Gaussian Information Bottleneck

Gal Chechik http://robotics.stanford.edu/~gal
Amir Globerson, Naftali Tishby, Yair Weiss

Full NIPS paper at
http://robotics.stanford.edu/~gal/ps_files/chechik_nips2003.pdf

Preview

Information Bottleneck/distortion

- Was mainly studied in the discrete case (categorical variables)
- Solutions are characterized analytically by self consistent equations, but obtained numerically (local maxima).

We describe a complete analytic solution for the Gaussian case.

- Reveal the connection with known statistical methods
- Analytic characterization of the compression-information tradeoff curve

IB with continuous variables

- Extracting relevant features of continuous variables:
- Result of analogue measurements: gene expression vs heat or chemical conditions
- Continuous low dim manifolds: face expressions, postures
- IB formulation is not limited to discrete variables

$$
\min _{x), Y \rightarrow X \rightarrow T} L=I(X ; T)-\beta I(T ; Y)
$$

- Use continuous mutual information and entropies

$$
h(X)=-\int f(x) \log f(x) d x
$$

- In our case the problem contains an inherent scale, which makes all quantities well defined.
- The general continuous solutions are characterized by the self consistent equations
- but this case is very difficult to solve

Gaussian IB

Definition:

Let X and Y be jointly Gaussian (multivariate)
Search for another variable T that minimizes

$$
\operatorname{Min}_{T} L=I(X ; T)-\beta I(T ; Y)
$$

The optimal T is jointly Gaussian with X and Y .

Equivalent formulation:

T can always be represented as

$$
\left.T=A X+\xi \quad \text { (with } \xi \sim N\left(0, \Sigma_{\xi}\right), A=\Sigma \dagger x \Sigma x^{-1}\right)
$$

Minimize L over the A and ξ.
The goal:
Find optimum for all beta values

Before we start:

What types of solutions do we expect?

- Second order correlation only: probably eigenvectors of some correlation matrices... - but which?
- The parameter β effects the model complexity: Probably deterine the number of eigen vectors and their scale...
- but how?

Derive the solution

Using the entropy of a Gaussian $h(X)=\frac{1}{2} \log \left((2 \pi e)^{d}\left|\Sigma_{x}\right|\right)$ we write the target function

$$
L=(1-\beta) \log \left|A \Sigma_{x} A^{T}+\Sigma_{\xi}\right|-\log \left|\Sigma_{\xi}\right|+\beta \log \left|A \Sigma_{x \mid y} A^{T}+\Sigma_{\xi}\right|
$$

Although L is a function of A and Σ_{ξ}, there is always an equivalent solution A^{\prime} with spherized noise $\Sigma_{\xi}=I$, that lead to same L value.

Differentiate L w.r.t. A (matrix derivatives)
$\frac{d L}{d A}=(1-\beta)\left(A \Sigma_{x} A^{T}+I\right)^{-1} 2 A \Sigma_{x}+\beta\left(A \Sigma_{x \mid y} A^{T}+I\right) 2 A \Sigma_{x \mid y}$

The scalar T case

- When A is a single row vector

can be written as

$$
\underbrace{\left(\frac{\beta-1}{\beta}\right)\left(\frac{A \Sigma_{x \mid y} A^{T}+I}{A \Sigma_{x} A^{T}+I}\right)}_{\mathbf{\lambda}} A=A=\underbrace{\left(\sum_{x \mid y} \Sigma_{x}^{-1}\right)}_{\mathbf{A}}
$$

- This has two types of solution:
- A degenerates to zero
- A is an eigenvector of $M=\Sigma_{x} \mid y{ }^{\Sigma} x^{-1}$

The eigenvector solution...

1) Is feasible only if:
$\beta \geq(1-\lambda)^{-1}$

2) Has norm:

$$
\begin{aligned}
& \frac{1}{\lambda r}(\beta(1-\lambda)-1) \\
& \lambda=A \Sigma_{, A^{T} ;} ; r=A \Sigma_{x} A^{T} ;
\end{aligned}
$$

$$
\frac{\text { O}}{\frac{2}{\bar{c}}} 5
$$

- The optimum is obtained with the smallest eigenvalues
- Conclusion: $A=\alpha v_{1}$ with $\alpha=\left\{\begin{array}{cc}\frac{\beta\left(1-\lambda_{1}\right)-1}{\lambda_{1} r} & \beta>\left(1-\lambda_{1}\right)^{-1} \\ 0 & \text { other wise }\end{array}\right.$

The effect of β in the scalar case

- Plot the surface of the target L as a function of A, when A is a 1×2 vector:

