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Abstract

Research in humans and primates shows that the devel-
opmental course of the brain involves synaptic over-growth
followed by marked selective pruning. Previous explanations
have suggested that this intriguing, seemingly wasteful, phe-
nomenon is utilized to remove ’erroneous’ synapses. We prove
that this interpretation is wrong if synapses are Hebbian. Un-
der limited metabolic energy resources restricting the amount
and strength of synapses, we show that memory performance
is maximized if synapses are first overgrown and then pruned
following optimal ”minimal-value” deletion. This optimal
strategy leads to interesting insights concerning childhood

amnesia.

*To whom correspondence should be addressed.



1 Introduction

One of the fundamental phenomena in brain development is the reduction in the amount of
synapses that occurs between early childhood and puberty. In recent years, many studies
have investigated the temporal course of changes in synaptic density in primates, revealing
the following picture. Beginning at early stages of the fetal development, synaptic density
rises at a constant rate, until a peak level is attained (at 2-3 years of age in humans). Then,
after a relatively short period of stable synaptic density (until the age of 5 in humans),
an elimination process begins: synapses are being constantly removed, yielding a marked
decrease in synaptic density. This process proceeds until puberty, when synaptic density
stabilizes at adult levels which are maintained until old age. The peak level of synaptic
density in childhood is 50% — 100% higher than adult levels, depending on the brain region.
The phenomenon of synaptic over-growth and pruning was found in humans [Huttenlocher,
1979, Huttenlocher et al., 1982, Huttenlocher and Courten, 1987], as well as in other mam-
mals such as monkeys [Eckenhoff and Rakic, 1991, Bourgeois and Rakic, 1993, Bourgeois,
1993, Rakic et al., 1994], cats [Innocenti, 1995] and rats [J.Takacs and Hamori, 1994]. It
was observed throughout widespread brain regions including cortical areas (visual [Bour-
geois and Rakic, 1993, Huttenlocher et al., 1982], motor and associative [Huttenlocher,
1979]), the cerebellum [J.Takacs and Hamori, 1994], projection fibers between hemispheres
[Innocenti, 1995] and the dentate gyrus [Eckenhoff and Rakic, 1991]. The time scale of
synaptic elimination was found to vary between different cortical areas, coarsely following a
dorsal to frontal order [Rakic et al., 1994]. The changes in synaptic density are not a result
of changes in total brain volume, but reflect true synaptic elimination [Rakic et al., 1994].
In some cases, synaptic elimination was shown to be correlated with experience-dependent
activity [Stryker, 1986, Roe et al., 1990].

What advantage could such a seemingly wasteful developmental strategy offer? Some
researchers have treated the phenomenon as an inevitable result of synaptic maturation,
lacking any computational significance. Others have hypothesized that synapses which
are strengthened at an early stage might be later revealed as harmful to overall memory
function, when additional memories are stored. Thus, they claimed, synaptic elimination
may reduce the interference between memories, and yield better overall performance [Wolff
et al., 1995].

This paper shows that in associative memory networks models these previous explana-
tions do not hold, and puts forward a different explanation. Our proposal is based on the
assumption that synapses are a costly resource whose efficient utilization is a major opti-

mization goal guiding brain development. This assumption is motivated by the observation



that the changes in synaptic density along brain development are highly correlated to the
temporal course of changes in energy consumption [Roland, 1993], and by the fact that the
brain consumes a large fraction of total energy consumption of the resting adult [Roland,
1993]. By analyzing the network’s performance under various synaptic constraints such as
limited number of synapses or limited total synaptic strength, we show that if synapses
are properly pruned, the performance decrease due to synaptic deletion is small compared
to the energy saving. Deriving optimal synaptic pruning strategies, we show that efficient
memory storage in the brain requires a specific learning process characterized by initial
synaptic over-growth followed by judicious synaptic pruning.

The next section describes the models studied and our analytical results, which are
verified numerically in section 3. Section 4 discusses the possible benefits of efficient synaptic

elimination, and its implications to the phenomenon of childhood amnesia.

2 Analytical Results

In order to investigate synaptic elimination, we address the more general question of optimal
modification of a Hebbian memory matrix. Given previously learned Hebbian synapses we
apply a function which changes the synaptic values, and investigate the effect of such a
modification function. First, we analyze the way the memory performance depends on a
general synaptic modification function. Then, we proceed to derive optimal modification
functions under different constraints. Finally, we calculate the dependency of performance

on the deletion levels.

