings-only sensors onair-
planes, and to localization of a buried avalanche victim, using
rescue beacons on quadrotor aircraft from the STARMAC
project [8]. The results show successful localization under
all circumstances. The pairwise-node approximation leadsto
faster localization than using the single-node approximation,
and increasing the size of the network speeds localization.
Successful localization of the rescue beacon’s magnetic field
source exemplifies the utility of these techniques.

II. PROBLEM FORMULATION

A. Mobile Sensor Motion and Measurement Models
Consider a set ofnv vehicles carrying sensors to locate a

target in the search domain,Θ. The location of the target,
θ ∈ Θ ⊂ R

nθ , is unknown to the vehicles. A motion model
is used for non-stationary targets [9]. A prior distribution,
p0(θ), is provided, using any information availablea priori.

The state of theith vehicle, at time indext, is x
(i)
t ∈ R

ns ,
with ns vehicle states. The discrete time dynamics are

x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t ) (1)



whereu
(i)
t ∈ U (i) ⊂ R

nu is the set ofnu control inputs,
U (i) is their domain, and the time step is∆. A minimum
separation ofd̄ is required between all vehicles. Letx(i)

t be
the subset of theith vehicle’s states that correspond to its
position. The collision avoidance constraint is,

||x
(i)
t − x

(j)
t || ≥ d̄ ∀ j ∈ {1, . . . , nv : j 6= i} (2)

Sensor measurements for theith vehicle, z(i)
t ∈ Z(i) ⊂

R
nz , are taken at rate1

∆ . The domain of observations is
Z(i), with dimensionnz. The measurement model is,

z
(i)
t = h

(i)
t (x

(i)
t , θ, η

(i)
t ) (3)

provided a priori to all vehicles. The observation noise is
η
(i)
t ∈ R

nη with assumed distribution,η(i)
t ∼ pt(η

(i)).
The noise distribution need not be Gaussian. The problem
formulation admits a broad class of measurement models, as
h

(i)
t could be a nonlinear or discontinuous mapping of the

states and measurement noise onto the observation space.
The vehicles are equipped with communication devices

such that each vehicle can incorporate the measurements
made by all other vehicles in the estimation process at each
time step. One such reliable technology is demonstrated in
the 802.11b network used in the STARMAC project.

B. Information Seeking

Each vehicle,i, maintains its own minimum mean square
error (MMSE) estimate of the current target state,θ̂

(i)
t ∈

R
nθ , and of the posterior distribution,pt(θ(i)). The poste-

rior distribution is the prior distribution conditioned onall
new observations that vehicle has made or received, i.e.,
pt−1|t(θ

(i)|z).1 These distributions, at each aircraft, based
on all shared observations, can be assumed nearly identical.

The main goal of a multi-vehicle search team is to
minimize the total time to localize a target with a given
likelihood, by making observations at some fixed rate. There-
fore, the goal is tocontrol sensor locations to minimize the
expected number of future observations needed to ascertain
the target’s state. A set of observations can be interpreted,
in an information-theoretic sense, as a code word, with an
alphabet comprised of all possible quantized outputs of the
nz sensors. These encode the target state, which is repre-
sented computationally by an alphabet of a finite number
of symbols, such as 64 bits in a double precision floating
point data type. Therefore, to minimize the expected number
of remaining observations is to maximize the expected log-
likelihood of the posterior distribution with each observation
of the vehicles, as derived in [10]. With constraints on
control authority, the optimal observation positions may not
be reachable in one time step, leading to a greedy algorithm
that moves the vehicles toward the best reachable locations.

In order to compute the posterior probability distribution
following an observation, assuming that the target state
represents the complete state of the target and the system
is Markov, Bayes’ Rule can be used,

1The subscript of probability distribution functions indicates the time
steps of the random variable arguments. For instance,pt+1|t,t+1(a|b, c; d)
is the distribution of random variablea at timet+1 conditioned on random
variablesb at time t andc at time t + 1, parameterized byd.

pt+1(θ
(i)) =

pt(θ
(i))pt+1|t(z|θ

(i))
∫

Θ

pt(θ(i))pt+1|t(z|θ(i))dθ(i)
(4)

Taking the log-likelihood of each side yields

H(θ
(i)
t |zt+1) = H(θ

(i)
t ) − I(zt+1; θ

(i)
t ) (5)

where

H(θ
(i)
t ) = −

∫

θ∈Θ

pt(θ
(i)) log pt(θ

(i))dθ (6)

