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Abstract

Cells respond to environmental perturbations with changes in their
gene expression that are coordinated in magnitude and time. Timing in-
formation about individual genes, rather than clusters, provides a refined
way to view and analyze responses, but is hard to estimate accurately.

To analyze response timing of individual genes, we developed a para-
metric model that captures the typical temporal responses: an abrupt
early response followed by a second transition to a steady state. This im-

pulse model explicitly represents natural temporal properties such as the
onset and the offset time, and can be estimated robustly, as demonstrated
by its superior ability to impute missing values in gene expression data.

Using response time of individual genes, we identify relations between
gene function and their response timing, showing, for example, how cy-
tosolic ribosomal genes are only repressed after mitochondrial ribosom is
activated. We further demonstrate a strong relation between the binding
affinity of a transcription factor and the activation timing of its targets,
suggesting that graded binding affinities could be a widely used mech
anism for controlling expression timing.
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Introduction

Over the past few years, significant progress has been made in mapping different
components of the cellular architecture: protein complexes, functional modules,
and even more complex pathways and cellular networks. However, the static set
of components and their interactions tells only part of the story. In reality, cells
continuously reconfigure their activity to adapt to their fluctuating environment,
and activate different parts of their pathways in a dynamic way. Obtaining
insight into the cellular dynamics is a significant challenge, primarily because
data measuring aspects of the cell’s activity over different points in time is hard
to obtain, especially at a genome-wide scale.

Arguably, the main data so far that have provided a genome-wide view
into the cell’s dynamics are measurement of gene expression profiles taken over
a time course, following a perturbation to the cell’s environment. Although
these measurements probe only a single level of the cellular control hierarchy,
the availability of transcription data under multiple conditions could provide
significant insights into dynamics of cellular control. With these data, we try to
understand the role that expression timing plays in cellular responses, to map
those genes and modules that are expressed in a timely manner and to identify
molecular mechanisms that control timing.

Unfortunately, gene expression time courses are hard to interpret: they are
notoriously noisy, often measured at irregular intervals, and these intervals differ
from one experiment to the other. Thus, with the exception of cell cycle data,
much of the analysis of gene expression profiles has ignored their temporal as-
pects, using these data primarily to identify genes that share common responses
across experiments, and to associate genes with various cellular processes based
on their response profiles.

Some papers do attempt to model the dynamics of expression time courses
(see Androulakis et al., 2007, for a recent survey). Several approaches (Zhao
et al., 2001; Alter et al., 2000; Shedden and Cooper, 2002; Wichert et al., 2004)
have focused on capturing the dynamics of cell cycle time courses; these meth-
ods are tailored to the sinusoidal transcriptional patterns in the cell cycle, and
do not generalize to other types of time series. In the more general setting,
Bar-Joseph and other researchers (Bar-Joseph et al., 2003; Luan and Li, 2003;
Simon et al., 2005; Storey et al., 2005; Ma et al., 2006) showed how splines can
be used to encode continuous gene expression profiles, and successfully impute
missing values and align “similar” expression profiles that exhibit different tem-
poral properties. Some methods (Qian et al., 2001; Balasubramaniyan et al.,
2005; Ernst et al., 2005) have defined “shape-based” similarity metrics for gene
expression time courses, for the purpose of gene clustering, but without attempt-
ing to extract or evaluate specific timing properties. Other approaches (Holter
et al., 2001; Ramoni et al., 2002; Schliep et al., 2003; Perrin et al., 2003; Zou and
Conzen, 2005) use a probabilistic or regression-based time series model to cap-
ture the temporal dynamics of gene expression data. These approaches all use
generic function representation, capable of capturing a broad family of response
profiles, and hence tend to over-fit the data more easily. As a consequence, the
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parameters of the model are typically estimated using clusters of genes, possi-
bly obscuring finer-grained signal. Most importantly, however, these methods
do not easily provide an approach for extracting biologically meaningful timing
aspects of the responses in individual time courses, and compare these timing
aspects across different conditions.

