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Abstract

In the segmentation of natural images, most algorithms
rely on the concept of occlusion. Intuitively, if all of the pix-
els in a region are the same color, they are probably part
of the same object, which is blocking all of the light from
the objects behind it. In x-ray images, however, this as-
sumption is violated. In this paper, we introduce SATISφ,
a method for separating objects in a set of x-ray images
with the assumption of additivity in log space, where the
log-attenuation at a pixel is the sum of the log attenuations
of all objects that the corresponding x-ray passes through.
Our method leverages multiple projection views of the same
scene from slightly different angles to produce an accurate
estimate of the extent and attenuation properties of objects
in the scene. We demonstrate our algorithm on a set of col-
lected x-ray scans, showing that our SATISφ algorithm out-
performs a standard image segmentation approach.

1. Introduction
X-ray imaging is an important technology in many

fields, from non-intrusive inspection of delicate objects, to
weapons detection at security checkpoints [1]. Analysis of
x-ray images in these applications shares many challenges
with machine vision: we are interested in identifying “ob-
jects” and understanding their relations. For example, a se-
curity guard may search for an illegal substance in a sus-
pected bag, or an archaeologist may inspect the content of
an ancient artifact.

One particularly important application for x-ray scene
analysis is in the field of automatic threat detection. Here,
the aim is to build systems that can detect explosives con-
cealed in bags using x-ray scans. Such systems have the
potential to improve security checkpoints like the ones we
meet at airports, but the general problem of scene under-
standing is clearly very hard. Fortunately, security screen-
ing outside the field of aviation, including offices, amus-
ment parks and public transportation venues, involves bags
that are far less cluttered than airplane carry-on bags, of-
ten containing only a handful of items. In these venues the
main threats are massive bulks of explosives, hence dete-

(a)

(b)

Figure 1. (a) An example baggage screening x-ray image. The
object in the green box is partially obscured by the metal in the
suitcase. The goal of this paper is to “see-through” the obscuring
metal. (b) Synthetic example of the additivity of objects in trans-
mission images.

cion focuses on estimating the chemical properties and
the mass of each object, rather than its detailed shape.
As a result, developing a system that can separate a small
number of overlapping objects has a huge potential to sig-
nificantly improve automatic threat detection.

Most existing x-ray image analysis methods (e.g. [1]) use
algorithms that were developed for visible spectrum images.
These methods assume that objects are opaque and occlude
other objects. While in the visible spectrum, light from ob-
jects behind the occluder are physically blocked from reach-
ing the sensor, x-ray photons penetrate most materials. As
a result, all objects along an x-ray path attenuate the x-
ray, contributing to the final measured intensity. This is of
course what allows x-ray imaging to “see-through” objects.

This transparency property has a fundamental effect on
how x-ray images should be modeled and analyzed. Most
importantly, unlike reflection images in which each pixel
corresponds to a single object, pixels in transmission images
reflect the attenuation of multiple objects. In the baggage
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x-ray of Figure 1(a), for example, the object in the green
box is partially covered by the metal bar of of the suitcase.
However, because the metal bar does not fully attenuate the
x-rays, part of the attenuation in these pixels is due to the
underlying item. In theory, we should be able to “subtract
out” the metal bar, leaving a clear view of the object.

Our ultimate goal is to classify the objects in the bag.
While many object classification works use parts-based
models to recognize instances from a learned class [7], our
objects of interest generally have neither the part structure,
coherent shape, nor localized appearance that would be a
good fit for these approaches. Instead, we consider a region
based approach. Indeed, for many image analysis tasks,
grouping pixels into regions for later classification is an ef-
fective techinque [4]. Standard approaches decompose an
image into disjoint regions (segments) that should roughly
correspond to objects. However, pixels in an x-ray image
should not be assigned to a single region. For example, the
pixels in the metal bar of of Figure 1(a) cannot be exclu-
sively assigned to the suitcase or to the underlying object.