The multivariate case

- Back to

$$
\frac{d L}{d A}=(1-\beta)\left(A \Sigma_{x} A^{T}+I\right)^{-1} 2 A \Sigma_{x}+\beta\left(A \Sigma_{x \mid y} A^{T}+I\right) 2 A \Sigma_{x \mid y}
$$

- The rows of A are in the span of several eigenvectors. An optimal solution is achieved with the smallest eigenvectors.
- As β increases A goes through a series of transitions, each adding another eigen vector

$$
A=\left\{\begin{array}{cll}
{\left[0^{T} ; \ldots ; 0^{T}\right]} & 0<\beta<\beta_{i}^{c} & \alpha_{i}=\frac{\beta\left(1-\lambda_{i}\right)-1}{\lambda_{i}} \\
{\left[\alpha_{1} \mathbf{v}_{1}^{T} ; 0^{T} ; \ldots ; 0^{T}\right]} & \beta_{1}^{c}<\beta<\beta_{2}^{c} & r_{i}=\mathbf{v}_{i}^{T} \Sigma_{x} \mathbf{v}_{i}^{T} \\
{\left[\alpha_{1} \mathbf{v}_{1}^{T} ; \alpha_{2} \mathbf{v}_{2}^{T} ; 0^{T} ; \ldots ; 0^{T}\right]} & \beta_{2}^{c}<\beta<\beta_{3}^{c} & \beta_{i}^{c}=\left(1-\lambda_{i}\right)^{-1}
\end{array}\right.
$$

The multivariate case

- Reverse water filling effect: increasing complexity causes a series of phase transitions

$$
A=\left\{\begin{array}{ccc}
{\left[0^{T} ; \ldots ; 0^{T}\right]} & 0<\beta<\beta_{i}^{c} & \alpha_{i}=\frac{\beta\left(1-\lambda_{i}\right)-1}{\lambda_{i}} \\
{\left[\alpha_{1} \mathbf{v}_{1}^{T} ; 0^{T} ; \ldots ; 0^{T}\right]} & \beta_{1}^{c}<\beta<\beta_{2}^{c} & r_{i}=\mathbf{v}_{i}^{T} \Sigma_{x} \mathbf{v}_{i}^{T} \\
{\left[\alpha_{1} \mathbf{v}_{1}^{T} ; \alpha_{2} \mathbf{v}_{2}^{T} ; 0^{T} ; \ldots ; 0^{T}\right]} & \beta_{2}^{c}<\beta<\beta_{3}^{c} & \beta_{i}^{c}=\left(1-\lambda_{i}\right)^{-1}
\end{array}\right.
$$

The information curve

- Can be calculated analytically, as a function of the eigenvalue spectrum $I(T ; Y)=I(T ; X)-\frac{n_{t}}{2} \log \left(\prod_{i=1}^{n_{I}}\left(1-\lambda_{i}\right)^{-n_{I}}+\exp \left(\frac{2 I I(T ; X)}{n_{I}}\right) \prod_{i=1}^{n_{i}}\left(\lambda_{i}\right)^{-n_{I}}\right)$
n_{I} is the number of components required to obtain $I(T ; X)$.
- The curve is made of segments
- The tangent at critical points equals $1-\lambda$

Relation to Canonical correlation analysis

- The eigenvectors used in GIB are also used in CCA [Hotelling 1935].
- Given two Gaussian variables $\{X, Y\}$, CCA finds basis vectors for both X and Y that maximize correlation on their projections (i.e. bases for which the correlation matrix is diagonal with maximal correlations on the diagonal)
- GIB controls the level of compression, providing both the number and scale of the vectors (per β).
- CCA is a normalized measure, invariant to rescaling of the projection.

What did we gain?

Specific cases coincide with known problems:

A unified approach allows to reuse algorithms and proofs.

What did we gain?

Revealed connection allows to gain from both fields:

- CCA => GIB
- Statistical significance for sampled distributions Slonim and Weiss showed a connection between the β and the number of samples. What will be the relation here?
- GIB $=>$ CCA
- CCA as a special case of a generic optimization principle
- Generalizations of IB, lead to generalizations of CCA
- Multivariate IB => Multivariate CCA
- IB with side information => CCA with side information (as in oriented PCA) generalized eigen value problems.
- Iterative algorithms (avoid the costly calculation of covariance matrices)

Summary

- We solve analytically the IB problem for Gaussian variables
- Solutions described in terms of eigenvectors of a normalized cross correlation matrix, and its norm as a function of the regularization parameter beta.
- Solutions are related to canonical correlation analysis
- Possible extensions to general exponential families and multivariate CCA.