In this paper we propose a parametric approach that identifies interpretable
timing properties of mRNA profiles, and use them to characterize the timing of
cellular responses. The idea is to fit any given time course with a function that is
parametrized with biologically meaningful and easily interpretable parameters.

Specifically, we describe a phenomenological model for encoding a gene’s
continuous transcriptional profile over time. The model is designed to cap-
ture the typical impulse-like response to an environmental perturbation such as
changing media or stress condition: transition to a temporary level followed by
a second transition to a new steady state. Thus, we define the model in terms
of meaningful aspects of the response: its onset and offset times, the slope of
the response, and the short term and long term response magnitudes.

We evaluate the model on a broad compendium of 481 measurements in S.

cerevisiae, comprising 76 different gene expression time courses following diverse
environmental perturbations. We demonstrate that the impulse model is rich
enough to capture a wide variety of expression behaviors and at the same time
robust enough to be learned from sparse data. We then show how we can use
the biologically meaningful parameters that we extract from the impulse form
to shed light on the cell’s transcriptional response to environmental changes.

Results

An impulse model of responses to changes

When subjected to an abrupt change in the environmental condition, a cell typ-
ically responds by increasing the activity level of certain sets of genes and de-
creasing the activity level of others. In many cases, the expression level changes
temporarily, exhibiting a sharp increase or decrease, and later changes again,
reaching a new steady state which is often different from the original “resting”
state (Fig. 1). This two-step behavior is widely observed in multiple systems,
from yeast (Holter et al., 2000; Ernst et al., 2005) to human (Ramoni et al.,
2002), reflecting two types of adaptive responses. First, the cell actively re-
configures some processes, typically involving both generic emergency responses
and specialized processes that the cell recruits. Then, the cell achieves a new
homeostasis in its new environment.

We propose an impulse model designed to encode such two-transition be-
havior, allowing us to compactly represent the relevant aspects of expression
responses to environmental changes. The impulse model encodes this behavior
as a product of two sigmoid functions, one that captures the onset response, and
another that models the offset. Importantly, this model allows for a sustained
expression level different from the resting state. The model function has six
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free parameters θ = [h0, h1, h2, t1, t2, β], (shown in Fig. 1(A)). Three amplitude
(height) parameters determine the initial amplitude (h0), the peak amplitude
(h1), and the steady state amplitude (h2). The onset time t1 is the time of first
transition (where rise or fall is maximal) and the offset t2 is the time of second
transition. Finally, the slope parameter β is the slope of both first and second
transitions. Formally, the model has the following parametric form:

fθ(x) =
1

h1
· s(x, t1, h0,+β) · s(x, t2, h2,−β) (1)

s(x, t, h, β) = h + (h1 − h)S(+β, t)

S(β, t) =
1

1 + e−β(x−t)

What type of profiles can the impulse model capture? It is designed for mod-
eling temporal profiles that have at most two significant changes in expression
levels. Examples of such profiles are depicted in Fig. 1(B), where the impulse
model was fit to actual expression measurements of yeast genes. The impulse
model is not appropriate for encoding periodic behavior with multiple peaks,
such as the characteristic behavior of the cell cycle (like the well-studied data of
Spellman et al. (1998)). Thus, the impulse model is best-suited for capturing a
one-time response to some external signal such as an environmental disturbance.

The parameters of the model are learned by minimizing a squared error to
fit measured data. Given a set of expression measurements {e1, . . . , en} at time
points {t1, ..., tn}, we search for the set of impulse parameters θ that minimize
the squared prediction error minθ

∑
i(fθ(ti)−ei)

2. We find the (locally) optimal
parameters using a conjugate gradient ascent procedure, repeated 100 times with
different starting points (see supplemental Methodsonline).

Gene expression measurements are notoriously noisy and hard to model,
especially on the level of individual genes. We systematically evaluated the
properties of the impulse model using a diverse set of 76 conditions. First, we
found the model to be remarkably robust to both timing noise and to expression
level noise. Furthermore, we estimated the model’s coverage — the fraction of
genes that can be well-fit with the model — showing that up to 95% of the
genes are well described by the impulse model , depending on the condition.
Finally, we estimated the extent to which genes had a particularly impulse-
like response, showing that, on average, 35% of the genes have an impulse-like
response profile. All these resutls are provided in supplemental methods online
Chechik and Koller (2008).

