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Preview

Information Bottleneck/distortion
– Was mainly studied in the discrete case (categorical 

variables)
– Solutions are characterized analytically by self consistent 

equations, but obtained numerically (local maxima).

We describe a complete analytic solution for the 
Gaussian case.
– Reveal the connection with known statistical methods
– Analytic characterization of the compression-information 

tradeoff curve



IB with continuous variables

• Extracting relevant features of continuous variables: 
– Result of analogue measurements: gene expression vs heat or 

chemical conditions 
– Continuous low dim manifolds: face expressions, postures

• IB formulation is not limited to discrete variables

– Use continuous mutual information and entropies

– In our case the problem contains an inherent scale, which 
makes all quantities well defined.

• The general continuous solutions are characterized by 
the self consistent equations
– but this case is very difficult to solve
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Gaussian IB

Definition:
Let X and Y be jointly Gaussian (multivariate)
Search for another variable T that minimizes

Min L = I(X;T) – βI(T;Y)
T

The optimal T is jointly Gaussian with X and Y.

Equivalent formulation:
T can always be represented as 

T = A X + ξ (with ξ~N(0,Σξ), A= Σtx Σx-1 )
Minimize L over the A and ξ.

The goal:
Find optimum for all beta values



Before we start: 

What types of solutions do we expect? 

• Second order correlation only:  
probably eigenvectors of some correlation matrices…
- but which? 

• The parameter β effects the model complexity:
Probably deterine the number of eigen vectors and 
their scale…
- but how? 



Derive the solution

Using the entropy of a Gaussian 
we write the target function

Although L is a function of A and Σξ, there is always an 
equivalent solution A’ with spherized noise Σξ=I, that 
lead to same L value.

Differentiate L w.r.t. A (matrix derivatives)
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The scalar T case

• When A is a single row vector 

can be written as

• This has two types of solution:
– A degenerates to zero
– A is an eigenvector of M=Σx|y Σx-1
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The eigenvector solution…

1) Is feasible only if:
1(1 )β λ −≥ −
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• The optimum is obtained with the smallest eigenvalues
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The effect of β in the scalar case
• Plot the surface of the target L as a function of A, 

when A is a 1x2 vector: 



The multivariate case

• Back to

• The rows of A are in the span of several eigenvectors. 
An optimal solution is achieved with the smallest 
eigenvectors.

• As β increases A goes through a series of transitions, 
each adding another eigen vector
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The multivariate case
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• Reverse water 
filling effect:
increasing 
complexity causes 
a series of phase 
transitions
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The information curve

• Can be calculated analytically, as a function of the 
eigenvalue spectrum

nI is the number of components 
required to obtain I(T;X).

• The curve is made of 
segments

• The tangent at critical 
points equals 1-λ
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Relation to Canonical correlation analysis

• The eigenvectors used in GIB are also used in CCA 
[Hotelling 1935].

• Given two Gaussian variables {X,Y}, CCA finds  basis 
vectors for both X and Y that maximize correlation 
on their projections (i.e. bases for which the correlation matrix 
is diagonal with maximal correlations on the diagonal)

– GIB controls the level of compression, providing both the 
number and scale of the vectors (per β).

– CCA is a normalized measure, invariant to rescaling of the 
projection.



What did we gain?

Specific cases coincide with known problems:

A unified approach allows to reuse algorithms and 
proofs.

categorical continuous               
Gaussian

K-means
CCA

ML for mixtures ?



What did we gain ?

Revealed connection allows to gain from both fields:
• CCA => GIB

– Statistical significance for sampled distributions
Slonim and Weiss showed a connection between the β and the 
number of samples. What will be the relation here?

• GIB => CCA
– CCA as a special case of a generic optimization principle
– Generalizations of IB, lead to generalizations of CCA

• Multivariate IB => Multivariate CCA
• IB with side information => CCA with side information 

(as in oriented PCA) generalized eigen value problems. 
– Iterative algorithms (avoid the costly calculation of 

covariance matrices)



Summary

• We solve analytically the IB problem for Gaussian 
variables

• Solutions described in terms of eigenvectors of a 
normalized cross correlation matrix, and its norm as a 
function of the regularization parameter beta.

• Solutions are related to canonical correlation analysis

• Possible extensions to general exponential families 
and multivariate CCA.
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