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Abstract

Embedding algorithms are a method for revealing low
dimensional structure in complex data. Most embed-
ding algorithms are designed to handle objects of a sin-
gle type for which pairwise distances are specified. Here
we describe a method for embedding objects of different
types (such as authors and terms) into a single common
Euclidean space based on their co-occurrence statis-
tics. The joint distributions of the heterogenous ob-
jects are modeled as exponentials of squared Euclidean
distances in a low-dimensional embedding space. This
construction links the problem to convex optimization
over positive semidefinite matrices. We quantify the
performance of our method on two text datasets, and
show that it consistently and significantly outperforms
standard methods of statistical correspondence mod-
eling, such as multidimensional scaling and correspon-
dence analysis.

Introduction

Embeddings of objects in a low-dimensional space
are an important tool in unsupervised learning and
in preprocessing data for supervised learning algo-
rithms. They are especially valuable for exploratory
data analysis and visualization by providing easily in-
terpretable representations of the relationships among
objects. Most current embedding techniques build low
dimensional mappings that preserve certain relation-
ships among objects and differ in the relationships they
choose to preserve, which range from pairwise distances
in multidimensional scaling (MDS) (Cox & Cox 1984)
to neighborhood structure in locally linear embedding
(Roweis & Saul 2000). All these methods operate on
objects of a single type endowed with a measure of sim-
ilarity or dissimilarity.

However, real-world data often involve objects of sev-
eral very different types without a natural measure of
similarity. For example, typical web pages or scientific
papers contain several different data types such as text,
diagrams, images, and equations. A measure of simi-
larity between words and pictures is difficult to define
objectively. Defining a useful measure of similarity is

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

even difficult for some homogeneous data types, such as
pictures or sounds, where the physical properties (pitch
and frequency in sounds, color and luminosity distri-
bution in images) do not directly reflect the semantic
properties we are interested in.

The current paper addresses this problem by creat-
ing embeddings from statistical associations. The idea
is to find a Euclidean embedding in low dimension that
represents the empirical co-occurrence statistics of two
variables. Here we focus on modeling the conditional
probability of one variable given the other, since in
the data we analyze (documents and words, authors
and terms) there is a clear asymmetry which suggests
a conditional model. Joint models can be constructed
similarly , and may be more appropriate for symmetric
data. We name our method CODE for Co-Occurrence
Data Embedding.

Our cognitive notions are often built through statisti-
cal associations between different information sources.
Here we assume that those associations can be repre-
sented in a low-dimensional space. For example, pic-
tures which frequently appear with a given text are ex-
pected to have some common, locally low-dimensional
characteristic that allows them to be mapped to ad-
jacent points. We can thus rely on co-occurrences to
embed different entity types, such as words and pic-
tures, genes and expression arrays, into the same sub-
space. Once this embedding is achieved it also natu-
rally defines a measure of similarity between entities
of the same kind (such as images), induced by their
other corresponding modality (such as text), providing
a meaningful similarity measure between images.

Embedding of heterogeneous objects is performed in
statistics using correspondence analysis (CA), a vari-
ant of canonical correlation analysis for count data
(Greenacre 1984). These are related to Euclidean dis-
tances when the embeddings are constrained to be nor-
malized. However, as we show below, removing this
constraint has great benefits for real data. Statistical
embedding of same-type objects was recently studied
in (Hinton & Roweis 2002). Their approach is similar
to ours in that it assumes that distances induce proba-
bilistic relations between objects. However, we do not
assume that distances are given in advance, but instead



we derive them from the empirical co-occurrence data.

Problem Formulation
LetX and Y be two categorical variables with an empir-
ical distribution p̄(x, y). No additional assumptions are
made on the values of X and Y or their relationships.
We wish to model the statistical dependence between X
and Y through an intermediate Euclidean space R

d and

mappings ~φ : X → R
d and ~ψ : Y → R

d. These map-
pings should reflect the dependence between X and Y

in the sense that the distance between each ~φ(x) and
~ψ(y) determines their co-occurrence statistics.

We focus in this work on modeling the conditional
distribution p(y|x)1, and define a model which relates
conditional probabilities to distances by

p(y|x) =
p̄(y)

Z(x)
e−d

2

x,y ∀x ∈ X,∀y ∈ Y (1)

where d2
x,y ≡ ‖~φ(x) − ~ψ(y)‖2 =

∑d
k=1(φk(x) − ψk(y))

2

is the Euclidean distance between ~φ(x) and ~ψ(y) and
Z(x) is the partition function for each value of x. This

partition function equals Z(x) =
∑
y p̄(y)e

−d2
x,y and is

thus the empirical mean of the exponentiated square
distances from x (therefore Z(x) ≤ 1).

This model directly relates the ratio p(y|x)
p̄(y) to the dis-

tance between the embedded x and y. The ratio de-
cays exponentially with the distance. Thus for any x,
a closer y will have a higher interaction ratio. As a re-
sult of the fast decay, the closest objects dominate the
distribution. The model of Eq. 1 can also be described
as the result of a random walk in the low-dimensional
space illustrated in Figure 1. When y has a uniform
marginal, the probability p(y|x) corresponds to a ran-
dom walk from x to y, with transition probability in-
versely related to distance.