In this paper we develop a method to separate transmis-
sion images into potentially overlapping regions. The term
separation distinguishes our output from a traditional seg-
mentation, where each pixel belongs to a single region. The
problem of decomposing a single image (sum of attenua-
tions) into objects is ill-posed since it has more degrees
of freedom than constraints. To address this problem we
use information from multiple images to disambiguate the
summed attenuation values (see Figure 1(b)). Computer-
ized tomography (CT) takes this to the extreme, using thou-
sands of scans to collect enough constraints to allow for a
full 3D reconstruction. However, CT reconstruction formu-
lation is highly sensitive to non-rigid or moving objects.

Here we take a different approach, and reduce the num-
ber of unknown variables. Our approach avoids the hard
problem of fully reconstructing the image into a set of 3D
objects, and focuses on identifying the rough shape and ma-
terial of each object, performing well even with slightly de-
formable or moving objects. Our method is called Small
Angle Transmission Image Separation by φ (SATISφ), and
uses probabilistic priors and a reduced parameter space
to make this problem tractable. This paper focuses on
the problem of identifying the composition of a scan in
terms of the materials it contains. To our knowledge
this is the first attempt to address the extremely challeng-
ing problem of separating multiple overlapping and possi-
bly deformable objects.

2. Related Work
In the x-ray community, the most common way of disam-

biguating objects is through CT reconstruction [13]. Such
a reconstruction is typically obtained through the filtered
back-projection algorithm [13] or algebraic reconstruction

(ART) [3]. These approaches generally assume a large
number of projection views are available, and that the scene
being imaged is rigid during image acquisition. With a lim-
ited number of views, ART has been used somewhat suc-
cessfully in previous work [3]. Unfortunately, ART breaks
when objects can move between views, and is therefore not
suitable for scans with liquids or moving parts.

In visible-spectrum images, structure from motion [5]
and stereo vision [11] algorithms reconstruct the 3D scene
using image data. These methods rely on occlusion, and
will fail spectacularly for transmission images. A small
number of these works [24, 12, 21] discuss 3D reconstruc-
tion in the presence of transparent objects. These works
generally assume rigid objects and known camera geome-
try, and often rely on the geometry of light reflection or on
active sensing methods, which are not applicable here.

Our goal of identifying “objects” is common in both the
x-ray and visible-spectrum computer vision community. In-
deed, our work is very closely tied to generic image seg-
mentation. Typically, segmentation is the first step in a
long processing chain [6]. Because each pixel has noise,
grouping pixels allows for more robust processing. These
segmentation algorithms have been used for object detec-
tion [8], scene categorization [20], content-based image re-
trieval [4], and other applications.

In the transparent object regime, [16] learns to recog-
nize transparent objects based on texture, and [10] extracts
the shape of transparent objects by projecting a light pattern
onto the surface. Our work borrows many of the ideas from
these application domains. [14] has used priors from natu-
ral images to separate an additive mixture of photos. Their
approach is reported to be very sensitive to the presence of
textures in the images (Fig5 therein). Finally, [2] and [23]
both consider video sequences with transparent objects in-
cluding reflections. Like us, they model the observed image
as a sum of “layers.” Both approaches use video sequences
to resolve the layer ambiguity with an assumption of affine
transformations between frames for each layer. In our case,
however, we have much less data (only a few views), and
the motion involves out-of-plane rotations, which may not
be well-modeled by affine transformations.

3. Dual-Energy Projection X-ray Imaging
This section provides a short background on x-ray sens-

ing, with a focus on dual-energy x-ray. This is the leading
technique in security applications like explosive and drug
detection. Our objective is to identify the material com-
position of the obejcts that are present in an x-ray image,
or, more formally, the set of effective atomic numbers Zo,
and masses Mo for each object o. Figure 2(a) illustrates the
setup for acquiring this data, including two views at small
angle offsets from each other.

Projection x-ray imaging operates on the principle of in-
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tensity attenuation. An x-ray source emits a beam of x-ray
photons with intensity I0. As the photons pass through an
object, they have a fixed probability per unit of length to
interact with the material1. As a result, the intensity of the
beam decays exponentially with a coefficient α(Z,E) that
depends on Z, the atomic number of the object, and E, the
energy of the x-ray photons [15]. The intensity detected at
the sensor is therefore

I(E) = I0e
−α(Z,E)ρt, (1)

where ρ is the density of the material, and t is the thickness
of material that the ray passes through (in units of length).
2. The values of the physical constants α(Z,E) were mea-
sured empirically for all relevant atomic numbers Z and en-
ergies E and are easily available [15]. However, our goal
here is to extract the value of Z from a set of measured I
(and the known parameters E and I0 which are determined
by the x-ray machine).

