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Abstract

Mutual information (MI) is in increasing use as a way of quantifying neural responses. However, it is still considered with some
doubts by many researchers, because it is not always clear what MI really measures, and because MI is hard to calculate in practice.
This paper aims to clarify these issues. First, it provides an interpretation of mutual information as variability decomposition, similar
to standard variance decomposition routinely used in statistical evaluations of neural data, except that the measure of variability is
entropy rather than variance. Second, it discusses those aspects of the MI that makes its calculation difficult. The goal of this paper
is to clarify when and how information theory can be used informatively and reliably in auditory neuroscience.
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1. Introduction

In recent years, information-theoretic measures are
increasingly used in neuroscience in general, and in audi-
tory research in particular, as tools for studying and quan-
tifying neural activity. Measures such as entropy and
mutual information (MI) can be used to gain deep insight
into neural coding, but can also be badly abused. This
paper is an attempt to present those theoretical and practi-
cal issues that we found particularly pertinent when using
information-theoretic measures in analyzing neural data.

The experimental context for this paper is that of mea-
suring a stimulus—response relationship. In a typical exper-
iment, a relatively small number of stimuli (~<100) are
presented repeatedly, typically 1-100 repeats for each stim-
ulus. The main experimental question is whether the neuro-
nal activity was different in response to the different stimuli.
If so, it is concluded that the signal whose activity is mon-
itored (single-neuron responses, evoked potentials, optical
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signals, and so on) was selective to the parameter manipu-
lated in the experiment.

The MI is a measure of the strength of association
between two random variables. The MI, I(S; R), between
the stimuli S and the neural responses R is defined in terms
of their joint distribution p(S, R). When this distribution is
known exactly, the MI can be calculated as

1SR = 3 pls. log, (p’g()p()))

SESreR

where p(s) = >, pp(s,r) and p(r) =) p(s,r) are the
marginal distributions over the stimuli and responses,
respectively.

The easy way to use the M1 is to test for significant asso-
ciation between the two variables. Here the null hypothesis
is that the two variables are independent. The distribution
of the MI under the null hypothesis is (with appropriate
scaling) that of a y> variable, leading to a significance test
for the presence of association (e.g. Sokal and Rohlf,
1981; where it is called the G-statistic). Using the MI in this
way, only its size relative to the critical value of the test is
of importance.
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A more complicated way of using the M1 is to try to esti-
mate its actual value, in which case it is possible to make
substantially deeper inferences regarding the relationships
between the two variables. This estimation is substantially
more difficult than performing the significance test. The
reasons to undertake this hard estimation problem, and
the associated difficulties, are the main subject of this

paper.
2. Why mutual information?
2.1. The Mutual Information as a measure of stimulus effect

Neuronal responses are high-dimensional: to fully char-
acterize in detail any single spiking response to a stimulus
presentation, it is necessary to specify many values, such
as the number of spikes that occurred during the relevant
response window and their precise times. Similarly, mem-
brane potential fluctuates at >1000 Hz, and therefore more
than 200 measurements are required to fully specify a
100 ms response. We usually believe that most of the details
in such representations are unimportant, and instead of
specifying all of these values, typically a single value is used
to summarize single responses — for example, the total
spike count during the response window, or first spike
latency, or other such simple measures, that will be called
later ‘reduced measures’ of the actual response.

Having reduced the representation of the responses to a
single value, it is now possible to test whether the stimuli
had an effect on the responses. Usually, the effect that is
tested is a dependence of the firing rate of the neuron on
stimulus parameters. For example, to demonstrate fre-
quency selectivity, we will look for changes in firing rates
of a neuron as a function of tone frequency.

To understand what information-theoretic measures tell
us about neuronal responses, let us consider the standard
methods for performing such tests in detail. A test for a sig-
nificant difference between means is really about comparing
variances (Fig. 1): the variation between response means
has to be large enough with respect to variation between
responses to repeated presentations of the same stimulus.

Initially, all the responses to all stimuli are pooled
together, and the overall variability is estimated by the var-
iance of this set of values around its grand mean. Fig. 1
shows the analysis of ‘artificial data that represents 20
repeats of each of two stimuli (these are actually samples
of two Poisson distributions with expected values of 5
and 10). In Fig. la, the overall distribution of all responses
(both of stimulus 1 and of stimulus 2) is presented. The
total variance is 10.9 (there are no units, since these are
spike counts), corresponding to a standard deviation of
about 3 spikes.

Part of the overall variation occurs because responses to
repeated presentation of the same stimulus are noisy — this
is called within-stimulus variability. Another part of this
overall variation is due to the fact that different stimuli
cause different responses. A stimulus effect is significant if
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Fig. 1. Variability analysis using variances and entropies. (a) Overall
distribution of 40 measurements (2 stimuli, 20 repeats of each stimulus).
(b) Distribution of the responses to the two stimuli. (c) Samples means.

the second variability source, between-stimulus variation,
is large enough relative to the first variability source, the
within-stimulus variability. Conceptually, the next step is
to compute within-stimulus variability. To do that, the var-
iance of all responses to each stimulus, around their own
mean, is computed (Fig. 1b). The two histograms represent
the responses to stimulus 1 (black) and stimulus 2 (gray),
with variances of 10.1 and 2 (standard deviations of about
3 and 1.5 spikes). This set of variances is then averaged
across stimuli, and used as an estimate of the within-stim-
ulus variability — for the data in Fig. 1, the average within-
stimulus variance is about 6.

It can be shown mathematically that within-stimulus
variability will always be smaller than the overall variance,
and the difference between them is the variability between
the means of the responses to the different stimuli
(Fig. Ic). Thus, the goal of dividing variance into two
sources, the within-stimulus variance and the across-stimu-
lus variance, is achieved.