Imputing missing values

The impulse model is a continuous function that provides an estimate for a
gene’s expression measurement at each point in time. We show that the impulse
model can accurately predict the value of missing expression measurements. Im-
puting missing values is an important problem in gene expression data analysis,
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hence the success of our impulse model at this task is both a validation of the
model, and one of its applications.

We applied the impulse model to a compendium of 76 gene expression time
courses in S. cerevisiae, which measure the response of yeast to different envi-
ronment stress conditions and changing media (DeRisi et al., 1997; Gasch et al.,
2000, 2001; Causton et al., 2001; Zakrzewska et al., 2004; Lai et al., 2005; Kita-
gawa et al., 2005; Mercier et al., 2005). Time courses had between 5 and 10
measurements (the full list of data sets and time courses is in Supplemental
Table 1 online Chechik and Koller (2008))

We evaluated the performance of the model on the imputation task in two
ways: using information only at the level of individual genes; and incorporating
information from other, similar genes.

Using individual genes

First, we considered the ability of an impulse model to estimate the value of
an unmeasured expression value for a gene, given the other expression mea-
surements for that gene alone. For a given gene, we fit an impulse model to
all measurements except a single held out time point, and used the resulting
function to estimate the expression value at the held out measurement. We
compared this value to the measured held-out value, and computed the error.
We repeated this experiment for all 6209 genes in our compendium and all
measurements, and computed the mean prediction error. For comparison, we
applied the same procedure using other methods for function estimation, includ-
ing both interpolation methods such as interpolating splines and cubic-Hermite
polynomials, and fitting methods using polynomials of degrees two to five, and
smoothing splines. All of these methods used information at the level of single
genes only, using measurements taken at all available time point to predict the
value in a single hidden time point. The prediction of the impulse model are
significantly superior to all the other methods Fig. 2(A).

Fig. 2(B) shows a scatter plot of average prediction error for each of the 76
conditions, as obtained with the impulse model and the cubic-Hermite (CH, the
second best predictor). It shows that the impulse model is particularly better
at fitting time courses with a small number of points, suggesting that it avoids
over-fitting more effectively.

Interestingly, a comparison to a third order polynomial yields similar re-
sults. This similarity suggests that even though the impulse model has 6 free
parameters, it avoids over-fitting better than a model with 4 free parameters.
The reason is that polynomials are generic function approximators, capable of
fitting any function, hence could predict fits that are highly unlikely for gene ex-
pression timecourses. In comparison, the impulse model focuses on a restricted
set of behaviors, and hence uses the domain-specific knowledge to avoid large
mistakes.

This effect can be understood by comparing the actual functions learned by
the different fitting procedures. Fig. 2(D)-(F) compares the fits to a particular
gene expression profile for three methods: polynomials of degree 2 and 3, and
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the impulse model. The descriptive power of the 2nd order polynomial is too
limited, leading to a “flat” curve that changes little in time. On the other
hand, the 3rd degree polynomial is too expressive, and over-fits for several time-
points. Conversely, the impulse model, despite having a larger number of free
parameters, successfully avoids over-fitting the measurements.

Using whole genome information

A valuable source of information When imputing missing values is the similarity
in expression profiles between different genes. Two approaches are commonly
used for taking this information into account. First, missing values are inferred
from neighboring genes, where the neighborhood is based on the observed mea-
surements. Second, genes are clustered and the cluster profiles are then used
for imputing the missing values. We compare the performance of the impulse
model with two standard methods that take these two approaches.