We now turn to the task of learning ~φ, ~ψ from an
empirical distribution p̄(x, y). It is natural in this case
to maximize the likelihood (up to constants depending
on p̄(y))

max
~φ,~ψ

l(~φ, ~ψ) = −
∑

x,y

p̄(x, y)d2
x,y −

∑

x

p̄(x) logZ(x) , (2)

where p̄(x, y) denotes the empirical distribution over
X,Y . The likelihood is composed of two terms. The
first is (minus) the mean squared distance between x
and y. This will be maximized when all distances are
zero. This trivial solution is avoided because of the
regularization term

∑
x p̄(x) logZ(x), which acts to in-

crease distances between x and y points.

To find the optimal ~φ, ~ψ for a given embedding di-
mension d, we use a conjugate gradient ascent algorithm
with random restarts. In the “Semidefinite Represen-
tation” section we describe a different approach to this
optimization problem.

1We have studied several other models of the joint rather
than the conditional distribution. These differ by the way
the marginals are modeled and will be described elsewhere
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Figure 1: Embedding of X, Y into the same d-dimensional
space.

Relation to Other Methods

Embedding the rows and columns of a contingency table
into a low dimensional Euclidean space is related to sta-
tistical methods for the analysis of heterogeneous data.
(Fisher 1940) described a method for mapping X and
Y into φ(x), ψ(y) such that the correlation coefficient
between φ(x), ψ(y) is maximized. His method is in fact
the discrete analogue of the Canonical correlation anal-
ysis (CCA) method (Hotelling 1935) . Another closely
related method is Correspondence analysis (Greenacre
1984), which uses a different normalization scheme, and
aims to model χ2 distances between rows and columns
of p̄(x, y).

The goal of all the above methods is to maximize
the correlation coefficient between the embeddings of
X and Y . We now discuss their relation to our distance
based method. It is easy to show that CCA minimizes
the following function:

ρ(φ(x), ψ(y)) = −
1

2

∑

x,y

p̄(x, y)d2
x,y + 1

under the conditions that φ(x), ψ(y) have zero mean
and identity covariance. Maximizing the correlation is
therefore equivalent to minimizing the mean squared
distance across all pairs. Thus, both CCA and CODE
aim to minimize the average distance betweenX and Y ,
but while CCA forces both embeddings to be centered
and with a unity covariance matrix, CODE introduces
a regularization term related to the partition function.

A well-known geometric oriented embedding method
is multidimensional scaling (MDS) (Cox & Cox 1984),
whose standard version applies to same-type objects
with predefined distances. MDS embedding of hetero-
geneous entities was studied in the context of modeling
ranking data (see (Cox & Cox 1984) section 7.3). These
models, however, focus on specific properties of ordinal



data and therefore result in optimization principles dif-
ferent from our probabilistic interpretation.

Semidefinite Representation

The optimal embeddings ~φ, ~ψ may be found using un-
constrained optimization techniques. However, the Eu-
clidean distances used in the embedding space also al-
low us to reformulate the problem as constrained con-
vex optimization over the cone of positive semidefinite
(PSD) matrices (Weinberger & Saul 2004).

We start by showing that for embeddings with di-
mension d = |X| + |Y |, maximizing (2) is equivalent
to minimizing a certain convex non-linear function over
PSD matrices. Consider the matrix A whose columns
are all the embedded vectors ~φ and ~ψ. The matrix
G ≡ ATA is the Gram matrix of the dot products be-
tween embedding vectors. It is thus a symmetric PSD
matrix of rank ≤ d. The converse is also true: any PSD
matrix of rank ≤ d can be factorized as ATA, where A is
an embedding matrix of dimension d. The distance be-
tween two columns in A is linearly related to the Gram
matrix via d2

ij = gii + gjj − 2gij .
Since the likelihood function depends only on the dis-

tances between points in X and in Y , we can write the
optimization problem in (2) as

min
∑
x p̄(x) log

∑
y p̄(y)e

−d2
xy +

∑
x,y p̄(x, y)d

2
xy

s.t. G º 0 , rank(G) ≤ d
(3)

When rank(G) = d the above problem can be shown
to be convex. Thus there are no local minima, and
solutions can be found efficiently.

The PSD formulation also allows us to add non-
trivial constraints. Consider, for example, constrain-
ing the p(y) marginal to its empirical values, i.e.∑
x p(y|x)p̄(x) = p̄(y). In (Globerson et al. 2005)

we show how to use the above formulation for solv-
ing such constraints, which are not easily incorporated
into maximum likelihood optimization. Another inter-
esting model which can be solved this way is p(x, y) ∝
p(x)p(y) exp(−d2

xy) where p(x), p(y) are the marginals
of p(x, y) (e.g.,

∑
y p(x, y) = p(x)).