This decomposition has good statistical properties, in
the sense that the two variability sources are uncorrelated.
Statistical theory can now be used to determine when the
ratio between the two variability sources should be consid-
ered as larger than expected under the assumption of no
stimulus effect (Sokal and Rohlf, 1981), leading to specific
statistical tests (e.g. the F-test of the 1-way ANOVA) in
Fig. 1 the F-test (or the equivalent #-test for equality of
means, which is essentially the same thing here) comes
out highly significant.

The recipe given above is extremely powerful, and there-
fore unsurprisingly is extensively used. However, it has
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some serious limitations. For example, could it be that
using more detailed descriptions of the responses, a stron-
ger stimulus effect could be found? Moreover, in some cases
the use of spike counts is inappropriate, and other reduced
measures such as first spike latency should be used. This is
the case for example, if a neuron usually spikes always
once, but at a different point in time depending on the stim-
ulus. However, the issue here is general: How do we know
the reduced measure we use is the best, or even that it
makes sense?

Even more importantly, this procedure can only be fol-
lowed when means and variances can be computed. This is
true when responses are summarized by numerical-valued
variables such as spike counts or simple measures of spike
timing, but is problematic in other situations. Nominal or
ordinal variables cannot be analyzed by this procedure.
More importantly, neuronal responses in their full com-
plexity cannot be analyzed in this framework. For example,
the mean and the variance of a set of precise spike patterns
are difficult to define in a natural way: such definition
requires many assumptions about those elements of the
spike patterns that are important for coding, the underly-
ing noise structure and the relevant temporal resolution.
Finally, the mean and variance capture only some aspects
of the distribution, and may ignore other aspects of the
responses that could also encode properties of the stimulus.

We would like to keep the general framework of vari-
ability decomposition, without using variances. A solution
is provided by information theory, supplying a different
measure of variability — the entropy of the probability dis-
tribution (Cover and Thomas, 1991). The entropy is
defined as

Hip) = Y plog, %)

where p(i) are the probabilities of all the different values
that the random variable can have (here we assume a dis-
crete random variable in order to avoid the technicalities
associated with calculation of entropies for continuous
distributions).

The entropy does not assume anything about the rela-
tionships between different possible values that can be
achieved, and therefore can always be computed, even for
nominal or ordinal variables, when means and variances
do not make sense. The entropy has many of the properties
of variance — it is non-negative, and it is equal to 0 only when
the random variable has a single value with probability 1. In
other respects, entropy and variance are different. For exam-
ple, scaling a variable would change its variance, but not its
entropy. Thus, a variable having two values with probability
0.5 each would have entropy of 1 bit whether the two values
are —1 and 1 or —10'7 and 10'7. Therefore, the entropy
codes different aspects of variability than the variance.

Using entropy, it is possible to perform variability
decomposition in the same way as with variance. First,
compute the overall response entropy. For the data in

Fig. 1a, the overall response entropy is 3.4 bits. Next, com-
pute the entropy of the responses for each stimulus sepa-
rately and average across stimuli. In Fig. 1b, the entropy
is 3.2 and 2.5 bits for the distribution of counts of stimuli
1 and 2, respectively, and their average is 2.8 bits. This
number is called the conditional entropy — in this case the
entropy of the responses conditioned on the stimuli. It is
a measure of the variability of different responses to the
same stimulus. The difference between the overall entropy
and the conditional entropy should reflect the effect of
the stimulus — in Fig. 2 it is 0.6 bits. In fact, this difference
is precisely the MI. Thus, the MI is a measure of ‘stimulus
effect’ — that part of total response variability (measured by
entropy) that is due to difference between responses to the
different stimuli. Again, for a test of association, the MI in
this case is highly significant.

2.2. Useful properties of the MI

If the MI is not more than another way to do variance
decomposition, why use it at all? The MI has theoretical
properties that make it ideal for addressing some general
questions in neuroscience. I will highlight three such prop-
erties here.

2.2.1. Symmetry

The defining formula of the MI is symmetric in the stim-
uli and the responses. On the other hand, the recipe above
for calculating the MI as part of a variability decomposi-
tion is asymmetric, because stimuli and responses do not
play the same role: the MI was computed as the difference
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Fig. 2. Computing the MI by conditioning on responses. (a) The
conditional distributions of stimuli given the responses. Black line —
probability of stimulus 1; gray line — probability of stimulus 2. (b) The
resulting conditional stimulus entropies, one value for each possible
response. Gray — the weights used for computing the average.
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between overall response entropy and the average response
entropy computed for the single stimuli. However, a similar
calculation can be done with the role of stimuli and
responses reversed.

To do this, the entropy of the stimuli is computed first.
Since the distribution of stimuli is part of the experimental
design, stimulus entropy is under complete experimental
control. For the data in Fig. 1, with two equiprobable stim-
uli, the stimulus entropy is 1 bit. Next, individual stimulus
repetitions are assigned to classes according to the
responses they evoked (Fig. 2). Thus, if the response is
quantified by spike counts, stimuli are classified by the
number of spikes they evoked. For example, part of this
calculation consists of selecting all stimuli that evoked 4
spikes. Of the 40 stimulus presentations (20 of stimulus 1
and 20 of stimulus 2), 7 stimulus presentations evoked 4
spikes. Of these, 2 were stimulus 1 and 5 were stimulus 2.
As a result, conditional on having evoked 4 spikes, the
probability of stimulus 1 is estimated as 2/7 and that of
stimulus 2 is estimated as 5/7. This is nothing but a direct
application of Bayes rule. Fig. 2a shows these distributions
for all observed spike counts (the case of 4 spikes is indi-
cated with a vertical arrow).

