
Multi-Agent Quadrotor Testbed Control Design:

Integral Sliding Mode vs. Reinforcement Learning∗

Steven L. Waslander†, Gabriel M. Hoffmann†,‡

Ph.D. Candidate

Aeronautics and Astronautics

Stanford University

{stevenw, gabeh}@stanford.edu

Jung Soon Jang

Research Associate

Aeronautics and Astronautics

Stanford University

jsjang@stanford.edu

Claire J. Tomlin

Associate Professor

Aeronautics and Astronautics

Stanford University

tomlin@stanford.edu

Abstract— The Stanford Testbed of Autonomous Rotorcraft
for Multi-Agent Control (STARMAC) is a multi-vehicle testbed
currently comprised of two quadrotors, also called X4-flyers,
with capacity for eight. This paper presents a comparison
of control design techniques, specifically for outdoor altitude
control, in and above ground effect, that accommodate the
unique dynamics of the aircraft. Due to the complex airflow in-
duced by the four interacting rotors, classical linear techniques
failed to provide sufficient stability. Integral Sliding Mode and
Reinforcement Learning control are presented as two design
techniques for accommodating the nonlinear disturbances. The
methods both result in greatly improved performance over
classical control techniques.

I. INTRODUCTION

As first introduced by the authors in [1], the Stanford

Testbed of Autonomous Rotorcraft for Multi-Agent Con-

trol (STARMAC) is an aerial platform intended to validate

novel multi-vehicle control techniques and present real-world

problems for further investigation. The base vehicle for

STARMAC is a four rotor aircraft with fixed pitch blades,

referred to as a quadrotor, or an X4-flyer. They are capable

of 15 minute outdoor flights in a 100m square area [1].

Fig. 1. One of the STARMAC quadrotors in action.

There have been numerous projects involving quadrotors

to date, with the first known hover occurring in October,

1922 [2]. Recent interest in the quadrotor concept has been

sparked by commercial remote control versions, such as the

∗Research supported by ONR under the MURI contract N00014-02-1-
0720 called “CoMotion: Computational Methods for Collaborative Motion”,
by the NASA Joint University Program under grant NAG 2-1564, and by
NASA grant NCC 2-5536.

† These authors contributed equally to this work.
‡Funding provided by National Defense Science and Engineering Grant.

DraganFlyer IV [3]. Many groups [4]–[7] have seen signif-

icant success in developing autonomous quadrotor vehicles.

To date, however, STARMAC is the only operational multi-

vehicle quadrotor platform capable of autonomous outdoor

flight, without tethers or motion guides.

The first major milestone for STARMAC was autonomous

hover control, with closed loop control of attitude, altitude

and position. Using inertial sensing, the attitude of the

aircraft is simple to control, by applying small variations in

the relative speeds of the blades. In fact, standard integral

LQR techniques were applied to provide reliable attitude

stability and tracking for the vehicle. Position control was

also achieved with an integral LQR, with careful design in

order to ensure spectral separation of the successive loops.

Unfortunately, altitude control proves less straightforward.

There are many factors that affect the altitude loop specif-

ically that do not amend themselves to classical control

techniques. Foremost is the highly nonlinear and destabilizing

effect of four rotor downwashes interacting. In our experi-

ence, this effect becomes critical when motion is not damped

by motion guides or tethers. Empirical observation during

manual flight revealed a noticeable loss in thrust upon descent

through the highly turbulent flow field. Similar aerodynamic

phenomenon for helicopters have been studied extensively

[8], but not for the quadrotor, due to its relative obscurity

and complexity. Other factors that introduce disturbances into

the altitude control loop include blade flex, ground effect

and battery discharge dynamics. Although these effects are

also present in generating attitude controlling moments, the

differential nature of the control input eliminates much of the

absolute thrust disturbances that complicate altitude control.

Additional complications arise from the limited choice

in low cost, high resolution altitude sensors. An ultrasonic

ranging device [9] was used, which suffers from non-

Gaussian noise—false echoes and dropouts. The resulting

raw data stream includes spikes and echoes that are difficult

to mitigate, and most successfully handled by rejection of

infeasible measurements prior to Kalman filtering.

