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1 Introduction

This paper studies the fundamental interplay between Hebbian synaptic changes and neu-
ronally driven processes modifying synaptic efficacies, and its role in associative memory
learning. The importance of neuronally driven normalization processes has already been
demonstrated in the context of self-organization of cortical maps [1, 2] and in continuous
unsupervised learning as in Principal-Component-Analysis networks [3]. In these scenarios
such normalization was shown to be necessary to prevent the excessive growth of synaptic
efficacies that occurs when learning and neuronal activity are strongly coupled. In this pa-
per we focus on associative memory learning where this excessive synaptic runaway growth
is mild [4], and show that even in this more simple learning paradigm, normalization pro-

cesses are essential. Moreover, while various normalization procedures can prevent synaptic



runaway, our analysis shows that a specific neuronally-driven correction procedure that
preserves the total sum of synaptic efficacies is essential for effective memory storage. To
this end we analyze the effectiveness of Hebbian synaptic learning rules and identify a crit-
ical constraint on effective learning. We then describe a neuronal procedure obtaining this

constraint and show how it can be implemented via a biologically plausible mechanism.
2 The Space of Synaptic Learning Rules

We study memory storage in a model of associative memory low-activity neural network
with binary firing {0, 1} neurons similar to the model of [5]. In our model, the synaptic

weight W;; is determined by a general Hebbian additive synaptic learning rule
M
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where {5”}2\11 are the stored memory patterns and A(ff,f;) is a two-by-two synaptic
learning matrix
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whose four parameters {zp, 2D, Zhomo, Thetero } determine the modifications to the synaptic
efficacy following some combination of pre and post synaptic activity. Utilizing a scaling
invariance constraint and the requirement that the synaptic matrix should have a zero mean
[6], we reduce the whole four dimensional space of learning rules into a two-dimensional space

of possibly effective ones, having two free parameters (zp,zp).



A. The Space of learning rules

7N\
i
7

0
.

7
7
///I/
7

-
i
2
i
i

gl

Il
!

W
7
i

7
7
7
]

7
r
)

U
i
iy

7

7
il
7

'/l'

i
a4

Z
i
!

7
U

memory capacity

B. Effective learning rules
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Figure 1: A. Memory capacity of a 1000-neurons network for different learning rules as
obtained in computer simulations. Capacity is defined as the maximal number of memories
that can be retrieved when presented with a degraded input cue. The coding level (fraction
of firing neurons) is p = 0.05. B. Memory capacity of the effective learning rules. The

peak values on the ridge of Figure A, are displayed by tracing their projection on the zp
coordinate. The optimal learning rule [4] is marked with an arrow.

Figure 1A plots the memory capacity of the network as a function of the two free param-

eters zp and zp. It shows that considerable memory storage may be obtained only along an

essentially one dimensional curve, revealing that an additional constraint on the synaptic

learning rule must be obeyed. This constraint is identified by signal-to-noise analysis of the

neuronal input field f; during retrieval

Signal _ E(fi|& =1) — E(fi]& = 0)

NM

Noise Var(f)

* VarlAG, &) + NpCOV [A(G, &), AGr, )] )

As evident from Eq. (2), when the postsynaptic covariance COV [A(&,&2), A&, E3)]

(determining the covariance between the incoming synapses of the postsynaptic neuron) is

positive, the network’s memory capacity is bounded. Conversely, when the postsynaptic

covariance vanishes an effective learning rule is obtained, achieving linear scaling of

memory capacity as a function of the network’s size.

As shown in Figure 1B, all these

effective rules are only slightly inferior to the optimal synaptic learning rule (A(&;,&;) =

(& — p)(& — p) [6]), which maximizes memory capacity.