Next the entropy of these probability distributions is
computed and averaged across responses — this is the con-
ditional stimulus entropy, conditioned on observing the
responses. These are displayed in Fig. 2b, and their aver-
age, the conditional stimulus entropy, is about 0.4 bits
(marked with an horizontal arrow — the weights used for
the different responses are marked in gray). Finally, the dif-
ference between the overall stimulus entropy and this aver-
aged within-response stimulus entropy can be computed,
giving a measure of ‘response effect’, which is again 0.6 bits.

It turns out that the two ways of calculating an effect,
starting with responses or starting with stimuli, always
result in the same number, the MI as defined above. This
is reflected in the symmetric way in which the two variables
participate in the definition of the MIL. Thus, the MI can be
interpreted in two ways. It is stimulus effect on the
responses — the part of response variability that is due to
variation in stimuli. But it is also the response effect on
the stimuli — the part of the variability in the stimuli that
is accounted for by observing responses. Whereas the first
view is that of encoding — how responses encode stimuli —
the second view is that of decoding — to what extent the
stimulus can be determined after observing a response.
The identity of the resulting numbers creates a deep link
between encoding and decoding.

2.2.2. Scale

Since conditioned entropies are positive but smaller than
overall entropies, the MI is always non-negative but will
always be smaller than both the entropy of the responses
and the entropy of the stimuli (in fact, the entropy of the
stimulus H(S) is mathematically equivalent to I(S; S), and
similarly for H(R); furthermore, I(S; S)> = I(S; R), which
is a consequence of the information processing inequality

to be discussed below). We can therefore know when the
MI is small and when it is large by comparing it with the
smaller between stimulus and response entropies.

When the MI is zero, stimuli and responses are indepen-
dent — there is no effect whatsoever of the stimuli on the
responses. This is a far stronger statement than the state-
ment that there is no stimulus effect on response means —
the M1 is sensitive to all possible departures from indepen-
dence (Fig. 3 illustrates some possibilities: unequal means,
equal means and unequal variance, and even equal means
and equal variances but small differences in the detailed
distributions). Therefore when MI =0, any test, on any
measure of the responses, will not be able to uncover a sig-
nificant stimulus effect. Symmetrically, any decoder of the
responses will perform at chance level.

Fig. 3 may also serve to calibrate the expectations for
the size of the MI. Because of the absolute scale, in the case
of two stimuli the MI cannot be larger than 1 bit. In the
case illustrated in Fig. 3a, the MI is only 0.44 bits, which
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Fig. 3. The MI is sensitive to general departures from independence. (a)
Two Poisson distributions, different means and different variances. (b) A
Poisson distribution and a uniform discrete distribution with the same
mean. Whereas an ANOVA test would most probably come not
significant, the MI is non-zero (although not very large). (c) Two
distributions with the same mean and the same variance. The MI is now
small, but still non-zero.
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is somewhat less than a half of the maximum possible
value, although the two distributions compared there
would be considered as highly discriminable
experimentally.

In fact, if the MI is equal to stimulus entropy (1 bit in
Fig. 3), the stimuli can be perfectly recovered from the
responses. This is so because the response-conditioned
entropy in this case is 0, which can happen only if each
response perfectly specifies a single stimulus (although a
given stimulus can in principle still evoke different
responses on different presentations). In terms of the calcu-
lations illustrated in Fig. 2, the conditional probabilities of
the stimuli given the responses (Fig. 2a) should all be either
0 or 1, never in between.

These absolute bounds have other implications as well.
For example, in order to decode the responses well, we
would like the MI to be close to stimulus entropy. How-
ever, the MI cannot be larger than response entropy. Thus,
if response entropy is smaller than stimulus entropy, per-
fect decoding is impossible. Response entropy depends to
some extent on experimenter choices. When responses are
summarized with more details, response entropy will typi-
cally increase. Thus, if responses are summarized by
whether a neuron responded or not, the maximum
response entropy is 1 bit. If the response is summarized
by the number of evoked spikes, response entropy can be
larger, depending on the possible spike counts and their
distribution. In this sense, more detailed descriptions of
the responses are ‘good’ — some of the increased overall
entropy might be used to encode significant variability
between stimuli. Of course, increased details may also
backfire, as we will discuss below.

2.2.3. The information processing inequality

Roughly speaking, the information processing inequal-
ity says that any processing done on either stimuli or
responses will at best keep the same level of MI, or may
lose MI. In other words, it is impossible to gain informa-
tion by processing data, only to lose information.

This mathematical result needs to be interpreted with
care. A sound has many properties, some of which may
be important and some not. For example, when recording
responses of an auditory nerve fiber to a low-frequency
pure tone, the absolute times of the spikes relative to stim-
ulus onset carry information about its phase — starting the
stimulus at different phases will result in reproducible
changes in absolute spike timing (simulated in Fig. 4a
and b). This information is highly important for computing
interaural phase differences, but may be irrelevant in other
cases (e.g. when doing a frequency discrimination task),
and can be safely ignored in order to better specify other
aspects of the response (e.g. the autocorrelation of the
spike train emphasizes the periodical structure, losing
phase information, see Fig. 4c). Thus, overall information
loss is often accepted when readout of relevant aspects of
the sound becomes easier. Because of the practical aspects
of MI estimation discussed below, such data processing
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Fig. 4. Processing for enhancing specific aspects of stimulus representa-
tion. (a) Raster plots for simulated ANF in response to a 100 Hz tone. The
phase of the tone was shifted, and each value of the phase was used for 50
responses. (b) Joint distribution of stimuli and first spike latency. Note
that the joint distribution has a lot of structure, leading to a substantial
MI (about 0.7 bits). (c) Location of the first peak of the single-trial
autocorrelation function. The phase sensitivity has been abolished by this
analysis, but the periodicity is much more strongly represented.
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may actually increase the amount of information that can
be extracted about the frequency of the stimulus under typ-
ical experimental conditions.