In order to accommodate this combination of noise and

disturbances, two distinct approaches are adopted. Integral

Sliding Mode (ISM) control [10]–[12] takes the approach

that the disturbances cannot be modeled, and instead designs

a control law that is guaranteed to be robust to disturbances as

long as they do not exceed a certain magnitude. Model-based

reinforcement learning [13] creates a dynamic model based

on recorded inputs and responses, without any knowledge

of the underlying dynamics, and then seeks an optimal

control law using an optimization technique based on the

learned model. This paper presents an exposition of both

methods and contrasts the techniques from both a design and

implementation point of view.

II. SYSTEM DESCRIPTION

STARMAC consists of a fleet of quadrotors and a ground

station. The system communicates over a Bluetooth Class 1

network. The core of the aircraft are microcontroller circuit

boards designed and assembled at Stanford, for this project.

The microcontrollers run real-time control code, interface

with sensors and the ground station, and supervise the system.

The aircraft are capable of sensing position, attitude, and

proximity to the ground. The differential GPS receiver is the

Trimble Lassen LP, operating on the L1 band, providing 1

Hz updates. The IMU is the MicroStrain 3DM-G, a low cost,

light weight IMU that delivers 76 Hz attitude, attitude rate,

and acceleration readings. The distance from the ground is

found using ultrasonic ranging at 12 Hz.

The ground station consists of a laptop computer, to

interface with the aircraft, and a GPS receiver, to provide

differential corrections. It also has a battery charger, and

joysticks for control-augmented manual flight, when desired.

III. QUADROTOR DYNAMICS

The derivation of the nonlinear dynamics is performed in

North-East-Down (NED) inertial and body fixed coordinates.

Let {eN, eE, eD} denote the inertial axes, and {xB,yB, zB}
denote the body axes, as defined in Figure 2. Euler angles of

the body axes are {φ, θ, ψ} with respect to the eN, eE and

eD axes, respectively, and are referred to as roll, pitch and

yaw. Let r be defined as the position vector from the inertial

origin to the vehicle center of gravity (CG), and let ωB be

defined as the angular velocity in the body frame. The current

velocity direction is referred to as ev in inertial coordinates.

Fig. 2. Free body diagram of a quadrotor aircraft.

The rotors, numbered 1− 4, are mounted outboard on the

xB, yB, −xB and −yB axes, respectively, with position

vectors ri with respect to the CG. Each rotor produces an

aerodynamic torque, Qi, and thrust, Ti, both parallel to the

rotor’s axis of rotation, and both used for vehicle control.

Here, Ti ≈ ui
kt

1+0.1s , where ui is the voltage applied to the

motors, as determined from a load cell test. In flight, Ti can

vary greatly from this approximation. The torques, Qi, are

proportional to the rotor thrust, and are given by Qi = krTi.

Rotors 1 and 3 rotate in the opposite direction as rotors 2

and 4, so that counteracting aerodynamic torques can be used

independently for yaw control. Horizontal velocity results in

a moment on the rotors, Ri, about −ev, and a drag force,

Di, in the direction, −ev.

The body drag force is defined as DB , vehicle mass is

m, acceleration due to gravity is g, and the inertia matrix is

I ∈ R
3×3. A free body diagram is depicted in Figure 2. The

total force, F, and moment, M, can be summed as,

F = −DBev +mgeD +

4
∑

i=1

(−TizB −Diev) (1)

M =
4

∑

i=1

(QizB −Riev −Di(ri × ev) + Ti(ri × zB))

(2)

The full nonlinear dynamics can be described as,

mr̈ = F

Iω̇B + ωB × IωB = M
(3)

where the total angular momentum of the rotors is assumed

to be near zero, because they are counter-rotating. Near hover

conditions, the contributions by rolling moment and drag can

be neglected in Equations (1) and (2). Define the total thrust

as T =
∑4
i=1 Ti. The translational motion is defined by,

mr̈ = F = −Rψ ·Rθ ·RφTzB +mgeD (4)

where Rφ, Rθ, and Rψ are the rotation matrices for roll,

pitch, and yaw, respectively. Applying the small angle ap-

proximation to the rotation matrices,

m





r̈x
r̈y
r̈z



 =





1 ψ θ

ψ 1 φ

θ −φ 1









0
0
−T



 +





0
0
mg



 (5)