H(θ
(i)
t |zt+1) =
−
∫

θ∈Θ

z∈Z

pt,t+1(θ
(i), z) log pt|t+1(θ

(i)|z)dθdz (7)

I(zt+1; θ
(i)
t ) =∫

θ∈Θ

z∈Z

pt,t+1(θ
(i), z) log

pt,t+1(θ
(i),z)

pt,t+1(θ(i))pt+1(z)
dθdz (8)

H(θ
(i)
t ) is the entropy of the target state distribution,

I(zt+1; θ
(i)
t ) is the mutual information between the distri-

butions of the target state and the sensors, andH(θ
(i)
t |zt+1)

is theconditional entropy of the distribution — the expected
entropy of the target state when conditioning withzt+1[11].
The entropy of a probability distribution is a metric of
the uncertainty of that distribution. The mutual information
is a metric of the expected divergence (Kullback-Liebler)
between the independent and joint distributions ofθ

(i)
t and

zt+1. It is large when two distributions have strong interde-
pendence, and zero when they are independent.

The control inputs,ut, and vehicle states,xt, influence
the observations,zt+1, through Equations (1) and (3). To
minimize the expected future uncertainty of the target state
distribution, with respect tout, is to minimize Equation
(5). The actual uncertainty depends on the real measurement
made ofzt+1. The prior uncertainty is independent of the
future control inputs, so to minimize the expected posterior
uncertainty, one must maximize the observation information
with respect to the control inputs. It expands as,

I(zt+1; θ
(i)
t )

︸ ︷︷ ︸

observation
information

= H(zt+1)
︸ ︷︷ ︸

observation
uncertainty

− H(zt+1|θ
(i)
t )

︸ ︷︷ ︸

conditional
observation uncertainty

(9)

Thus, minimizing the expected posterior uncertainty is equiv-
alent to maximizing the difference between the uncertainty
that any particular observation will be made, and the uncer-
tainty of the measurement model. In order to seek informa-
tion, the network computes its control inputs by maximizing
the mutual information utility function,

V (i)(xt,ut, θ
(i)
t ) = I(zt+1; θ

(i)
t ) (10)

as described in the next section.

III. M ETHODOLOGY

A. Particle Filter

Each vehicle approximatespt(θ(i)) with an onboard par-
ticle filter, incorporating the observations shared by all ve-
hicles, with a set ofN particles,(θ̃(i)t,k,w

(i)
t,k), indexed byk,

where θ̃(i)t,k ∈ Θ is the state of the particle, andw(i)
t,k ∈ R+



is the likelihood weight.2 The particles approximatept(θ(i))
by the probability mass function,

p̂t(θ
(i)) =

N∑

k=1

w
(i)
t,kδ(θ

(i) − θ̃
(i)
t,k) (11)

whereδ(·) is the Dirac delta function.
By maintaining a set of particles locally aboard each

vehicle, only the observations need to be communicated, as
opposed to the values of the entire set of particles. The
particle filter iteratively incorporates new observationsby
predicting the state of each particle, updating the likelihood
weights with the likelihood of new observations, and then
resampling the particles, as described in detail in [12], [9].
A low variance sampler [4] is used for this work, with time
complexity ofO(N). The MMSE estimate is

θ̂
(i)
t =

∫

Θ

θ(i)pt(θ
(i))dθ(i) ≈

N∑

k=1

w
(i)
t,kθ̃

(i)
t,k (12)

B. Determining Mutual Information from Particle Sets

To evaluate the mutual information utility function, Equa-
tion (10), with the particle filter representation, expand it
according to Equation (9). Consider the first term,

H(zt+1) = −

∫

Z

pt+1(z;ut,xt) log pt+1(z;ut,xt)dz (13)

This cannot be directly evaluated, becausept+1(z;ut,xt) is
not available as a continuous function. Rather, the observa-
tion distribution must be determined from the particle set and
sensor model. First, expand the distribution as,

pt+1(z;ut,xt) =

∫

Θ

pt+1|t(z|θ
(i);ut,xt)pt(θ

(i))dθ(i)