For the first evaluation, we follow the approach of Troyanskaya et al. (Troy-
anskaya et al., 2001) and use profiles of similar genes to complete missing mea-
surements. Troyanskaya et al., in their KNN-impute procedure, propose a
k-nearest neighbor procedure, estimating the value of a time t measurement for
gene g as the average of the time t expression values measured for the k genes
most similar to g. KNN-impute uses a Euclidean distance over the vector of
expression measurements to find the nearest neighbors. To evaluate the gain in
using the impulse model we applied the same procedure, but using the values
predicted by the impulse model fit, rather than the raw original measurements.
Specifically, we hid a randomly selected single time point in the expression pro-
file of each gene, and used the remaining measurements to estimate the left-out
values (see Methodsonline).

Fig. 2(C) compares the median error obtained with the two distance mea-
sures across 76 conditions. Using the impulse model reduced the error in 64 out
of 76 conditions, yielding an average error reduction of 20% of the KNN-impute.
This difference was highly significant (paired t-test: p < 3×10−6). The analysis
was repeated for k = 10 and k = 20, with almost identical results (not shown).

Bar-Joseph et al. (2003) used another approach for utilizing similarity of
expression profiles across genes. They cluster genes and train a model based
on approximating splines for cluster profiles. We compared this method with
Impulse-KNN over the same data set described above. We used code supplied
by Bar-Joseph, and selected values of the parameters that performed well in
the experiments described by Bar-Joseph et al.. We used 10 clusters, since we
found that this number of clusters captures well most of the structure in the
data. The Impulse-KNN model outperformed spline-based clustering by 35%
on average. Results are not shown due to space constraints.

Temporal patterns of response to changes

The impulse form directly provides meaningful parameters that characterize
the shape of the response profile, including the response onset, offset and profile
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peak. We chose to focus on the onset response time, since it directly captures
the timing at which the cell initiates the production of a gene’s mRNA, and this
timing could be critical to the survival of the organism upon an environmental
change. We therefore extracted the onset of every response profile, and used
these timing data to explore the relationship between response onset and gene
function.

To illustrate the insights arising from this type of analysis, we can consider
the timing patterns arising when the cell is exposed to diamide (Gasch et al.,
2000). Here, we can see that genes involved in gene expression respond at a
wide range of delays (Fig. 3(A)). Looking at three main subsets of this group,
we find that genes that are involved in RNA processing typically respond earlier
than the other genes; transcription genes also respond early, and translation
is last. Interestingly, translation occurs in two peaks, one observed early (∼7
minutes) and a second occurring much later (∼18) minutes.

To understand this phenomenon better, we look into the distribution of on-
set times and peak responses of all ribosomal genes under diamide exposure. A
finer breakdown of the set of ribosomoal genes reveals that the vast majority of
the early onset events correspond to induction of the mitochondrial ribosome,
whereas the later events represent the repression of the cytosolic ribosome (see
Fig. 4). We note that previous studies of these data (Gasch et al., 2000; Simon
et al., 2005) have noted the differential expression of the ribosomal genes: while
most cytosolic translation is repressed, the mitochondrial ribosome is induced
in order to handle the oxidative stress caused by diamide. However, our on-
set timing analysis provides an additional dimension to this standard result,
demonstrating that there is also a difference in the timing of these two events.
We hypothesize that the reason for this delay is that upregulation and transla-
tion of mitochondrial genes is required to deal with the stress. Hence, cytosolic
ribosomal genes can only be repressed after translation of mitochondrial genes
is completed.

The data in Fig. 4 also reveals a fairly large group of cytosolic ribosomal
genes that are repressed considerably earlier than the bulk of the genes in this
category (see Supplemental Table 3). An in-depth investigation of these two
groups of genes shows two interesting trends. First, in the early group, many
of the genes (10 out of 33) are not ribosomal components but are more likely
required for creation of ribosomes and for RNA processing or translational fi-
delity; by comparison, such genes are a small proportion of the late group (3
out of 115, p < 10−6). One hypothesis is that the cell first represses accessory
proteins, whereas the structural components are only shut off at the end, giving
enough time for translation of the mitochondrial ribosome, as well as any other
proteins necessary for the cell’s immediate response. As a second trend, for the
large ribosomal subunit, we see nine genes in the early group that code for the
same component as a gene in the later group (for example, RPL13A shuts down
early, whereas RPL13B shuts down later). The only case where both copies are
shut down early is RPL41A and RPL41B, which code for a non-essential com-
ponent of the ribosome. An interesting hypothesis is that, to conserve resources,
the cell begins by shutting off one copy of each component, and only then shuts
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down the other. The situation is a little less clear with the small subunit, where
three components have both copies shut down early; however, these are not in
the central part of the ribosome. It would be interesting to understand whether
and why these components are not required during the transition phase.