Finally, assuming total thrust approximately counteracts grav-

ity, T ≈ T̄ = mg, except in the eD axis,

m





r̈x
r̈y
r̈z



 =





0
0
mg



 +





0 −T̄ 0
T̄ 0 0
0 0 1









φ

θ

T



 (6)

For small angular velocities, the Euler angle accelerations

are determined from Equation (3) by dropping the second

order term, ω × Iω, and expanding the thrust into its four

constituents. The angular equations become,





Ixφ̈

Iy θ̈

Izψ̈



 =





0 l 0 −l
l 0 −l 0
Kr −Kr Kr −Kr













T1

T2

T3

T4









(7)

where the moment arm length l = ||ri× zB|| is identical for

all rotors due to symmetry. The resulting linear models can

now be used for control design.

IV. ESTIMATION AND CONTROL DESIGN

Applying the concept of spectral separation, inner loop

control of attitude and altitude is performed by commanding

motor voltages, and outer loop position control is performed

by commanding attitude requests for the inner loop. Accurate

attitude control of the plant in Equation (7) is achieved with

an integral LQR controller design to account for thrust biases.

Position estimation is performed using a navigation filter that

combines horizontal position and velocity information from

GPS, vertical position and estimated velocity information

from the ultrasonic ranger, and acceleration and angular rates

from the IMU in a Kalman filter that includes bias estimates.

Integral LQR techniques are applied to the horizontal com-

ponents of the linear position plant described in Equation (6).

The resulting hover performance is shown in Figure 6.

As described above, altitude control suffers exceedingly

from unmodeled dynamics. In fact, manual command of

the throttle for altitude control remains a challenge for the

authors to this day. Additional complications arise from

the ultrasonic ranging sensor, which has frequent erroneous

readings, as seen in Figure 3. To alleviate the effect of this

noise, rejection of infeasible measurements is used to remove

much of the non-Gaussian noise component. This is followed

by altitude and altitude rate estimation by Kalman filtering,

which adds lag to the estimate. This section proceeds with

a derivation of two control techniques that can be used to

overcome the unmodeled dynamics and the remaining noise.

180 190 200 210 220

0

50

100

150

Time [s]

S
o

n
ic

 R
a

n
g

e
 [

c
m

]

Fig. 3. Characteristic unprocessed ultrasonic ranging data, displaying
spikes, false echoes and dropouts. Powered flight commences at 185 seconds.

A. Integral Sliding Mode Control

A linear approximation to the altitude error dynamics of a

quadrotor aircraft in hover is given by,

ẋ1 = x2

ẋ2 = u+ ξ(g, x) (8)

where {x1, x2} = {(rz,des−rz), (ṙz,des−ṙz)} are the altitude

error states, u =
∑4
i=1 ui is the control input, and ξ(·) is a

bounded model of disturbances and dynamic uncertainty. It

is assumed that ξ(·) satisfies ‖ξ‖ ≤ γ, where γ is the upper

bounded norm of ξ(·).
In early attempts to stabilize this system, it was observed

that LQR control was not able to address the instability

and performance degradation due to ξ(g, x). Sliding Mode

Control (SMC) was adapted to provide a systematic approach

to the problem of maintaining stability and consistent perfor-

mance in the face of modeling imprecision and disturbances.

However, until the system dynamics reach the sliding mani-

fold, such nice properties of SMC are not assured. In order

to provide robust control throughout the flight envelope, the

Integral Sliding Mode (ISM) technique is applied.