Embedding into a low dimension requires constrain-
ing the rank, but this is difficult since the problem is
no longer convex in the general case. Here we penalize
high-rank solutions by adding the trace of G weighted
by a positive factor, λ, to the objective function in (3).
Small values of Tr(G) are expected to correspond to
sparse eigenvalue sets and thus penalize high rank so-
lutions. This approach was tested on subsets of the
databases described in the Applications section and
yielded similar results to those of the gradient based
algorithm. We believe that PSD algorithms may turn
out to be more efficient in cases where relatively high di-
mensional embeddings are sought. Furthermore, under
the PSD formulation it is easy to introduce additional
constraints, for example on distances between subsets
of points (as in (Weinberger & Saul 2004)), and on
marginals of the distribution.

Applications

We tested our approach on a variety of applications.
Here we present embedding of words and documents.
To provide quantitative assessment of the performance
of our method, that goes beyond visual inspection,
we apply it to problems where some underlying struc-
tures are known in advance. The known structures are
only used for performance measurement and not during
learning.

NIPS Database

To illustrate the use of CODE for studying document
databases, we applied it to the NIPS 0-17 database
(Chechik 2005). The last three volumes also contain an
indicator of the document’s topic (AA for algorithms
and architecture, LT for learning theory, NS for neuro-
science etc.). We used CODE to embed documents and
words into R

2. The results are shown in Figure 2. It can
be seen that documents with similar topics are mapped
next to each other (e.g. AA near LT and NS near Bi-
ological Vision). Furthermore, words characterize the
topics of their neighboring documents.

We also used the data to generate an authors-words
matrix. We could now embed authors and words into
R

2, by using CODE to model p(word|author). The
results are given in (Globerson et al. 2005) and show
that authors are indeed mapped next to terms relevant
to their work, and that authors dealing with similar
domains are also mapped together.

Taken together, these results illustrate how co-
occurrence of words and authors/documents may be
used to obtain meaningful geometric maps of the data.

Information Retrieval

To obtain a more quantitative estimate of performance,
we applied CODE to the 20 newsgroups corpus, prepro-
cessed as described in (Chechik & Tishby 2002). The
resulting words and documents were embedded with
CODE, Correspondence Analysis (CA), SVD, IsoMap
and classical MDS 2. CODE was used to model the
distribution of words given documents p(word|doc).
All methods were tested under several normalization
schemes, including document sum normalization and
TFIDF. Results were consistent across all normaliza-
tion schemes.

An embedding of words and documents is expected
to map documents with similar semantics together, and
to map words close to documents which are related to
the meaning of the word. We next test how our em-
beddings performs with respect to these requirements.
To represent the meaning of a document we use its cor-
responding newsgroup. Note that this information is
used only for evaluation and not in constructing the
embedding itself.

To measure how well similar documents are mapped
together we devised a purity measure, which we de-
note doc-doc. Briefly, doc-doc measures if documents

2See (Globerson et al. 2005) for evaluation details.
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Figure 2: CODE Embedding of 2483 documents and 2000
words from the NIPS database. The left panel shows doc-
ument embeddings for NIPS 15-17, with colors to indicate
the document topic. Other panels show embedded words
and documents for the areas specified by rectangles. Figure
(b) shows the border region between algorithms and archi-
tecture (AA) and learning theory (LT) (bottom rectangle
in (a)). Figure (c) shows the border region between neuro-
science (NS) and biological vision (VB) (upper rectangle in
(a)). Figure (d) shows mainly control (CN) documents (left
rectangle in (a)).

with similar topics appear as nearest neighbors of each
other. To measure how documents are related to their
neighboring words, we devised a measure denoted by
doc-word, which quantifies how likely it is for a docu-
ment to be mapped near a word which characterizes its
topic.

Results for both measures are given in (Globerson et
al. 2005) and illustrate that CODE is significantly bet-
ter than all other methods on both measures, implying
that it achieves a better geometric model of both same
and different object relations.

Discussion

We presented a method for embedding objects of dif-
ferent types into the same low dimension Euclidean
space. This embedding can be used to reveal low di-
mensional structures when distance measures between
objects are unknown. Furthermore, the embedding in-
duces a meaningful metric also between objects of the
same type, which could be used, for example, to embed
images based on accompanying text, and derive the se-
mantic distance between images.

Co-occurrence embedding should not be restricted to
pairs of variables, but can be extended to multivari-
ate joint distributions. For example Markov Random
Fields may be extended such that interaction poten-
tials are modeled as Euclidean distances. One imple-

mentation of this idea would be to model interaction
potentials between variables in a given clique as the
mean distance between their embeddings. Another op-
tion is to model the potential as the mean distance of
embedded points from their centroid.

Another interesting extension would be to use dis-
tances between same-type objects when these are
known. The semidefinite formulation could prove useful
in that respect, since it allows incoporation of equality
constraints.

We focused here on geometric models for conditional
distributions. While in some cases, such a modeling
choice is more natural in others joint models may be
more appropriate. In this context it will be interesting

to consider models of the form p(x, y) ∝ p(x)p(y)e−d
2

x,y

where p(x), p(y) are the marginals of p(x, y). Maximum
likelihood in these models is a non-trivial constrained
optimization problem, and may be approached using
the semidefinite representation outlined above.
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