To generalize this analysis and identify other functions whose RNA levels are
carefully timed, we looked at the distribution of onsets across genes grouped by
their GO associations. In each condition, we then searched for GO categories
whose onsets are significantly different from a baseline distribution of onsets. A
relevant baseline should contain genes of similar (but not identical) functions.
We defined a separate baseline for each category using all genes from sibling
categories in the GO hierarchy (other children of its parent category). For each
GO category and each condition, we calculated a Wilcoxon score to quantify how
significantly its gene onsets appear earlier or later than the baseline onsets. This
comparison provides a tool for identifying sub-functions that are controlled in
time. We found 151 sub-categories that exhibited highly significant (Wilcoxon
test, p < 10−5, Bonferroni corrected) onset differences at least in one condition
(Chechik and Koller (2008)).

Fig. 3(B) shows another example, for the main sub categories of intracellular

organelle part, under exposure to Acid (Causton et al., 2001). Mitochondrial
genes are again regulated significantly earlier, and so are cytoskeletal genes,
while a larger fraction of chromosomal respond late. Ribosomal genes again
have two peaks, and these correspond again to mitochondrial and cytosolic
ribosome; indeed, as we discuss below, this distinction is found across a variety
of conditions. Here, vacuolar genes also appear to have two distinct peaks,
with 53 genes responding before t = 12 minutes and 20 genes responding after.
Relative to the late vacuolar genes, we find that the early vacuolar genes are
enriched for vacuolar membrane (hypergeometric p < 10−15).

We can also utilize our timing analysis to construct a system-level “response
timeline”, by looking at how multiple functional categories are ordered in time.
Under each condition, we calculated the ordering score for every pair of GO
categories, and used these ordering scores to identify sets of categories that are
regulated in a timing-distinct manner (see Methodsonline). As one example,
we consider the onset timing extracted from the responses to DNA-damaging
gamma irradiation (Gasch et al., 2001). Fig. 3(B) plots the median peak and
median onset time for each of the top four timed categories in the cellular-

component hierarchy. First, genes of the nucleolus (a sub-organelle of the cell
nucleus) are repressed, followed by repression of ribonucleoproteins, then cyto-
plasmic proteins. Finally, membrane proteins are activated. A similar analysis
on annotations in the molecular function and biological processes hierarchies in
the same condition (Supplementary Figures online Chechik and Koller (2008)),
is consistent with this view: The biological processes of ribosome biogenesis and

assembly (which takes place at the nucleolus) are repressed first, followed by the
activation of the localization and transport genes (processes that take place at
cytoplasm and membranes). Similarly, the molecular function structural con-

stituent of the ribosome are repressed first, while multiple functions related to
transport are activated later.
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Also interesting is the observation that the stronger the repression of the
genes in these timed categories, the earlier the onset of the repression. This
phenomenon holds not only for the medians of the groups in Fig. 3(B) , but
in fact the onset time is correlated with the peak response across all genes in
these categories (Pearson correlation, p < 10−10); this phenomenon holds only
for genes in timed categories (the background correlation across all genes in this
condition is p-value = 0.04). As one hypothesis, if a group of genes is highly
detrimental to the cell (leading to a strong repression), it may be desirable to
shut them off as soon as possible. In particular, if mRNA degradation mecha-
nisms are used to decrease mRNA abundance in this condition (Keene, 2007),
this finding may also suggest a sequential targeting of the RNA degradation
machinery, ordered by the cell’s current priorities.