=

∫

Θ



pt(θ
(i))

nv∏

j=1

pt+1|t(z
(j)|θ(i);ut,xt)



 dθ(i) (14)

where the second step expands the joint distribution using
the assumption that the likelihoods of sensor observationsare
conditionally independent given the target state distribution.
This is exact when the sensors lack correlated noise. Then,
Monte Carlo integration techniques can be used[13]. Substi-
tuting Equation (11) into Equation (14) yields the particle
filter approximation at theith vehicle,

pt+1(z;ut,xt) ≈
N∑

k=1

(

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

)

(15)

Substituting Equation (15) back into Equation (13) yields
the observation entropy of the distribution represented bythe
particle filter approximation at theith vehicle,
H(zt+1) ≈

−
∫

Z

{(
N∑

k=1

(

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

))

· log

(
N∑

k=1

(

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

))}

dz

(16)

2The second subscript of any variable denotes the index of theparticle
to which the variable belongs.

which can then be evaluated by numerical quadrature [14].
Next, similar methods are applied to compute

H(zt+1|θt) =
−
∫

Z,Θ

pt+1,t(z, θ
(i);ut,xt) log pt+1|t(z|θ

(i);ut,xt)dzdθ
(i)

(17)
The joint distribution can be expanded using the chain rule

and assuming conditional independence,

pt+1,t(z, θ
(i);ut,xt) = pt(θ

(i))

nv∏

j=1

pt+1|t(z
(j)|θ(i);ut,xt)

(18)
Substituting Equation (18) into Equation (17) and applying

the approximation of Equation (11), yields the conditional
observation entropy of the distribution represented by the
particle filter approximation at theith vehicle,

H(zt+1|θ
(i)
t ) ≈

−
∫

Z

N∑

k=1

{

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

· log
nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

}

dz

(19)

Thus, the mutual information utility function, Equation
(10), can be found by using Equations (16), (19), and (9).
This optimization remains highly coupled between thenv
vehicles. The degree of cooperation between the vehicles is
analyzed to determine a scalable control strategy.

C. Approximately Decoupling Mutual Information

The mutual information between the random variablesθ
(i)
t

and zt+1 quantifies the expected reduction in uncertainty.
However, the computational complexity of using a particle
set representation to evaluate this quantity grows exponen-
tially nz, due to integration over each dimension.

We present two different approximations to mutual infor-
mation that allow it to be evaluated in polynomial time with
respect to the number of sensors. This makes the network
scalable, yet capable of exploiting the descriptiveness of
the particle filter. First, in the single-node approximation, a
sensing node’s utility function uses the previous observations
of all sensing nodes, but only considers its own future
observations. This is a generalization of an increasingly
popular technique (e.g., [2]). Second, in the pairwise-node
approximation, a sensing node additionally considers the
effect of plans of each other vehicle, pairwise, on the utility
of its own future observation.

Proposition 1: The mutual information utility function
can be approximated using thesingle-node approximation:

V (i)
s (xt,ut, θ

(i)
t ) = I(z

(i)
t+1; θ

(i)
t ) (20)

with an error from the true value of

ǫ(i)s = c(i)s +

nv∑

j=2
j 6=i

(

I(z
(j)
t+1; z

(i)
t+1, z

(1)
t+1, . . . , z

(j−1)
t+1 )

)

(21)

where c(i)s encompasses the terms that are constant with
respect to theith mobile sensor’s control inputs.



Proof: Without loss of generality, consider the case of
approximating the mutual information from the perspective
of vehicle i = 1. The mutual information can be expanded
using the chain rule [11], and then rewritten by exchanging
conditioning variables (see Appendix) to yield

I(θ
(1)
t ; zt+1) =

nv∑

j=1

I(θ
(1)
t ; z

(j)
t+1|z

(1)
t+1, . . . , z

(j−1)
t+1 )

=
nv∑

j=1

(

I(θ
(1)
t ; z

(j)
t+1) − I(θ

(1)
t ; z

(1)
t+1, . . . , z

(j−1)
t+1 )

+I(θ
(1)
t ; z

(1)
t+1, . . . , z

(j−1)
t+1 |z

(j)
t+1)

)

Exchanging conditioning variables on the latter two terms,
and canceling terms that sum to zero,

I(θ
(1)
t ; zt+1) = V

(1)
s (xt,ut, θ

(1)
t ) + c

(1)
s

+
nv∑

j=2

(

I(z
(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 |θ

(1)
t )

−I(z
(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 )

)

with constantc(i)s = −
nv∑

j=1
j 6=i

I(z
(j)
t+1; θ

(i)
t ).