The ISM control is designed in two parts. First, a standard

successive loop closure is applied to the linear plant. Second,

integral sliding mode techniques are applied to guarantee

disturbance rejection. Let

u = up + ud

up = −Kpx1 −Kdx2 (9)

where Kp and Kd are proportional and derivative loop gains

that stabilize the linear dynamics without disturbances. For

disturbance rejection, a sliding surface, s, is designed,

s = s0(x1, x2) + z

s0 = α(x2 + kx1) (10)

such that state trajectories are forced towards the manifold

s = 0. Here, s0 is a conventional sliding mode design,

z is an additional term that enables integral control to be

included, and α, k ∈ R are positive constants. Based on

the following Lyapunov function candidate, V = 1
2s

2, the

control component, ud, can be determined such that V̇ < 0,

guranteeing convergence to the sliding manifold.

V̇ = sṡ = s
[

α(ẋ2 + kẋ1) + ż
]

= s
[

α(up + ud + ξ(g, x) + kx2) + ż
]

< 0 (11)

The above condition holds if ż = −α(up + kx2) and ud can

be guaranteed to satisfy,

s
[

ud + ξ(g, x)
]

< 0, α > 0 (12)

Since the disturbances, ξ(g, x), are bounded by γ, define ud
to be ud = −λs with λ ∈ R. Equation (11) becomes,

V̇ = s
[

α(−λs+ ξ(g, x)
]

≤ α
[

− λ|s|2 + γ|s|
]

< 0 (13)

and it can be seen that λ|s| − γ > 0. As a result, for up and

ud as above, the sliding mode condition holds when,

|s| >
γ

λ
(14)

With the input derived above, the dynamics are guaranteed

to evolve such that s decays to within the boundary layer,

γ
λ

, of the sliding manifold. Additionally, the system does

not suffer from input chatter as conventional sliding mode

controllers do, as the control law does not include a switching

function along the sliding mode.

V. REINFORCEMENT LEARNING CONTROL

An alternate approach is to implement a reinforcement

learning controller. Much work has been done on continuous

state-action space reinforcement learning methods [13], [14].

For this work, a nonlinear, nonparametric model of the

system is first constructed using flight data, approximating

the system as a stochastic Markov process [15], [16]. Then a

model-based reinforcement learning algorithm uses the model

in policy-iteration to search for an optimal control policy that

can be implemented on the embedded microprocessors.

In order to model the aircraft dynamics as a stochas-

tic Markov process, a Locally Weighted Linear Regression

(LWLR) approach is used to map the current state, S(t) ∈
R
ns , and input, u(t) ∈ R

nu , onto the subsequent state esti-

mate, Ŝ(t+1). In this application, S = [rz ṙz r̈z V],
where V is the battery level. In the altitude loop, the input,

u ∈ R, is the total motor power, u. The subsequent state

mapping is the summation of the traditional LWLR estimate,

using the current state and input, with the random vector,

v ∈ R
ns , representing unmodeled noise. The value for v is

drawn from the distribution of output error as determined by

using a maximum likelihood estimate [16] of the Gaussian

noise in the LWLR estimate. Although the true distribution

is not perfectly Gaussian, this model is found to be adequate.

The LWLR method [17] is well suited to this problem, as it

fits a non-parametric curve to the local structure of the data.

The scheme extends least squares by assigning weights to

each training data point according to its proximity to the input

value, for which the output is to be computed. The technique

requires a sizable set of training data in order to reflect the

full dynamics of the system, which is captured from flights

flown under both automatic and manually controlled thrust,

with the attitude states under automatic control.

For m training data points, the input training samples are

stored in X ∈ R
(m)×(ns+nu+1), and the outputs correspond-

ing to those inputs are stored in Y ∈ R
m×ns . These matrices

are defined as

X =







1 S(t1)
T

u(t1)
T

...
...

...

1 S(tm)
T

u(tm)
T






, Y =







S(t1 + 1)
T

...

S(tm + 1)
T







(15)

The column of ones in X enables the inclusion of a constant

offset in the solution, as used in linear regression.

The diagonal weighting matrix W ∈ R
m×m, which acts on

X , has one diagonal entry for each training data point. That

entry gives more weight to training data points that are close

to the S(t) and u(t) for which Ŝ(t+ 1) is to be computed.