The importance of the information processing inequal-
ity, however, goes far beyond these general comments. It
is a basic theoretical tool for discussing decoding of neural
activity.

One of the most important techniques used to quantify
stimulus-response relationships has been to build a deco-
der — an algorithm whose input is an experimentally-mea-
sured response and whose output is a guess at the
stimulus that evoked the response. In order to demonstrate
significant stimulus—response associations, it is enough to
build a decoder functioning significantly above chance
level. A decoder is considered as a proof of principle that
a (half-mythical) ‘next layer’ could extract relevant infor-
mation about the world from the neuronal responses.

Having a good decoder is however just a first step. We
want now to compare neurons by the performance of
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decoders trained on their responses; or to compare two dif-
ferent sets of stimuli to demonstrate that a neuron is more
sensitive to one or to the other; or to build decoders based
on different features of the responses, in order to find out
whether these response features carry information about
the stimuli. However, a decoder is usually coming from a
specific class of algorithms (multilayer perceptrons, or sup-
port vector machines, or radial basis neural networks, or
other such families) and is trained on the data using a spe-
cific set of parameters. One could imagine that using a dif-
ferent class of algorithms, or even different parameter
settings for the same algorithm, could result in a better
decoder, in which case any comparison between decoders
working on different data is invalid. In other words, any
specific decoder only bounds from below the performance
of the best decoder for the task we study.

Is it possible to improve a decoder beyond any given
bound by using better and better algorithms? The answer
is no — the information processing inequality puts an abso-
lute bound on decoder performance. Decoders are quanti-
fied by their transmitted information: this is the MI
between the true stimuli and the decoded ones. However,
the decoded stimuli are a function of the responses — this
is precisely the meaning of a decoder: a machine that gets
responses and guesses what were the stimuli. Therefore,
the transmitted information of any decoder, being the
mutual information between stimuli and a function of the
responses, cannot be larger than the MI between stimuli
and (the unprocessed) responses. In this respect, training
a decoder is a way of computing a lower bound (the trans-
mitted information) on the MI between stimuli and
responses. Alternatively, a valid estimate of the MI
between stimuli and responses bounds the performance of
any decoder. Therefore, when looking for an optimal deco-
der, it makes sense to spend the effort on computing a valid
estimate of the MI between stimuli and responses, which is
an absolute bound with respect to which the transmitted
information of any decoder should be compared.

A decoder that reaches the bound set by the information
processing inequality is a function f of the data for which
I(S; f{R)) = I(S; R). Such a decoder may or may not exist,
but functions of the responses that do not lose information
are interesting in their own right. This is actually a rather
large family. For example, any function that associates a
unique value in its range to each response value has this
property, since in that case the relationship between R
and f{R) can be inverted. This is what we do when we code
0-1 spike patterns as the numbers they denote in binary
notation. However, such functions are not necessarily use-
ful, since they do not simplify the responses in any way;
they just replace complexity with another complexity. On
the other hand, a perfect decoder is a very useful member
of this family.

Note that in this respect, the actual values of the func-
tion f{R) are unimportant. The important action of fis to
identify possible responses: those responses that give rise
to the same value of f. By identifying these responses, using

fis tantamount to accepting that the differences between
them are not important (think again of using spike counts
instead of exact spike patterns). Thus, in information-the-
oretic terms, the main effect of f'is to reduce the variability
(as measured by entropy) of the response space. Useful
information-preserving functions reduce the complexity
of the response space, but keep those aspects of response
variability that are important for coding the stimuli.

Functions that keep information are therefore candi-
dates for being the neural code, in the sense that the ‘next
layer’ in the brain does not need to know all the details of
the response — it is enough to know the value of one of
these functions in order to have access to the full informa-
tion about stimuli. Used in this way, the information pro-
cessing inequality is a rigorous tool to look for candidates
for the neural code.

In the same way, the information processing inequality
can be used to learn about features of stimuli that are
important for shaping the responses of complex neurons.
In this case, the stimuli have a complex description, and
we are looking for a reduced measure of the stimuli that
would keep the mutual information with the responses.
Such a function encapsulates the relevant information
about the stimulus that is necessary in order to fully specify
the response. A similar argument was used by Sharpee
et al. (2004) to find the so called maximally informative
dimensions — linear filters in stimulus space that keep max-
imal information about the responses.