Finally, we looked at functional differences in timing across multiple condi-
tions. We counted the number of conditions in which each pair of categories is
significantly timed (p-value < 0.001, Wilcoxon test, Bonferroni corrected). In
general, nuclear and mitochondrial components respond earlier than cytosolic
and ribosomal components. For instance, for the cellular component hierarchy,
the mitochondrion, shown above to be activated early under exposure to di-
amide (Fig. 4), and acid (Fig. 3, responds significantly earlier (with p < 10−3)
than the cytosolic ribosome in 16 out of the 76 conditions tested (yielding an
overall p < 10−40, Binomial distribution with p = 10−3,N = 76).

Graded binding affinity: A mechanism for controlling tran-

scription timing

The above findings suggest that cells control the timing of transcription acti-
vation to shape their responses to environmental changes. What mechanisms
could achieve fine timing control?

One possible mechanism is that sequential activation of genes is achieved by
cooperative binding by several transcription factors (TFs), each activated in its
turn. This hypothesis requires that TF’s are themselves sequentially activated
by some mechanism. A different (albeit not exclusive) mechanism is that a
single transcription factor binds to multiple target genes, but with different
binding affinities. Indeed, the recent work of Tanay (Tanay, 2006) shows that
binding affinities, as measured in ChIP-chip data (Harbison et al., 2004), have
functional consequences even in weak affinities that were previously considered
insignificant. This work demonstrates that transcription binding is not an all-
or-none phenomenon, and graded binding is achieved through graded sequence
affinity. The reason and purpose for having a wide range of binding affinities is
still unknown, but it was recently shown that gene expression in the phosphate
response (PHO) pathway is tuned to different environmental phosphate levels
using both binding-site affinities and chromatin structure (Lam et al., 2008).

If graded binding affinities are used for regulating the timing of gene ex-
pression, we expect the shape of a gene expression profile to depend on the
strength of binding to its regulating TFs. Since binding operates as a stochastic
equilibrium, the stronger the binding affinity of an activating TF to a binding
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site, the higher the probability of the TF to remain bound to the corresponding
promoter and recruit the transcriptional machinery, and hence the earlier the
gene would be expressed on average.

To test this single-TF hypothesis, we measured how binding affinities are
related to the onset time of transcription activation. Specifically, we combined
whole genome binding affinity measurements (Harbison et al., 2004) with gene
expression measurements as described above. We selected a subset of affinity
and expression measurements that were taken in matching conditions. We col-
lected a total of 48 affinity-expression experiment pairs (see Supplemental Table
2 online Chechik and Koller (2008), including amino acid starvation (34 TFs),
exposure to acid (2 TFs), and to heat shock (12 TFs).

For each affinity-expression experiment pair, we restricted attention to genes
that were differentially expressed (absolute peak response > R), and measured
the Spearman correlation between their onset time and the binding affinity of
the measured TF, using the p-value as the quantitative measure of affinity. Of
course, not all genes are bound by a particular TF; we therefore wanted to
restrict attention only to those genes where TF binding plausibly occurs. As
discussed above, Tanay (Tanay, 2006) showed that measured binding affinity p-
values are correlated with binding prediction based on sequence models, even for
very weak binding, suggesting that measured weak binding may reflect actual
binding rather than noise. We therefore considered the whole range of possible
p-value thresholds for treating a binding event as valid (where the chance level
is p-value = 0.5). Specifically, for a range of different affinity thresholds C,
we computed the Spearman correlation between onset time and binding affin-
ity, restricting the analysis to all genes that are both differentially expressed
(crossing a threshold R) and have a binding affinity stronger than a cutoff value
C. Fig. 5(A) shows the number of pairs that obtained significant Spearman
correlation as a function of the affinity cutoff value C; here, we used a gene
expression response threshold R = 0.7, chosen to maximize the number of sig-
nificant pairs. The number of significant pairs peaks near p-value = 0.50, where
38 of 48 TF-condition pairs have a significant correlation (FDR q-value≤ 10−3)
(the optimum is actually obtained at 0.52, which is larger than the chance level
0.5, but this is likley to be due to noise, . Typically, the correlations became
even stronger when limiting the analysis to more strongly expressed genes (larger
values of R), but the p-values decrease due to the smaller sample size.