The vanishing covariance constraint implies a new requirement concerning the balance
between synaptic depression and facilitation: zp = % zp. Effective memory storage thus
explicitly depends on the coding level p which is a global property of the network. It is
thus difficult to see how effective rules can be implemented at the synaptic level. Moreover,
as shown in Figure 1A, Hebbian learning rules lack robustness as small perturbations from
the effective rules may result in large decrease in memory capacity. We further prove that
the postsynaptic covariance cannot be zeroed by introducing a nonlinear Hebbian rule of
the form W;; = ¢ (Zn A ?,f?)) These observations show that effective associative

learning with Hebbian rules alone is biologically implausible.
3 Effective Learning Via Neuronal Weight Correction

We now proceed to show a neuronally-driven procedure that ensures effective memory stor-
age. We propose that during learning, as a synapse is modified, its postsynaptic neuron
additively modifies all its synapses to maintain the sum of their efficacies at a baseline zero
level. Our analysis shows that this neuronal weight correction results in a vanishing
postsynaptic covariance and achieves effective memory storage using local information only.

To demonstrate the beneficiary effects of neuronal weight correction we apply it to a
common realization of the Hebb rule (with inhibition added to obtain a zero-mean input
field) yielding A(&;,&;) = &&j—p? [7]. Figure 2 compares the memory capacity obtained with
this zero-mean Hebb rule, before and after neuronal weight correction. The memory capacity
of the original zero-mean Hebb rule is bounded, but when neuronal weight correction is

applied, it turns to scale linearly with the network’s size.
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Figure 2: Network memory capacity as a function of the network’s size. The lines plot
analytical results and the squares designate simulation results (p = 0.05).

4 Neuronal Regulation Approximates Neuronal Correction
Several mechanisms for conservation of the total synaptic strength have been proposed [8].
We focus here on one possible mechanism: Neuronal Regulation (NR) [9], whose goal is to
maintain the homeostasis of neuronal activity. NR constantly regulates the postsynaptic
activity around a baseline level by multiplying the neuron’s incoming synaptic efficacies by
a common factor. Such activity-dependent modification of excitatory synapses, maintaining
the homeostasis of neuronal firing, has been observed in cortical tissues by [10]. Interestingly,
NR approximates the additive neuronal weight correction mechanism described above, and
succeeds in maintaining a vanishing postsynaptic covariance, thus drastically improving the
capacity of memory networks.

Figure 3A plots the memory capacity of networks storing memories according to the
Hebb rule W;; = Zanl 52775;7, showing how NR succeeds in obtaining a linear growth of
memory capacity that is only slightly inferior to that obtained with neuronal weight cor-
rection. Figure 3B plots the temporal evolution of the retrieval acuity (overlap) and the
average postsynaptic covariance, showing that NR slowly removes the interfering covariance,

improving memory retrieval.
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Figure 3: A. Memory capacity at the stable state of networks storing patterns via the
Hebb rule, p = 0.1. B. The temporal evolution of retrieval acuity and average postsynaptic
covariance in a 1000-neurons network storing 250 memory patterns.

5 Conclusions

Analyzing Hebbian learning rules in associative memory network models, we have identified
an essential requirement for effective memory storage: a vanishing postsynaptic covariance.
While Hebbian learning alone is bound to yield catastrophic postsynaptic covariance, the
latter can be removed by a neuronally driven mechanism that preserves the total synaptic
sum. This provides effective learning using ineffective synaptic learning rules, as long as
they are further modified and corrected by neurally driven weight correction. The resulting
improvement in memory capacity is drastic: learning rules yielding bounded capacity are
transformed into learning rules yielding linear memory capacity as a function of the net-
work’s size. Finally, the normalization mechanism can be carried out by neuronal regulation
(NR), a mechanism recently identified in mammalian cortical cultures.

Our results, obtained within the paradigm of autoassociative memory networks, apply
also to hetero-associative memory networks. More generally, neuronal weight correction
qualitatively improves the ability of a neuron to correctly discriminate between a large
number of input patterns. It thus enhances the computational power of the single neuron

and may be applied in other memory storage paradigms. With this perspective, it is not



surprising that the interplay between correlation-based synaptic changes and normalization

processes plays a fundamental computational role in a variety of brain functions such as

visual processing and associative learning.
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