2.3. Other interpretations of MI

(i) The MI is the reduction in uncertainty about the stim-
ulus after a single response is observed. This is the
standard information-theoretic interpretation. In the
context studied here, without observing the response,
the guess which stimulus was presented must be solely
based on the experimental design, and is quantified by
stimulus entropy. For example, with 16 equiprobable
stimuli, the guess will select each stimulus with prob-
ability 1/16 and the entropy is 4 bits. If the mutual
information between a neuron and the stimuli is e.g.
0.5 bit, observing the responses of the neuron reduces
this entropy to 3.5 bits on average. The averaging
here is important — one can easily construct cases in
which observation of a specific response increases
uncertainty about the stimulus. For example, imagine
an experiment with two stimuli, one of which has a
probability of 0.1 and the other 0.9. Stimulus entropy
is in this case is about 0.47 bits (instead of 1 bit for
equiprobable stimuli). Now suppose that the joint dis-
tribution of stimuli and responses is such that there is
a low-probability response that is 9 times more prob-
able when the low probability stimulus is presented
than when the high probability stimulus is presented.
Under these circumstances, the conditional probabil-
ity of the two stimuli after observing that specific
response is 0.5 so that the conditional entropy is
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1 bit, higher than the original stimulus entropy. How-
ever, in that case other response values will have
lower stimulus entropy since we know that on average
the conditional stimulus entropy will be smaller than
the a-priori stimulus entropy, 0.47 bits.
With this interpretation, the MI can be used to esti-
mate the number of neurons that are required to
decode stimuli perfectly on a trial-by-trial basis. The
estimate is the stimulus entropy divided by the sin-
gle-neuron MI. However, this estimate is not guaran-
teed to bound the number of neurons either from
above or from below, since the MI can add supra-lin-
early or sub-linearly among neurons. How informa-
tion of ensembles relates to single-neuron MI is a
complex question, outside the scope of this review
(see Chechik et al., 2006; Deneve et al., 2001; Niren-
berg and Latham, 2003; Schneidman et al., 2003).
(i) The MI is the log (to the base of 2) of the number of
different classes to which the stimuli can be subdi-
vided after observing a response. This interpretation
is tightly linked to the previous one, and is a concrete
interpretation of the reduction in uncertainty. How-
ever, single-neuron MI is often smaller than 1 bit,
making the number of different classes smaller than
2. Thus, this interpretation seems less useful for sin-
gle-neuron calculations.

2.4. Practice of mutual information estimation

If the M1 is so useful, why is not it used more often? One
answer to this question is that the MI has entered the field
late, and that it is gaining respect as a tool for analyzing
neural data. However, there is another good reason for
the limited use of information-theoretic measures: calculat-
ing the actual value of the MI between two experimentally
measured variables is theoretically difficult, and the diffi-
culty translates into practical hurdles.

In principle, the MI is one value that summarizes some
properties of a probability distribution. As such, it seems
that it would not be more difficult to estimate than e.g. a
mean and a variance (Nemenman et al., 2004). This is how-
ever incorrect — the estimation of the MI is a hard problem.
Theoretical aspects of MI estimation have been most rigor-
ously treated by Paninski (2003), who highlighted the
severe problems encountered when trying to estimate MI
from data.

Estimating MI from empirical data commonly involves
two steps: first, estimating the joint distribution of stimuli
and responses, and then calculating the MI based on this
estimated distribution. The first step in such calculations
requires estimating the distribution of neural responses
for each stimulus. For example, when interested in infor-
mation in spike counts, one calculates the distribution of
number of spikes in the responses, as measured across
repeated presentation of each one of the stimuli separately.
Repeating this calculation for each stimulus yields the joint
distribution of stimuli and responses. Fig. 5 is an illustra-

tion of this procedure. In this example, two stimuli are pre-
sented with equal probability. In fact, these are the spike
trains that were used to generate the data of Fig. 1. They
are samples of two homogeneous Poisson processes, so
that the spike counts are sufficient statistics and follow a
Poisson distribution, as stated above. The histograms of
the spike counts are given in Fig. 1b, and they are normal-
ized to give a joint distribution in Fig. 5b. For example,
p(0,1) is the probability of a response to have no spikes
and be a response to stimulus 1 (Fig. 5b). Other statistics
of spike patterns can be used instead of spike counts.
For example, spike trains can be viewed as binary “words”
of some fixed length. In Fig. 5c, the spike trains of Fig. 5a
were divided into 5 periods of 20 ms each, and recoded as
5-bit binary words, where each bit is 1 if at least one spike
occurred during the appropriate period. The distribution
of the binary words can be estimated by counting the num-
ber of appearances of each word across repeated presenta-
tions of each stimulus. In our case, the spike rate evoked
by stimulus 1 was such that in a large number of trials,
at least one spike appeared in each of the periods, making
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Fig. 5. Calculation of the MI. (a) rasters of the responses to two stimuli.
(b) Representation in gray scale, after normalization, of (B). (c¢) Joint
distribution of spike patterns and stimuli. Here, a pattern is defined as a
summary of 5 periods of 20 ms each, coded as 1 if at least one spike
occurred and 0 otherwise.
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the full pattern ‘11111° by far the most common one. On
the other hand, at least one spike occurred in each presen-
tation, making the estimated probability of the spike pat-
tern ‘00000 zero.

The second step is to calculate MI from the joint distri-
bution. When the number of samples is very large relative
to the number of bins in the joint distribution matrix, the
observed empirical joint distribution provides a good esti-
mate of the true underlying distribution, and the MI can
be calculated by plugging in the empirical distribution.
Unfortunately, with common experimental settings the
number of samples is often not sufficient, and this naive
MI estimator is positively biased. This means that it tends
to produce overestimates of the MI relative to the MI of
the true distribution,

1(p(S,R)) > I(p(S,R))

(but not always: the theoretical bias may be negative, see
the discussion in Paninski, 2003). In addition, the variabil-
ity of the estimator due to finite sampling may be also con-
siderable. It has been shown that a first order
approximation of the expected bias is

#bins
2N log(2)’

where #bins is the number of independent ‘essentially non-
zero’ bins in the joint distribution (those that potentially
might be non-zero; if actually zero, this is due to finite sam-
pling) and N is the number of samples (Panzeri and Treves,
1996; Treves and Panzeri, 1995). Subtracting this estimate
of the expected bias from the empirical MI estimate often
reduces substantially the bias.