The value of Z cannot be isolated from a single measure
of I(E), since the exponent in Eq. (1) is a product of the
α, ρ and t terms. To address this, dual-energy detectors
are designed to measure separately the attenuation at two
different energies E1 and E0. This allows us to cancel out
the effect of ρt by considering the dual-energy ratio of logs

R =
log I(E0)/I0
log I(E1)/I0

=
α(Z,E0)
α(Z,E1)

, (2)

where ρ and t cancel out because they do not depend on the
x-ray energy. Using Eq. (2), we can solve for Z given the
measured dual energy ratio R, and then backsolve for the
product ρt. In the case of n objects, each object contributes
multiplicatively to the final attenuation. The resulting log-
attenuation is the sum of log-attenuations across objects

I = I0
∏

i

e−α(Zi,E)ρiti , (3)

log I(E)/I0 =
n∑

i

α(Zo, E)ρoto (4)

This additivity of the log-attenuations of individual objects
allows us to develop efficient optimization algorithms for
finding φi and features prominently in our SATISφ model.

4. The SATISφ Model

Let O = {o1, . . . , on} be a set of objects that is scanned
at views v1, .., vV . The log attenuation value at a pixel p of

1Assuming a single homogeneous object, and ignoring higher order
effects (beam hardening)

2For non-homogeneous materials, the atomic number Z is replaced
with the effective atomic number, Zeff .

(a)

(b)
Figure 2. (a) Schematic representation of the acquisition of two
views of a Small Angle Transmission Image (SATI) set. (b) Illus-
tration of the composition variables c, indicating which objects a
particular ray passes through, and the log-attenuation parameters
φ, indicating the log-attenuation of each object in the scene.

view v is the sum of log-attenuation values over all objects
that overlap p

`v,p =
n∑

o=1

cv,p,oφv,p,o + ξ, (5)

cv,p,o =
{

1 if o overlaps p in v;
0 otherwise.

φp,v,o = α(Zo, E)ρoto

where cv,p,o are the composition variables operating as “in-
dicator” variable that select those objects that overlap with
pixel p in view v. φv,p,o measures the log-attenuation at
the pixel p of view v that is attributed to the object o (see
Figure 2(b)). Added to this sum is ξ, a normally distributed
noise vector ξ ∼ N (0, σ2

` I) that reflects the imprecision in
our model and in the measured data.

It is well known in the computer vision literature that
grouping pixels into small regions (superpixels) yields more
robust processing. We therefore applied a preprocessing
step that aggregated pixels using the graph-based segmen-
tation algorithm of [6]. In all the discussion below, we treat
c as a vector over superpixels.

The problem of inferring the individual attenuations
{φv,p,o} from a single scan measurement ` is clearly ill-
posed, since there are more degrees of freedom than con-
straints. The standard solution is to collect thousands of
scans of the objects, thus providing more constraints than
degrees of freedom. In many cases however, the human
visual system can separate a transmission image into ob-
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jects even with a small number of views. Figure 1(b) shows
a motivating example. On the left are two images of the
same set of objects. Assuming the visible-spectrum im-
age model, the natural segmentation of the top image is
shown by the top figure on the right. There are four re-
gions, two rounded squares and two semicircles. However,
if we assume that these are transmission images, the scene
is most naturally represented by a full circle moving across
two rounded squares. This decomposition is shown in the
bottom right figure. Our goal is to develop a method for
extracting this more intuitive decomposition using a small
number of views, and a small number of real life objects.

Formulation as a Markov Random Field

We now reformulate the problem of object separation as
a problem of probabilistic inference. We begin by reformu-
lating Eq. (5) as a distribution

`v,p ∼ N (〈cv,p, φv,p〉, σ2
` ), (6)

where cv,p ≡ [cv,p,1, . . . , cv,p,n] and φv,p ≡
[φv,p,1, . . . , φv,p,n] are vectors containing the indica-
tor and log-attenuation values for all objects. Clearly, there
are many values of φv,p and cv,p that could together yield a
maximal `v,p, and additional constraints are needed to find
a solution that would corresponds well to real objects.