The distance measure used in this work is

Wi,i = exp

(

−||x(i) − x||

2τ2

)

(16)

where x(i) is the ith row of X , x is the vector

[1 S(t)
T

u(t)
T

], and fit parameter τ is used to adjust

the range of influence of training points. The value for τ can

be tuned by cross validation to prevent over- or under-fitting

the data. Note that it may be necessary to scale the columns

before taking the Euclidean norm to prevent undue influence

of one state on the W matrix.

The subsequent state estimate is computed by summing

the LWLR estimate with v,

Ŝ(t+ 1) =
(

X
T

WX
)

−1

X
T

W
T

x + v (17)

Because W is a continuous function of x and X , as x is

varied, the resulting estimate is a continuous non-parametric

curve capturing the local structure of the data. The matrix

computations, in code, exploit the large diagonal matrix W ;

as each Wi,i is computed, it is multiplied by row x(i), and

stored in WX .

The matrix being inverted is poorly conditioned, because

weakly related data points have little influence, so their

contribution cannot be accurately numerically inverted. To

more accurately compute the numerical inversion, one can

perform a singular value decomposition, (X
T

WX) = UΣV
T

.

Then, numerical error during inversion can be avoided by

using the n singular values σi with values of σmax

σi

< Cmax,

where the value of Cmax is chosen by cross validation. In

this work, Cmax ≈ 10 was found to minimize numerical

error, and was typically satisfied by n = 1. The inverse can

be directly computed using the n upper singular values in the

diagonal matrix Σn ∈ R
n×n, and the corresponding singular

vectors, in Un ∈ R
m×n and Vn ∈ R

m×n. Thus, the stochastic

Markov model becomes

Ŝ(t+ 1) = VnΣ
−1
n U

T

nX
T

W
T

x + v (18)

Next, model-based reinforcement learning is implemented,

incorporating the stochastic Markov model, to design a

controller. A quadratic reward function is used,

R(S,Sref) = −c1(rz − rz,ref)
2 − c2ṙ

2
z (19)

where R : R
2ns → R, c1 > 0 and c2 > 0 are constants

giving reward for accurate tracking and good damping re-

spectively, and Sref = [rz,ref ṙz,ref r̈z,ref Vref] is

the reference state desired for the system.

The control policy maps the observed state S onto the input

command u. In this work, the state space has the constraint

of rz ≥ 0, and the input command has the constraint of

0 ≤ u ≤ umax. The control policy is chosen to be

π(S,w) = w1 + w2(rz − rz,ref) + w3ṙz + w4r̈z (20)

where w ∈ R
nc is the vector of policy coefficients

w1, . . . , wnc
. Linear functions were sufficient to achieve good

stability and performance. Additional terms, such as battery

level and integral of altitude error, could be included to make

the policy more resilient to differing flight conditions.

Policy iteration is performed as explained in Algorithm 1.

The algorithm aims to find the value of w that yields the

greatest total reward Rtotal, as determined by simulating the

system over a finite horizon from a set of random initial

conditions, and summing the values of R(S,Sref) at each

state encountered.

Algorithm 1 Model-Based Reinforcement Learning

1: Generate set S0 of random initial states

2: Generate set T of random reference trajectories

3: Initialize w to reasonable values

4: Rbest ← −∞, wbest ← w

5: repeat

6: Rtotal ← 0
7: for s0 ∈ S0, t ∈ T do

8: S(0)← s0
9: for t = 0 to tmax − 1 do

10: u(t)← π(S(t),w)
11: S(t+ 1)← LWLR(S(t),u(t)) + v

12: Rtotal ← Rtotal +R(S(t+ 1))
13: end for

14: end for

15: if Rtotal > Rbest then

16: Rbest ← Rtotal, wbest ← w

17: end if

18: Add Gaussian random vector to wbest, store as w

19: until wbest converges

In policy iteration, a fixed set of random initial conditions

and reference trajectories are used to simulate flights at each

iteration, with a given policy parameterized by w. It is neces-

sary to use the same random set at each iteration in order for

convergence to be possible [15]. After each iteration, the new

value of w is stored as wbest if it outperforms the previous

best policy, as determined by comparing Rtotal to Rbest, the

previous best reward encountered. Then, a Gaussian random

vector is added to wbest. The result is stored as w, and

the simulation is performed again. This is iterated until the

value of wbest remains fixed for an appropriate number of

iterations, as determined by the particular application. The

simulation results must be examined to predict the likely

performance of the resulting control policy.