Fig. 5(B) -(C) visualizes the relation between binding affinity and expression
onset; here, to more clearly illustrate the pattern, we used an expression cutoff
of R = 1. We aggregated the genes in our set into four groups according to their
binding affinities, and calculated the mean onset time of each group. The left
panel shows the results of this analysis for the targets of MET32, a transcrip-
tion factor involved in methionine biosynthesis; here, the binding affinities were
measured under amino acid starvation, and the transcription onset extracted
from a time course following adenine starvation (Gasch et al., 2000). A clear
trend can be observed in the mean onset time as a function of MET32 binding
affinity, across the whole range of relevant affinity strengths. This effect is highly
significant (Spearman correlation r = 0.14 across 943 samples, p < 1.9 × 10−7,
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Bonferroni corrected for 48 hypotheses). Other such trends were observed un-
der amino acid starvation, including MET31 (Fig. 5(C) ) (Spearman r = 0.14,
Bonferroni p < 2.5 × 10−8), CBF1 (p < 9.7 × 10−8) and SFP1 (p < 6 × 10−9).

We also found pairs that exhibited significant negative correlations (for in-
stance YAP1 and HSF1 under a heat shock), where higher binding affinity was
associated with delayed onset time. The mechanism for such associations is
unclear at this point, and could be related to competition between TFs.

This finding has two implications. First, it shows that graded binding affini-
ties are very commonly correlated with expression timing, and could be a com-
monly used mechanism for controlling the timing of response onsets. Second, it
suggests that even (very) weak binding affinities have a functional effect on the
concerted profile of cellular expression responses.

Discussion

Environmental changes may threaten the survival of cells and force them to
respond quickly and reconfigure their gene expression profiles. To respond ef-
ficiently to changing conditions, cells have to control not only the magnitude
of their responses, but also their timing. Indeed, it was shown that expression
timing in E. Coli is tightly controlled, even to the level where sequences of indi-
vidual proteins are expressed in an ordered manner (Zaslaver et al., 2004; Kalir
et al., 2001). It is unknown, however, if such controlled timing is to be found
across multiple biological processes, and if responses are similarly timed in Eu-
karyotes, which have more complex hierarchy of pre- and post-transcriptional
control mechanisms. Our work suggests that fine-grained control of transcrip-
tional timing exists also in Eukaryotes.

The time course of gene expression responses often follows a typical impulse

curve: starting with an initial abrupt response that saturates and is then fol-
lowed by a relaxation to a new steady state. In this paper, we used this common
behavior to build a parametric model that can be robustly fit to a single ex-
pression profile, while capturing the essential timing aspects of the response: its
onset time, peak response and offset time.

Since the impulse model is tuned to typical cellular responses, it provides
robust estimates of response characteristics, even when given very few samples
per time course. We found that it provides superior prediction for imputing
missing or corrupted measurements, both using single gene and using whole
genome information. We believe that this model has other valuable uses, such
as the alignment and comparison of time courses taken at different time points.

Perhaps most important, the impulse model allows us to study response tim-
ings directly. Using the distribution of onsets across functional categories, we
found multiple functions that are timed differently from closely related func-
tions. We also observed a global response pattern, roughly moving outwards
from the nucleus towards the cytoplasm and membranes. Finally, we found
strong correlations between the onset of responses and the binding affinity to
specific transcription factors. This last finding suggests a hypothesis in which
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gradual binding affinities are widely used by cells to tune the timing of expression
responses, extending on recent findings in the context of specific pathways (Lam
et al., 2008).

Transcriptional regulation is one mechanism in a series of hierarchical con-
trols including regulation of mRNA, translation, and protein activation. Impor-
tantly, we note that our finding relates to overall mRNA levels, which encompass
effects from both transcriptional changes and mRNA degradation. Our analysis
is done purely on the timing in the change in mRNA levels, and we make no
attempt to identify the cause(s) for the change. Indeed, it seems quite likely
that many of the timing changes we observe result from a combination of these
two regulatory mechanisms. Regardless of the mechanism, our findings suggest
that the timing in fluctuations of gene expression levels is regulated in a way
that optimizes for the role of the resulting protein product. For instance, the
distribution of timing in Fig. 4 suggests a bifurcated response in the cytosolic ri-
bosome: those components that are not required for translation of other protein
products are repressed early, whereas the necessary components are repressed
later, after fulfilling their role. Therefore, even though several regulatory phases
separate mRNA levels from active protein levels, our findings support a model
in which response onsets of mRNA are tuned with respect to the corresponding
protein function.