We therefore introduce priors that favor decompositions
that are more likely to occur. These priors, together with
the probabilities for the observed attenuations variables `
induce a Markov random field (MRF) over the composition
variables c, with the log-attenuation values φ as real-valued
“parameters.” The data terms become the potentials

ψ`(`v,p, cv,p;φv,p) = N (`v,p; cT
v,pφv,p, σ

2
` ). (7)

We use priors in two forms: parameter equality con-
straints (parameter sharing), and MRF potentials over the
composition variables. Our priors capture three properties
of real scanned objects:

1. Object parts are homogeneous. We assume that
objects are made of parts that have homogeneous material
composition. A pair of scissors, for example, has a plastic
handle and metal blades. In our model, we will treat each of
these parts as separate “objects.” Formally, this assumption
implies that φv,p,o = φv,o for all pixels that overlap the
object o, allowing us to share these parameters.

2. Objects are compact. We assume that objects are
continuous in space and as a result, if a pixel p overlaps an
object, it is likely that all its neighbor pixels also overlap
the object. This imposes a soft smoothness constraint on
our objects, introducing the smoothness potential:

ψS(cv,p,o, cv,q,o) =
{

1 if cv,p,o = cv,q,o,
γ if cv,p,o 6= cv,q,o

(8)

for all neighboring pixels p, q. In this potential, γ < 1 is a
penalty suffered when the model has two neighboring pixels
with different composition values.

3. Object attenuation changes smoothly across views.
We assume that the given scans of the scene differ by only a
small rotation angle θ ≈ 0, Figure 2(a). As a result, the
effective thickness of each object varies as cos(θ) ≈ 1,
yielding approximately equal attenuation for each view,
φv,o = φo, ∀v. With this approximation, we have reduced
the number of log-attenuation parameters down to the num-
ber of objects n.

Furthermore, since a small change in the scanning an-
gle θ changes only slightly the silhouette of the object (and
therefore the area in pixels), the area of an object should re-
main close to constant across views. We therefore introduce
area preservation potentials:

ψA(cv,o, cw,o) = exp
(−(aT

v cv,o − aT
wcw,o)2/2σ2

A

)
,
(9)

where v andw are two views of the scene, and av is a vector
containing the area (measured in raw pixels) of each super-
pixel in view v.

Combining these three types of potentials together, we
obtain the SATISφ MRF probability function:

Pr(c;φ) =
1
Z

∏
v,p

ψ`(`v,p, cv,p;φv,p) (10)

∏

v,o,(p,q)

ψS(cv,p,o, cv,q,o)
∏

v,w,o

ψA(cv,o, cw,o)

where Z is a normalizing constant, known as the partition
function.

This model has three image-independent parameters: σ2
`

– the noise variance in the image reconstruction potentials,
γ – the smoothness penalty, and σ2

A – the variance of ob-
jects area across views. These parameters can be learned
from data, but the scene-specific log-attenuation parameters
φ must be estimated at test time for each image. This dis-
tribution trades off an assignment that faithfully represents
the observed images, but also respects our smoothness and
area preservation constraints.

To tune the scene-independent hyper parameters θ ={
σ2

` , γ, σ
2
A

}
, we used a small “training set” of scenes to

learn their values in a supervised way. First, a human an-
notator outlined the objects in the scene. Then we extracted
the ground-truth composition variables ctrue, and the ML
estimates of φtrue in each scene. Ideally, we would learn
the maximum likelihood (ML) set of parameters θ given the
assignment φtrue. However, since MRF learning is gener-
ally intractable [9], we use the simpler piecewise training
scheme [22] where the parameters are estimated indepen-
dently for each potential. This is equivalent to optimizing a
lower bound to the partition function.

4
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(a) (b)
Figure 3. (a) An example showing where global moves, such as object splits, might be useful. (b) An example dataset used in this paper
(top row), with the docomposition based on the segmentation of [6] (middle row), and the decomposition using our SATISφ method.
Objects are shown with the atomic number Z and mass M in parenthesis (Z,M). SATISφ deduces both that Object #3 should have no hole,
and that Object #2 is actually lighter because some of the attenuation is attributable to Object #3.