By using a Gaussian update rule for the policy weights, w,

it is possible to escape local maxima of Rtotal. The highest

probability steps are small, and result in refinement of a

solution near a local maximum of Rtotal. However, if the

algorithm is not at the global maximum, and is allowed to

continue, there exists a finite probability that a sufficiently

large Gaussian step will be performed such that the algorithm

can keep ascending.

VI. FLIGHT TEST RESULTS

A. Integral Sliding Mode

The results of an outdoor flight test with ISM control

can be seen in Figure 4. The response time is on the order

of 1-2 seconds, with 5 seconds settling time, and little to

no steady state offset. Also, an oscillatory character can be

seen in the response, which is most likely being triggered

by the nonlinear aerodynamic effects and sensor data spikes

described earlier.

0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

100

Time [s]

r
z
 [cm]

v
z
 [cm/s]

r
z,des

 [cm]

v
z,des

 [cm/s]

Fig. 4. Integral sliding mode step response in outdoor flight test.

Compared to linear control design techniques implemented

on the aircraft, the ISM control proves a significant enhance-

ment. By explicitly incorporating bounds on the unknown

disturbance forces in the derivation of the control law, it

is possible to maintain stable altitude on a system that has

evaded standard approaches.

B. Reinforcement Learning Control

One of the most exciting aspects of RL control design

is its ease of implementation. The policy iteration algorithm

arrived at the implemented control law after only 3 hours on

a Pentium IV computer. Figure 5 presents flight test results

for the controller. The high fidelity model of the system, used

for RL control design, provides a useful tool for comparison

of the RL control law with other controllers. In fact, in

simulation with linear controllers that proved unstable on

the quadrotor, flight paths with growing oscillations were

predicted that closely matched real flight data.

The locally weighted linear regression model showed many

relations that were not reflected in the linear model, but that

reflect the physics of the system well. For instance, with all

other states held fixed, an upward velocity results in more

acceleration at the subsequent time step for a throttle level,

and a downward velocity yields the opposite effect. This is

essentially negative damping. The model also shows a strong

ground effect. That is, with all other states held fixed, the

closer the vehicle is to the ground, the more acceleration it

will have at the subsequent time step for a given throttle level.

4 6 8 10 12 14 16
−150

−100

−50

0

50

100

Time [s]

r
z
 [cm]

v
z
 [cm/s]

r
z,des

 [cm]

v
z,des

 [cm/s]

Fig. 5. Reinforcement learning controller response to manually applied
step input, in outdoor flight test. Spikes in state estimates are from sensor
noise passing through the Kalman filter.

The reinforcement learning control law is susceptible to

system disturbances for which it is not trained. In particular,

varying battery levels and blade degradation may cause a

reduction in stability or steady state offset. Addition of

an integral error term to the control policy may prove an

effective means of mitigating steady state disturbances, as

was seen in the ISM control law.

Comparison of the step response for ISM and RL control

reveals both stable performance and similar response times,

although the transient dynamics of the ISM control are more

pronounced. RL does, however, have the advantage that it

incorporates accelerometer measurement into its control, and

as such uses a more direct measurement of the disturbances

imposed on the aircraft.

C. Autonomous Hover

Applying ISM altitude control and integral LQR position

control techniques, flight tests were performed to achieve the

goal of autonomous hover. Position response was maintained

within a 3m circle for the duration of a two minute flight (see

Figure 6), which is well within the expected error bound for

the L1 band differential GPS used.