The impulse model captures one kind of typical response profiles, but other
typical behavior may exist, such as the periodic behavior observed due to cell
cycle. Such typical behaviors can be identified by unsupervised clustering of
time courses, as in (Ernst et al., 2005). As a subsequent step, one can then
construct a specialized model as in this paper that utilizes biologically relevant
parameters that characterize that type of response, allowing these parameters
to be extracted and used in further analysis.

Impulse-shaped responses are not limited to mRNA responses to stress. Sim-
ilar patterns are observed in gene expression profiles along early development
(Wen et al., 1998) or in protein profiles. The modeling and visualizations tech-
niques discussed in this paper could be usefully applied in these cases as well.
Analysis of gene expression data can be used to analyze the dynamics of cellular
networks, seeing how they adapt in response to changes in the cell condition.
Recent work uses these data to obtain important insights into the dynamics of
complex formation during the cell cycle (de Lichtenberg et al., 2005). We hope
that the fine-grained timing information provided by our work will allow us to
understand the reconfiguration of cellular complexes and pathways in response
to environmental perturbations.
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Figure 1: The impulse
model. (A) The six
parameters of the impulse
model. (B) Examples
of impulse model fit (solid
line) to gene expression
(squares) in response to
1M sorbitol.
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Figure 2: Imputing missing values. (A) Mean squared error over single-
gene-imputation. Using the leave-one-out procedure described in the text, and
comparing: impulse model, cubic Hermite (CH), 2nd and 3rd order polynomials, ap-
proximating splines and smoothing splines. Error is the average over 6209 genes in
76 conditions. Error bars denote the standard error of the mean across the 76 con-
ditions. (B) Scatter plot of the mean error for the impulse model and
cubic-Hermite from (A). Each point corresponds to a different condition, and its
shape shows the number of time point measurements in that condition. The impulse
model provides superior fits, especially in conditions with a small number of time
points. Note that the figure is in log-log scale, demonstrating that the impulse model
is superior across the full range of errors. (C) Whole genome imputation. Com-
parison with Euclidean nearest neighbor KNN-impute . (D)-(F) Comparison of
leave-one-out fits to a gene expression profile. Squares denote measurements,
which are the same for all three panels. For each method, 5 curves are shown, each
corresponding to a fit performed with a different single measurement that was left out
during the fit. The color of each curve corresponds to the color of the hidden value
(square marker).
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Figure 3: Distri-
bution of onset
time and peak re-
sponses in sibling
GO categories.
(A) Subclasses of
the gene expression

GO category, under
exposure to diamide.
(B) Subclasses
of intracellular

organelle part; Expo-
sure to acid. Only 4
subclasses shown to
reduce clutter.
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Figure 4: (A)
Onset time and
peak response of
Ribosomal gene
responses to di-
amide. (B) The
timeline of func-
tional responses
following gamma
irradiation.
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Crosses denote the median peak and onset of all genes in the corresponding GO cate-
gory. Bar lengths denote the standard error of the mean per group (see Methods).
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Figure 5: (A) Number of significant TF+condition pairs as a function of
binding strength considered. The peak is achieved at p-value = 0.52, (38 out of
48). A p-value of 0.5 corresponds to by-chance binding. (B)-(C) Mean onset time
across genes grouped by their binding affinity. (B) Binding of MET31 mea-
sured under amino acid starvation and expression measured under adenine starvation,
Spearman r = 0.14 p < . × 10−9 (C) MET32, same conditions. Spearman r = 0.13,
p < . × 10−8 Error bars denote standard deviations, numbers denote group sizes.
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