5. Optimization of the SATISφ Decomposition

Given a dataset of SAT images for a scene, our goal is
to find the maximum a-posteriori (MAP) decomposition ac-
cording to our probabilistic model:

(c∗, φ∗) = argmaxc,φPr(c;φ)

= argminc,φ − log(Pr(c;φ))

= argminc,φ

∑
v,p

− log [ψ`(`v,p, cv,p;φv,p)]

+
∑

v,o,(p,q)

− log [ψS(cv,p,o, cv,q,o)]

+
∑
v,w,o

− log [ψA(cv,o, cw,o)] . (11)

We maximize this likelihood this with an algorithm in the
spirit of Hard-EM. The algorithm alternates between find-
ing a hard assignment to the hidden composition variables
c, and finding the maximum likelihood estimate of φ given
c. The objective is guaranteed to decrease at each step.
However, we discovered that the likelihood manifold in this
problem has a large number of local minima. We therefore
prefer a view of the algorithm as a coordinate descent algo-
rithm, and added a “global step” that modifies jointly both
c and φ, to better escape local minima. We now describe
these steps in more detail.

Initialization. We initialize the values of φ by finding
homogeneous regions in a single image through a coarse
segmentation. The parameters of this were tuned on a dif-
ferent dataset to produce segments that corresponded best
to underlying objects.

Because the problem is non-convex, the initialization is
likely to have a large effect on convergence to local minima.
We therefore tested four initialization strategies, all fully-
unsupervised: a) The segmentation of [6] worked best, b)
The algorithm of Ren and Malik [19], c) setting φ based on
observed attenuations, and d) a kmeans segmentation.

Iterations. After initialization, we iterate through three
steps: (1) optimization of the composition variables c with
a fixed φ, (2) optimization of the log-attenuation vector φ
with a fixed c, and (3) move-based global optimization.

1. Optimization of c. Given φ, Eq. (11) can be rewritten
as a quadratic problem in cv,p,o.

min
c

w1‖Pc− `‖2 + w2‖Sc‖2 + w3‖DAc‖2

s.t. cv,p,o ∈ {0, 1} , (12)

where c is a vector that contains all elements of cv,p,o, P is a
matrix with rows pT

i such that pT
i c = cT

v,pφ = `v,p+ξ (this
term corresponds to ψ`), S is a matrix that computes the dif-
ference in cp and cq for each neighbor pair (this term cor-
responds to ψS), and DA is a matrix that computes the ob-
jects’ area differences across views (this term corresponds
to ψA). The weights (w1, w2, w3) are computed from the
scene-independent parameters.

This problem is an integer program with a convex
(quadratic) objective. We find an approximate solution to
this problem with an interative relax-and-round procedure.
In the relaxation phase, we use a convex relaxation approach
that was shown to be extremely effective in MAP inference
in MRFs [18]. We relax the integer constraints by replac-
ing the binary variables c with c̃ ∈ IR, and the constraints
in Eq. (12) with: 0 ≤ c̃i ≤ 1. The resulting problem is a

5
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Quadratic Program (QP) that can be solved efficiently.
In the rounding phase, we look at the real solution c̃ and

select the largest values for each “object.” For each such
value that is above some threshold R (we use R = 0.5 in
experiments below), we set it’s value to 1, and “freeze” the
optimization variable. We then iterate, re-solving a new QP
with a subset of the values frozen to 1. At each iteration,
more composition variables (c’s) are turned on. When no
more variable can be set to 1, we round the remaining values
using the procedure of [18].

2. Optimization of φ. Given c, the objective Eq. (11)
depends on φ only through a squared-error term for each
`. Minimizing the cost with respect to φ is a linear least-
squares problem.

3. Joint Optimization of (c, φ). To reduce the problem
of local minima, we added four types of “global moves”
that change both c and φ simultaneously: merges, removals,
object splits and component splits. Figure 3(a), illustrates
object splits using a local minimum case where no isolated
change to c or φ improves the objective. Splitting object
#1 (with φ1 = 2) so that its pixels belong both to object #2
(with φ2 = 1) and a new object, with φ3 = 1, improves the
objective by yielding a smoother object #2.