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

East [m]

N
o
rt

h
 [
m

]

Trajectory

Start Point

End Point

3m error

Fig. 6. Autonomous hover flight recorded position, with 3m error circle.

VII. CONCLUSION

This paper summarizes the development of an autonomous

quadrotor capable of extended outdoor trajectory tracking

control. This is the first demonstration of such capabilities

on a quadrotor known to the authors, and represents a

critical step in developing a novel, easy to use, multi-vehicle

testbed for validation of multi-agent control strategies for au-

tonomous aerial robots. Specifically, two design approaches

were presented for the altitude control loop, which proved

a challenging hurdle. Both techniques resulted in stable

controllers with similar response times, and were a significant

improvement over linear controllers that failed to stabilize the

system adequately.

Acknowledgments

The authors would like to thank Dev Gorur Rajnarayan and

David Dostal for their many contributions to STARMAC

development and testing, as well as Prof. Andrew Ng of

Stanford University for his advice and guidance in developing

the Reinforcement Learning control.

REFERENCES

[1] Hoffmann, G., Rajnarayan, D. G., Waslander, S. L., Dostal, D., Jang,
J. S., and Tomlin, C. J., “The Stanford Testbed of Autonomous Ro-
torcraft for Multi-Agent Control (STARMAC),” 23rd Digital Avionics

System Conference, Salt Lake City, UT, November 2004.
[2] Lambermont, P., Helicopters and Autogyros of the World, 1958.
[3] DraganFly-Innovations, “www.rctoys.com,” 2003.
[4] Pounds, P., Mahony, R., Hynes, P., and Roberts, J., “Design of a

Four-Rotor Aerial Robot,” Australian Conference on Robotics and

Automation, Auckland, November 2002.
[5] Altug, E., Ostrowski, J. P., and Taylor, C. J., “Quadrotor Control Using

Dual Camera Visual Feedback,” ICRA, Taipei, September 2003.
[6] Bouabdallah, S., Murrieri, P., and Siegwart, R., “Design and Control

of an Indoor Micro Quadrotor,” ICRA, New Orleans, April 2004.
[7] Castillo, P., Dzul, A., and Lozano, R., “Real-Time Stabilization and

Tracking of a Four-Rotor Mini Rotorcraft,” IEEE Transactions on

Control Systems Technology, Vol. 12, No. 4, 2004.
[8] Bramwell, A., Done, G., and Blamford, D., Bramwell’s Helicopter

Dynamics, Butterworth-Heinemann, 2nd ed., 2001.
[9] Devantech, “http://www.robot-electronics.co.uk/htm/srf08tech.shtml,”

SRF08 Ultrasonic Ranger.
[10] Ütkin, V., Guldner, J., and Shi, J., Sliding Mode Control in Electro-

mechanical Systems, Taylor-Francis Inc., 1999.
[11] Khalil, H. K., Nonlinear Systems, Prentice Hall, 1996.
[12] Jang, J. S., Nonlinear Control Using Discrete-Time Dynamic Inversion

Under Input Saturation: Theory and Experiment on the Stanford

DragonFly UAVs, Ph.D. thesis, Stanford University, 2004.
[13] Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduc-

tion, MIT Press, Cambridge, MA, 1998.
[14] Doya, K., Samejima, K., ichi Katagiri, K., and Kawato, M., “Multiple

Model-based Reinforcement Learning,” Tech. rep., Kawato Dynamic
Brain Project Technical Report, KDB-TR-08, Japan Science and Tech-
nology Corporatio, June 2000.

[15] Ng, A. Y. and Jordan, M. I., “PEGASUS: A policy search method
for large MDPs and POMDPs,” Uncertainty in Artificial Intelligence,
2000.

[16] Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse,
B., Berger, E., and Liang, E., “Autonomous inverted helicopter flight
via reinforcement learning,” International Symposium on Experimental

Robotics,, 2004.
[17] Atkeson, C. G., Moore, A. W., and Schaal, S., “Locally Weighted

Learning,” Artificial Intelligence Review, Vol. 11, No. 1-5, 1997,
pp. 11–73.