As an example, the spike counts for the data in Fig. la
are actually a sample from the Poisson distributions of
Fig. 3a, whereas the naive MI estimate is about 0.60 bits,
had we had the full distributions (by e.g. repeating the stim-
uli many more times), the MI would be 0.44 bits. The dif-
ference between these two estimates is the bias. Indeed, in
this case #bins is 15. The total number of stimulus presen-
tation, N, is 40; and therefore the expected bias is 0.27 bits,
somewhat larger than the actual observed bias in this case
(0.16 bits).

The amount of bias, relative to the estimated informa-
tion, depends on how densely the joint distribution matrix
is sampled. Roughly speaking, this is a problem of overfit-
ting. Imagine an experiment in which many different
sounds are presented, each of them once, and that the
responses are described in so many details that each specific
response is seen only once. In this case, in the limited world
of the data collected during the experiment, stimuli fully
“predict” the responses and vice versa. The decoding can
be performed using a lookup table: given a response that
actually occurred in the experiment, go back and find the
stimulus that evoked it. Thus “information is maximal”.
However, this result is most probably spurious, in the sense
that it does not generalize: for example, another repeat of
the same stimulus will probably produce a different

response than the one that is in the lookup table. There-
fore, the high MI estimated in this case is probably wrong.
Accepting the high value of the MI is tantamount to believ-
ing that the available data is perfectly representative of all
data in all its details, which it is probably not — this is the
essence of overfitting.

Estimating the bias using the standard correction given
above requires some care, since setting the value of #bins
is tricky. In experiments, bins of low probability may
remain empty because of finite sampling, and therefore
the number of non-zero bins in the estimated joint distribu-
tion matrix is only a lower bound on #bins. On the other
hand, assuming that all possible responses are possible to
all possible stimuli, hence setting #bins to be the total num-
ber of bins in the joint-distribution matrix, may also be
wrong. For example, it may well be that some stimuli never
produce a single spike, while others always produce at least
one spike. In this case, some combinations of stimuli and
responses are truly empty and will remain so forever. In
this case, #bins is overestimated. In some respects, this is
the situation in the data of Fig. 1 and possibly part of
the reason why the estimated bias is somewhat large. Thus,
the values of 0 and 1 spikes per stimulus never occur in this
sample, and their probabilities, although non-zero, are very
small, contributing to the overestimation of the bias. Sim-
ilarly, large spike counts (>8 spikes/presentation) are extre-
mely unlikely for stimulus 2, also contributing to the
relatively large bias correction. Panzeri and Treves (1996)
suggested some procedures for better estimating the bias
in this context.

There is another possible solution to the problem of
overfitting and bias: to reduce the details of the stimulus
and response descriptors such that their joint distribution
can be better estimated. In standard electrophysiological
experiments, a small set of stimuli is used to start with,
and therefore the responses should be reduced (e.g. from
firing patterns to spike counts). However, the information
processing inequality tells us that by doing this, we also
reduced information. Thus, we wish to choose the repre-
sentation in an adaptive manner: as observations accumu-
late, we increase the amount of details we allow in the
representation of the responses. Paninski (2003) showed
that by increasing details not too fast as further observa-
tions accumulate, such a procedure will converge to the
true MI. However, in real experimental situations, the
amount of data is fixed, and we cannot follow this scheme
to the limit.

We therefore face a conundrum — on the one hand, we
cannot fully specify the joint distribution of stimuli and
responses in typical experiments because these require too
many details, but on the other hand any attempt at reduc-
ing the data results in a different problem, where informa-
tion is already reduced, so that even if we estimate the MI
of the reduced problem better, the result is not what we
have been looking for to start with.

In practice, one can create a sequence of reasonably well
estimated MI values from reduced problems and use this
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sequence to generate a high quality final estimate. There
are two main approaches to achieve this. In the first
approach the MI is calculated for several subproblems
and extrapolated to get the expected value at infinite data
or infinite resolution. For example, to reduce bias, the
MI is calculated for subsets of the data of various sizes.
Since the bias decreases theoretically at a rate of 1/N, it
is expected to observe a linear dependence of the observed
MI on 1/N. A linear regression supplies the estimated bias-
corrected MI. To get the MI estimate at infinite temporal
resolution, the MI may be calculated for several finite tem-
poral resolutions. This is done over a range in which rea-
sonable robust estimation is possible, and these estimates
are then extrapolated to infinitely detailed responses. This
approach was taken in the so-called direct method (Strong
et al., 1998), where estimates of MI were calculated for a
series of temporal resolutions, and were linearly extrapo-
lated to infinite temporal precision of spike times.

In the second approach, bias correction can be done on
each estimate, resulting in a trade-off: the more reduced
joint distribution will have less mutual information, but
also smaller bias and less possible over-correction. Thus,
standard algorithms may actually show an increase in
bias-corrected information, at least initially, as the reduc-
tion process proceeds. After producing a series of probable
underestimates of the MI, the maximal estimate among all
of them should be the best estimator of the true MI. In
practice, one has to be careful about the maximization pro-
cess involved in such procedure, which introduces a bias of
its own. A controlled amount of such optimization was
used in Nelken et al. (2005), seemingly successfully, at least
compared to simulations.

To illustrate these approaches, we use the data of Fig. 4.
Suppose we are interested in the phase of the 100 Hz tone.
The joint distribution in Fig. 4b was computed using 50
repeats for each stimulus and with 16 bins of 2 ms, covering
the range of 0-30 ms. Thus, it contains 128 bins (8 stimulus
values and 16 time values for each) and has 400 measure-
ments, slightly more than 3 counts per bin on average.
The MI is about 0.79 bits, and the bias (calculated from
the number of measurements and number of bins as above)
is 0.19 bits, resulting in a bias-corrected MI of about
0.6 bits. In this case, the model is simple enough to allow
explicit calculation of the joint distributions: the model
MI is 0.62 bits. Thus, the value we get by simple bias cor-
rection of a limited-resolution joint distribution is not too
far from the ‘true’ MI, despite the finite sampling and data
processing that lie between the model and the estimated
value.