Applying the assumption that observations are condition-
ally independent given the target state, the first term in the
summation is zero. Thus, generalizing to theith vehicle, the
mutual information utility function can be evaluated using
Equation (20) with error given by Equation (21).

The computational complexity of the single-node approx-
imation to the mutual information utility function is constant
with respect tonv. To improve on this approximation,
considering the pairwise interactions of all vehicles leads to a
utility function approximation that more accurately captures
the effect of group control inputs on mutual information,
with computational complexity linear innv.

Proposition 2: The mutual information utility function
can be approximated using thepairwise-node approximation:

V
(i)
p (xt,ut, θ

(i)
t ) = (2 − nv)

(

I(z
(i)
t+1; θ

(i)
t )
)

+
nv∑

j=1
j 6=i

(

I(z
(i)
t+1, z

(j)
t+1; θ

(i)
t )
)

(22)

whennv ≥ 2, with an error from the true value of

ǫ(i)p =

nv∑

j=2
j 6=i

(

I(z
(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 |z

(i)
t+1)

)

(23)

Proof: Without loss of generality, consider the case of
approximating the mutual information from the perspective
of vehicle i = 1. The mutual information can be expanded
using an application of the chain rule, separating the first
term in the summation, and applying the chain rule again,

I(θ
(1)
t ; zt+1) = I(θ

(1)
t ; z

(1)
t+1)+

nv∑

j=2

(

I(θ
(1)
t ; z

(1)
t+1, z

(j)
t+1|z

(2)
t+1, . . . , z

(j−1)
t+1 )

−I(θ
(1)
t ; z

(1)
t+1|z

(2)
t+1, . . . , z

(j−1)
t+1 )

)

Exchanging conditioning variables in the summation (see
Appendix), canceling the resulting terms that sum to zero,
and splitting the remaining summation, yields

I(θ
(1)
t ; zt+1) = V

(1)
p (xt,ut, θ

(1)
t )

+
nv∑

j=3

(

I(θ
(1)
t ; z

(2)
t+1, . . . , z

(j−1)
t+1 |z

(1)
t+1, z

(j)
t+1)

−I(θ
(1)
t ; z

(2)
t+1, . . . , z

(j−1)
t+1 |z

(1)
t+1)

)

Exchanging conditioning variables inside the summation,
canceling terms summing to zero, and assuming conditional
independence of observations given the target state yields,

I(θ
(1)
t ; zt+1) = V

(1)
p (xt,ut, θ

(1)
t ) + ǫ

(1)
p

Thus, the mutual information utility function can be evalu-
ated using Equation (22) with error given by Equation (23).

Now we examine the effect that this added computational
complexity has on the error terms, as a function of the value
of the ith vehicle’s control inputs.

Proposition 3: The magnitude of the error terms, that
vary with theith vehicle’s control inputs, in the single-node
approximation, is greater than or equal to the magnitude of
the pairwise-node approximation error terms, and equal only
when the vehicle’s observations are independent of all other
vehicles. That is,

|ǫ(i)s − c(i)s | ≥ |ǫ(i)p | (24)

Proof: Subtract from the single-node approximation
error, Equation (21), the terms that do not vary with the
i(th) vehicle’s control inputs,c(i)s , and apply the chain rule
for mutual information [11],

I(z
(j)
t+1; z

(i)
t+1, z

(1)
t+1, . . . , z

(j−1)
t+1 ) =

I(z
(j)
t+1; z

(i)
t+1) + I(z

(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 |z

(i)
t+1)

(25)

Mutual information is always greater than or equal to zero,
and is equal only if the distributions are independent. So,

I(z
(j)
t+1; z

(i)
t+1, z

(1)
t+1, . . . , z

(j−1)
t+1 ) ≥

I(z
(j)
t+1; z

(2)
t+1, . . . , z

(j−1)
t+1 |z

(i)
t+1) (26)

The magnitudes of the sum of the left and right sides of this
equation, fromj = 1 to j = nv, are equal to, respectively,
the left and right sides of Equation (24).