Greedy completion. Once iterating has converged, we
finish with a greedy descent stage which optimizes the com-
position variables cv,p in sequence. We sweep through each
superpixel p in each view v, and enumerate all the possible
values for the vector cv,p (2n assignments for n objects),
plus the corresponding optimal φ vector, and select the set-
ting with the lowest cost. This step serves to fix errors in-
troduced by rounding the composition variables.

6. Experimental Results
We tested the SATISφ method on a collection of 23

datasets of SAT image sets, each collected with a dual-
energy x-ray Astrophysics machine. We selected 3 of these
datasets to serve as training data, and used them to esti-
mated the scene-independent parameters: σ2

` = 0.29, γ =
0.32, σ2

A = 100.2.
For comparison with a baseline method, we segmented

the image using the method of [6], with no further process-
ing. This is a state-of-the-art approach for extracting object-
parts in a natural image. Figure 3(b, 2nd row) shows an
example baseline decomposition. To the best of our knowl-
edge, there is no other competing strategy in the literature.

We ran the SATISφ decomposition algorithm on each of
the other 20 datasets. Figure 5(a) shows a decomposition
obtained across all views of a sample test instance, and Fig-
ure 5(b) and (c) show the decomposition for a single view.
In all three instances, the objects appear to be large and to
generally correspond to the objects present in the scene.

To understand the difference between the operation of
SATISφ and the baseline segmentation, compare the de-

compositions in Figure 3(b). SATISφ correctly identifies
that the vertical orange object should form a continuous
rectangle, whereas the baseline decomposition has a hole in
the object. Since baseline attributes the entire attenuation of
the circular segment to object #2, the atomic number is esti-
mated as 9.7 (nearly organic). SATISφ correctly identifies
that the attenuation in these pixels is due to both objects #2
and #3, and therefore the circular object has atomic number
of 11.7, corresponding to light metals.

While obtaining the correct visual decomposition is im-
portant in itself, the more important goal of this analysis is
to determine the material properties of the objects present.
As described in Section 3, for each object, we can convert
from log-attenuation values into atomic number Z and mass
approximation M . These properties will be used for further
analysis. As a post-processing step to make this compar-
ison more informative, we remove extracted objects with
mass smaller than 2.5 per view. Because the baseline sege-
mentation often produces tiny segments, this allows us to
only focus on objects of reasonable size.

For each scan in the test set, we used hand-annotation of
the objects to compute the “ideal” material mass and atomic
number that can be obtained from this data. Each object
produces a single point in MZ space (mass – atomic number
space ) where the y-coordinate corresponds to the atomic
number, and the x-coordinate corresponds to the mass at-
tenuation of the object. The quality of a decomposition can
be quantitatively evaluated by measuring how “close” the
extracted objects are to the true objects in MZ space.

Figure 5(d,e,f) plot the extracted objects from the two
methods agains the groundtruth objects. These plots cor-
respond to the decompositions of data sets (a),(b), and (c),
and plot the hand-annotated objects, the objects obtained by
the SATISφ method and the segmentation baseline objects
in MZ space. In the example of Figure 5(a), the two metal
objects (2 and 3) are nearly perfectly extracted, while the or-
ganic (orange) rectangle is split between three objects (1, 4,
and 5). The graph of (d) indicates this, by showing the two
blue stars that match the red stars in the high Z region and
the three organic blue stars that together add up to the mass
of the single organic red star in the low Z region. In general,
the SATISφ objects tend to lie closer to the groundtruth ob-
jects than the baseline ones do.

In Table 4 we quantify these results for the entire dataset.
For each hand-annotated object, we match it to the closest
extracted object. If the Euclidean distance (in MZ space)
is less than Tmiss, we accept the match. Column 3 pro-
vides the number of matches for both methods for a range
of thresholds. Once we have obtained a match, we are
also interested in how accurate it is. To investigate this,
we find all the “common” matches (true objects matched
by SATISφ and the baseline), and show the number of
such matches in column 4. Columns 5, 6, and 7 of Table 4
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RMS RMS RMS
Method T Matches Common mass-Z mass Z Misses Extra
SATISφ 0.10 29 16 0.0541 0.0420 0.0340 37 36
Baseline 0.10 26 16 0.0701 0.0561 0.0420 40 64
SATISφ 0.05 14 1 0.0025 0.0015 0.0020 52 51
Baseline 0.05 10 1 0.0500 0.0500 0.0020 56 80
SATISφ 0.02 6 0 N/A N/A N/A 60 59
Baseline 0.02 2 0 N/A N/A N/A 64 88