With the first approach to bias correction, we should
compute the MI for subsets of the data and extrapolate
to infinity (in practice, 1/N is extrapolated to 0). Fig. 6a
shows the plot of average raw MI (without bias correction)
against 1/N. For N = 10 trials, the estimated value seems to
deviate somewhat from the linear trend defined by the val-
ues estimated with larger subsets. Using only the MI of
these larger subsets in the linear regression, the estimated
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Fig. 6. Bias correction. (a) Estimates of the MI between sine wave phase
and responses for the data in Fig. 4a, as a function of the number of trials
used. For each number of trials, the largest number of non-overlapping
subsets of trials were used (5 subsets for 10 trials, 3 subsets for 15 trials, 2
subsets for 20 and 25 trials, and the whole set for 50 trials). The intercept
of the linear regression line with the y-axis is the bias-corrected MI
estimate. (b) The sequence of raw MI (upper gray line), bias estimates
(lower gray line) and bias-corrected MI (continuous black line) values
produced by successive reduction of the joint distribution matrix in Fig. 4b
using the algorithm of Nelken et al. (2005).

MI (intercept of the linear regression line with the y-axis)
is 0.64 bits, as good an estimate of the true MI as before.
Note however that using this method required some judg-
ment for selecting the linear range for the regression, and
it assumes that there is enough data so that the bias indeed
decreases linearly with 1/N. If we had only 20 trials per
stimulus, we would have available only the first two points
of Fig. 6a, and the resulting estimate would have been too
large: 0.97 bits.

For the second approach, we use the algorithm devel-
oped by Nelken et al. (2005), which successively reduces
a joint distribution matrix by joining together adjacent
rows or columns. At each step, the row or column with
the least marginal probability is selected and joined to
the neighbor that has the lower marginal probability. The
MI of the reduced matrix and the estimated bias are com-
puted, generating a sequence of bias-corrected MI esti-
mates. Eventually only one column or row remains,
stopping the iterations. The maximal bias-corrected value
is used as the final MI estimate. Fig. 6b shows the sequence
of raw MI values, bias estimates and bias-corrected MI val-
ues produced by this algorithm for the same data. While at
each iteration of the reduction process both raw MI and
bias estimates monotonically decrease, the bias-corrected
MI actually increases slightly at the initial stages (although
this increase is obviously not significant). The final estimate
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of the MI in this case is 0.61 bits, closer to the true data but
probably not significantly different from the two other esti-
mates. The main advantage of this approach is that it can
be used to get conservative estimates of the MI even with
very little data (e.g. Moshitch et al., 2006). In the case of
the data used here, with 20 trials per stimulus the estimated
M1 is 0.63 bits, still close to the model MI. Thus, with small
amounts of data, the more conservative second approach
seems to perform better.

A number of suggestions have been made for computing
MI without explicit calculation of the joint distribution as
an intermediate step. These involve the use of decoders
(Furukawa and Middlebrooks, 2002; Rolls et al., 1997),
computing the MI from a series expansion (which can prac-
tically be evaluated only up to the second order, Pola et al.,
2003), or using distances between responses (embedded in a
high-dimensional metric space) to estimate their density
(Victor, 2002). Although these methods do not strictly fall
within the context discussed here, we (Nelken et al., 2005)
found that in practice, they suffer from the same problems
as the matrix-based methods, with the errors being domi-
nated by bias and having a larger mean-squared error than
matrix-based methods.

3. Applications to the auditory system

Information-theoretic measures have been applied suc-
cessfully for problems of auditory coding since the begin-
ning of the current wave of interest in these methods
(Ricke et al., 1995). Here I summarize a number of recent
studies. This is not intended as an exhaustive review but
rather as an illustration of the current practice.

Starting first with a somewhat atypical case, Slee et al.
(2005) studied the responses of nucleus laminaris neurons
in chick embryos. The stimulus was a non-white Gaussian
current. The analysis proceeded in two steps: first a model
was fitted to the data, based either on spike-triggered aver-
aging or on covariance decomposition (Brenner et al.,
2000), an approach that generalizes and extends spike trig-
gered averaging. In both cases, the procedure generates a
model in which linear filter functions are used to reduce
the stimulus, and the reduced stimulus undergoes non-lin-
ear transformation into firing rate. The issue in this case
is whether the simplified model captures all stimulus fea-
tures that are relevant for spiking, and this was tested using
the methods discussed above. The full MI between stimuli
and responses was estimated, and so was the MI between
the reduced models and the responses. By the informa-
tion-processing inequality, the second value is always smal-
ler than the first. Better models give MI values that are
closer to the full MI. In this study, models captured 60—
75% of the full MI. The authors suggest that unexplained
MI may have to do with spikes that are very close to each
other (<5 ms), in which case spike history influences firing
in ways that the reduced models do not capture.

Higher up in the auditory system, Chase and Young
(2005) studied the coding of multiple cues for space in

cat inferior colliculus (IC). The question they addressed
was that of segregation of processing pathways through
the IC. Previous studies have suggested that brainstem
nuclei which process different spatial cues project to seg-
regated domains in the IC. If so, it could be expected
that IC neurons would show mostly sensitivity to the
cue that is represented in their dominant input. Chase
and Young used stimuli in which various cues (interaural
level differences; interaural time differences; and spectral
notches) were manipulated independently (therefore
mostly working with artificial combinations of cues).
This experimental design allowed them to study the
way one cue is coded in the presence of variations in
other cues, and also to study information interactions
between different cues. Their main conclusion is that
information interactions are large and are seemingly
inconsistent with hard segregation, supporting rather
the notion that IC neurons typically integrate informa-
tion from multiple input streams.