The pairwise-node approximation yields an estimate of
the mutual information gain as good or better than the
single-node approximation. When the vehicles’ sensors make
uncorrelated measurements, the single-node approximation
computes faster and yields the same result as the pairwise-
node approximation. However, if the observations are cor-
related, as is more frequently true, then the pairwise-node
approximation yields a closer estimate. Although the mag-
nitude of the pairwise-node approximation error is less, it
is not possible to guarantee that the optimization is not
skewed by some systematic error between the exact solution
and the single-node error. However, using the pairwise-
node approximation still yields an approximate expected mu-
tual information surpassing what seemed possible using the
single-node approximation, and in experiments, the pairwise-
node approximation yields better results.



D. Mobile Sensor Network Control

The mobile sensor network control is structured as a set
of local optimal control problems for each sensing node,
coupled through interconnecting constraints. The local opti-
mization problem is formed holding the actions of the other
vehicles fixed, and an iterative algorithm is implemented
based on [15] ensuring convergence toǫ-feasible solutions
that satisfy the necessary conditions for Pareto optimality.

An inexact penalty function is defined for each vehicle as,

P (x
(i)
t ,u

(i)
t |x

(−i)
t ,u

(−i)
t ) =

∑n(i)
c

m=1 max(0, g(i,m)(x
(i)
t ,u

(i)
t |x

(−i)
t ,u

(−i)
t )γ)

(27)

wherem indexes the set ofn(i)
c interconnecting inequality

constraints,g(i,m) that affect vehiclei, and −i is the set
of all vehicles other thani. The penalty functions are zero
wherever the constraints are satisfied, and are differentiable
for all γ ≥ 2, γ ∈ R+. The nv − 1 collision avoidance
constraints from Equation (2) are rewritten as,

g(i,m) = d̄− ||x
(i)
t+1 − x

(m)
t+1|| ≤ 0

∀m ∈ {1, . . . , nv : m 6= i}
(28)

The penalty function is added to the individual vehicle cost
scaled by penalty parameterβ, varying the tradeoff between
constraint violation and the information-theoretic cost,with
an updateβ := αβ at each iteration, whereα ∈ (0, 1) is a
design parameter. The local optimization problem based on
the single-node approximation, Equation (20), is

Single-Node Local Optimization Program:

minimize
u

(i)
t ∈U(i)

−V
(i)
s (x

(i)
t ,u

(i)
t , θ

(i)
t |x

(−i)
t ,u

(−i)
t )

+ 1
β
P (x

(i)
t ,u

(i)
t |x

(−i)
t ,u

(−i)
t )

subject to x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t )

z
(i)
t+1 = h

(i)
t (x

(i)
t+1, θ

(i)
t , η

(i)
t )

(29)

The decentralized penalty method requires costs depending
only on local variables, as in the single-node approximation.
For the pairwise-node approximation, Equation (22), slack
variables are added to decouple the local sensor costs,
resulting in additional interconnecting constraints to include
in the penalty function. Define the slack variable,ũ

(i)
t , as

the vector of all sensors’ control inputs computed by theith

sensor. Agreement among mobile sensing nodes onũ
(i)
t is

realized through the penalty function enforced constraint,

ũ
(i)
t = ũ

(j)
t ∀ i, j ∈ {1, . . . , nv : j 6= i} (30)

The pairwise-node local optimization program is defined
analogously to the single-node program, with optimization
instead over the entire control vector,ũ

(i)
t ∈ U .

The distributed algorithm uses an iterative approach
where interim solutions of control inputs are communicated
amongst the vehicles in between local optimizations. This
process can be hierarchical, synchronous, or asynchronous.
Detailed algorithms and proof of convergence are in [15].
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Fig. 1. Mean and quartile bars of the probability that the true target state
is within 1 unit of the MMSE estimate, for sets of 1000 trials. The vehicles
each make an observation at each time step. (a) Results fornv = 4. Single-
node approximation is dashed line, pairwise-node approximation is solid
line. (b) Results using pairwise-node approximation for varying number of
search vehicles: 2, 3, 4 and 10.

IV. A PPLICATIONS

A. Bearings-Only Sensing

A bearings-only sensor, such as a camera, measures the
bearing to the target only. The measurement equation is,

h
(i)
b (x

(i)
t , θ, η

(i)
t ) = δ

(i)
b + η

(i)
t

x
(i)
t =

(

x
(i)
t

y
(i)
t

)

, θ =

(
xs
ys

)

, η
(i)
t ∼ N (0, σ2

s)

where δ(i)b is the angle of the ray from theith vehicle’s
position, (x(i)

t , y(i)
t ), to the target’s position, (xs, ys). The

additive Gaussian noise has varianceσ2
s . The search domain,

Θ, spans a unitless 40 by 40 square. The prior distribution
is uniform over the domain. The vehicles are modeled
as airplanes, with fixed speeds, limited turning rates, and
initially close proximity.