Noise Matches
0 29

(a) (b)
Figure 4. Quantitative evaluation of the match between extract objects and hand-annotated object. We show the root-mean-squared (RMS)
distances for matched objects in MZ space (mass – atomic number). We also show the number of matches, misses, and extra objects
extracted, for three different settings of matching threshold Tmiss.

show the root-mean-squared (RMS) distance in MZ space,
mass alone, and Z alone between the matching extracted
and hand-annotated objects for the common matches. For
each setting, the SATISφ objects have better RMS distances
to the hand-annotated objects than the baseline.

Annotated objects that produce no match are “misses,”
and unmatched extracted objects are “extras.” Our baseline
tends to produce more objects than SATISφ, leading to both
more misses (col. 8), and more extras (col. 9). This anal-
ysis shows that even with more “guesses” for objects, the
baseline still cannot do as well as SATISφ.

In our final experiment, we explored the robustness of
our method to imaging noise. Such noise may be produced
by either errors in the data acquisition setup, or by back-
ground clutter such as clothing, which is less dense and
more heterogeneous than the objects we consider in our
data. For each of our 20 test datasets, we add white noise
with standard deviation σ2

N to both the log-high and log-
low image channels. To evaluate the stability, we look at
the number of matches at each noise level. Figure ?? shows
the results. ***GAH: Write something smart about these
results here***

The primary error mode appears to be oversplitting of
true objects across layers. This is apparent in the example
of Figure 5(a), where the rectangular organic object is split
into extracted objects 1, 4, and 5, and in Figure 5(b), where
the electronic box is incorrectly split between objects 1 and
2. Despite this, we still achieve much larger and more real-
istic object approximations than the baseline.

7. Discussion
In this paper, we have shown that transmission images

can be decomposed into the objects that make up the image
“layers.”. The SATISφ model, successfully disambiguates
the objects with a small number of views of the same scene.
We have described an efficient search method for finding a
high-scoring decomposition, and have showed the method’s
effectiveness on real x-ray scans.

Standard x-ray processing approaches (CT) aim to pro-

vide exact 3D reconstruction, and are limited to rigid and
stationary objects. The probabilistic approach taken here
allows us to extract the crucial information: the chemical
composition of the objects. It uses only a handful of scans
and is robust against objects that are slightly deformable. In
fact, SATISφ actually benefits from objects that move rel-
ative to each other, in the same way that humans do when
asked to interpret a scene with transparent objects [17].

In addition, the probabilistic approach taken here allows
to introduce priors that penalize solutions that are physically
unrealistic. We tested simple smoothness and area preser-
vation priors, but more complex priors may be introduced
to improve the accuracy of the decomposition. Specifi-
cally, as in the work of [2], we can identify object junc-
tions (edges or corners) to provide additional information
about object correspondences across views. In addition, the
SATISφ smoothness potential treats each pair of neighbors
equally. Using some information from the image, such as
the presence or absence of a strong image edge, is likely to
improve the precision.

The SATISφ model was designed to handle separating
objects in x-ray images, but the underlying ideas could ap-
ply to more general problems. For instance, similar tech-
niques could be taken for segmenting semi-transparent ob-
jects [16] and reflections [14].
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(a)

(b) (c)

(d) (e) (f)

Figure 5. (a) Reconstructions obtained by optimization of the SATISφ objective. The left column shows the original x-ray scans of
a scene. The second column shows the SATISφ reconstruction , and the remaining columns correspond to individual objects in the
SATISφ decomposition. Objects are colored to emphasize the material of the scanned objects, and are labeled with the atomic number
Z and mass M in parenthesis (Z,M). (b,c) Reconstructions for two other scenes in the test set, showing the original images (top row), and
the reconstruction and decomposed objects for a single view (bottom row). To the left of (b), we show a visible spectrum photograph of
the contents of the bag. (d,e,f) Plots of the the objects discovered in the decompositions of (a),(b), and (c) in MZ (mass – atomic number)
space.
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