Still in the IC, Escabi et al. (2003) compared the
responses to artificial sound ensembles whose spectro-tem-
poral modulations resembled to varying extent those of
natural sounds. They found that more naturalistic ensem-
bles evoked higher firing rates and also higher mutual
information rates. Interestingly, the information per spike
remained about constant, suggesting that the spikes
encoded information independently of each other, and that
the increase in MI for the naturalistic ensembles was due to
the higher firing rates rather than to changes in the way
spikes encode stimulus features.

Hsu et al. (2004) analyzed responses of neurons in the
midbrain, primary forebrain areas and secondary fore-
brain areas in a bird, the zebra finch. The basic issue
was again that of specialization for natural sound ensem-
bles, and this question was tested by using a hierarchy of
ensembles that approximated to varying extent a set of
conspecific natural vocalizations. The relative level of
MI was used to indicate selectivity. In contrast with other
studies reviewed here, the MI was estimated using semi-
parametric models: first, a statistical model of the spike
train was generated for each stimulus, and then the MI
of the models was estimated. They found that the selectiv-
ity of neurons to the natural sound ensemble increased at
higher auditory stations. As in the paper of Escabi et al.
(2003), this increase was not due to better reliability of the
individual spikes, but rather to a more extreme distribu-
tion of firing rates and higher bandwidth of firing rate
modulations in the responses to the more natural sound
ensembles. The differences in information/spike for the
different sound ensembles in the different stations were
not very large, however.

In contrast with other studies reviewed here, Lu and
Wang (2004) measured entropies, rather than MI, of spike
trains in the auditory cortex of awake marmosets. The pur-
pose was to check the presence of specific spike patterns
that are not locked to the stimulus and therefore won’t
be apparent in the peri-stimulus time histograms. They
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analyzed the responses to periodic sounds, for which they
demonstrated the presence of two populations, one that
locked to specific periods and the second that responded
by graded firing rates to different periods but did not show
any locking. Lu and Wang were interested in checking
whether there are repeating spike patterns even in the
responses of the non-locking neurons. Their approach
was to jitter spike timing to varying degree and look for
increase in the entropy of the spike trains. They could dem-
onstrate such increases for the neurons that locked to peri-
odic sounds, but not to the non-locking neurons,
concluding that there are no special firing patterns in the
responses of the non-locking neurons.

Middlebrooks and coworkers used decoders, quantified
by their transmitted information, to study the coding of
space in auditory cortex of anesthetized and awake cats.
The use of these methods was initially due to the fact that
neurons in auditory cortex of cats tend to respond to a
stimuli from large extent of space — a hemifield or even
omnidirectionally — but nevertheless their firing patterns
may depend on space. Thus, standard measures of spatial
selectivity, such as best direction and angular width of
the receptive fields, do not make much sense. Middle-
brooks called these neurons ‘panoramic’ (Middlebrooks
et al., 1994), and eventually used the transmitted informa-
tion of a decoder to quantify their coding capabilities.
Later, MI was used to study information-bearing elements
in the responses as a way of addressing issues of the neural
code (Furukawa and Middlebrooks, 2002). Currently,
these studies form the best and most extensive study of a
single coding task in different auditory cortex fields (Stec-
ker et al., 2005).

To conclude this list, Nelken et al. (2005) used the infor-
mation processing inequality explicitly as a tool to find can-
didates for the neural code. They estimated the full
information in the spike trains with a number of different
computational approach, concluding that the direct
method, with a carefully balancing of bias and information
loss, is the best. They then demonstrated that two reduced
features, spike counts and mean burst latency, do not reach
the full information. However, jointly these two variables
extracted information levels that were highly similar to
the full information. Thus, the two variables jointly may
serve as the neural code.

4. Concluding remarks

Information-theoretic tools can serve to study coding
problems beyond those surveyed above. Although most
studies of the auditory system currently analyze one neuron
at a time, some studies of coding interactions between neu-
rons have already appeared (e.g. Chechik et al., 2006; dem-
onstrating high degree of independence between pairs of
auditory cortex neurons). The issue of coding interactions
was explicitly kept out of this review, but with the increase
in the availability of simultaneous recordings it will become
as important as that of stimulus coding.

So, is it worthwhile to use information-theoretic mea-
sures? The answer is an emphatic yes, given a number of
cautionary remarks.

First, the experimental question should justify the use of
the MI. In all cases reviewed above, it was difficult to even
pose the experimental question in terms of classical mea-
sures. Although this is possible, by using measures of reli-
ability and signal-to-noise ratios, the optimality properties
of the MI play an important role in these studies. On the
other hand, the demonstration of significant stimulus—
response associations can usually be done using simpler
methods than the MI.

Second, the experiment should be designed with the use
of the MI in mind. Thus, using MI entails collecting more
data than is usually necessary for estimating just mean
rates. It is a bad idea to use MI on sparse data, hoping that
its use would miraculously uncover associations that were
missed before. As a rough guideline, when analyzing the
data, the number of bins in the joint distribution matrix
should be smaller than the total number of stimulus
presentations.

Finally, the method used to estimate the MI should be
carefully evaluated, preferably on surrogate data for which
the MI is known and which is as similar as possible to the
real data for which the MI is estimated. This step is impor-
tant because of the difficulties in estimating MI. Although
some major advances in our understanding of MI estima-
tion have been made (e.g. Paninski, 2003), many methods
that are being used in the literature do not fit the better-
understood frameworks.
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