The algorithm results in the rapid localization of the target,
despite complete prior uncertainty, consistently in a large
number of trials. Use of the pairwise-node approximation,
Figure 1a, reduced time-to-convergence compared to the
single-node approximation, on average. The pairwise-node
approximation yielded more consistent performance com-
pared to the single-node approximation, shown by narrower
error bands. When applied to varying sizes of vehicle fleets,
the algorithm successfully exploits the additional availability
of agents, as shown in Figure 1b. The time-to-convergence
is reduced, on average, as vehicles are added to the fleet.

B. Rescue Beacon Sensing

To rescue a victim buried in snow due to an avalanche,
each vehicle uses a beacon receiver to measure the local
orientation an electromagnetic (EM) field transmitted by the
standard avalanche rescue beacon, carried by the victim. The
position and orientation of the beacon are unknown.

The magnetic field,H, of an EM source is modulated
to minimize interference by snow and rocks. Measurements
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Fig. 2. Four quadrotor aircraft search for a rescue beacon using the
pairwise-node approximation. The particles are shown as short lines indicat-
ing position and orientation, with darkness indicating theparticles’ weights.
The MMSE estimate is the black X, the red dots are the vehicle waypoint
history, and the red square is the true target location. Its true orientation is
π

4
. The plots (a) through (d) are at time 1, 2, 5, and 20.

are made of the near-field at spherical coordinates (r, ψ, φ)
relative to the antenna, with components[16],

Hr = β3

2π Il
[

j
(βr)2 + 1

(βr)3

]

cos(ψ)e−jβr + ηt,r

Hψ = −β3

4π Il
[

1
βr

− j
(βr)2 − 1

(βr)3

]

sin(ψ)e−jβr + ηt,ψ

where β = 2π
λ

is a constant of the signal modulation,I
is the antenna current,l is the equivalent length, andηt is
measurement noise. Measurements of signal strength from
two orthogonal antennas in the receiver give a measured
direction,δ, of the field line. The measurement model is

h
(i)
beac(x

(i)
t , θ,w

(i)
t ) = δ(x

(i)
t , θ, η

(i)
t )

x
(i)
t =

(

x
(i)
t

y
(i)
t

)

, θ =





xa
ya
ψa



 , η
(i)
t ∼ N (0,Σr)

where (x(i)
t , y(i)

t ) is the ith vehicle’s position, and (xa, ya)
is the beacon antenna’s position, with rotation angleψa in
the horizontal plane. The covariance of the Gaussian noise is
Σr. The search domain,Θ, spans a unitless 40 by 40 square,
with ψa ∈ [0, 2π). The prior distribution is uniform over the
domain. The search vehicle is modeled as a quadrotor aircraft
[8]. They accelerate laterally proportional to their tilt,with
constraints on speed, acceleration, and proximity.

The proposed method quickly localizes the target, as
shown in Figure 2. The quadrotors move to locations that
reinforce one another’s measurements, in a behavior sub-
stantially more complicated than that required for range or
bearing sensors. The posterior distribution, visualized by the
particles, demonstrates the ability of this method to handle
complicated posterior beliefs. It successfully exploits the
structure of the distribution to reduce uncertainty.

V. CONCLUSION

A set of methods were developed to enable information-
theoretic distributed control of mobile sensor network search,

using particle filters. Formulae were derived to compute
information-theoretic quantities using particle filters,and
single-node and pairwise-node approximations were derived
to enable scalability in network size. The methods were
applied in simulation. The results of search using bearings-
only sensing demonstrate the utility of the techniques, and
the results of search using the avalanche rescue beacon
demonstrate the ability to handle problems that would pose
significant hurdles to previous strategies. The techniques
open the door to a variety of future applications.
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APPENDIX

To exchange conditioning variables in mutual information,
use random variables,a, b, andc. Then,
I(a; b) − I(a; b|c) = H(a) −H(a|b) −H(a|c) +H(a|b, c)

= I(a; c) − I(a; c|b)

therefore,I(a; b|c) = I(a; b) − I(a; c) + I(a; c|b).