2.1 The Models

We investigate synaptic modification in two Hebbian models. The first model is a variant
of the canonical Hopfield model. M memories are stored in a N-neuron network forming
approximate fixed points of the network dynamics. The initial synaptic efficacy W;; between

the jth (pre-synaptic) neuron and the ith (post-synaptic) neuron is
1 M
Wij = D g, 1<i#j<N; Wi=0 , 1

where {5ﬂ}ﬁ4:1 are £1 binary patterns representing the stored memories. The actual synap-
tic efficacy J;; is

Jij=g(Wij) 1<i#j<N; J;=0 , (2)

where ¢ is a general modification function over the Hebbian weights, such that g(z) has

finite moment if z is normally distributed. The updating rule for the state X! of the ith



neuron at time ¢ is

Xt =0(f) Z Jii X5 (3)

where f; is the neuron’s input field, and 6 is the function 6(f) = sign(f). The overlap

m* (or similarity) between the network’s activity pattern X and the memory & is m# =
N -

The second model is a variant of the low activity biologically-motivated model described

by [Tsodyks and Feigel’man, 1988], in which synaptic efficacies are described by

1 b wo_
Jij—g(Wij)—g( (- )\/—Z & —p) 5 p)) . (4)

where & are {0, 1} memory patterns with coding level p (fraction of firing neurons), and g

is a synaptic modification function. The updating rule is similar to Eq.(3),

Xt =06(f), =) Ji;XI-T, (5)
J

where § now denotes the step function 8(f) = %ﬁ, and T is the neuronal threshold,
set to its optimal value (see Eq. (26) in the appendix). The overlap m* in this model is

defined by m* = m Z;Vﬂ(f; -p)X
2.2 Pruning Does Not Improve Performance

To evaluate the impact of synaptic pruning on the network’s retrieval performance, we study
its effect on the signal to noise ratio (S/N) of the neuron’s input field in the modified Hopfield
model (Egs. 2,3). The S/N is known to be the primary determinant of retrieval capacity
(ignoring higher order correlations in the neurons input fields) [Meilijson and Ruppin, 1996],
and is calculated by analyzing the moments of the neuron’s field. The network is started at
a state X with overlap m* with a specific memory &*; the overlap with other memories is
assumed to be negligible. Therefore W;; — 656—]\5 is the sum of M — 1 independent variables
with zero expectation and standard variation /M and is distributed N(0,1). Denoting

oz) = ﬁ , we use the fact that ¢'(z) = —z¢(z) and write

ElfilEf] = NE[g(Wy)X;) = Nm"E [g(Wy)¢)] = (6)
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where z is a random variable with standard normal distribution. The variance of the

field is similarly calculated to be
V(filEl) = NE [g%(2)] - (7)
Hence the signal to noise ratio

gy = Bl =+1-ElflE=-11 _ [N . Flzg(=)] @

V [filéi] M Elg*(2)]

As z has standard normal distribution, F(z?)

= V(z) = 1. Assuming ¢(z) is anti-symmetric
or at least has zero expectation) we can use g(z)| = g“(z)| and write
1 h i V E[g? d wri

smzﬁwwww% (9)

where @ = M/N is the memory load and p denotes the correlation coefficient. The S/N is
thus a product of independent terms of the load, the initial overlap and a correlation term
which depends on the modification function only.

The S/N calculation for the low-activity model is similar but more cumbersome and is
described in Appendix A. The resulting S/N can again be separated into a similar product

of independent terms

sm:ﬁwwww» (10)

In both models the only effect of the modification function g on the S/N is through the
correlation coefficient, hence, the behavior of the two different models under synaptic mod-
ification can be investigated by analyzing p(g(z), z) only, regardless of the other parameters
1. The immediate consequence of Egs. (9) and (10) is that there is no local synaptic mod-

ification function that can improve the performance of the Hebbian network, since p has

'These results and their following consequences remain valid even when the initial synaptic weights matrix
is non zero but has some Gaussian distributed noise, because such a noise can be viewed as additional pre-

stored memories.



values in the range [—1, 1], and the identity function g(z) = z already gives the maximal
possible value of p = 1. In particular, no deletion strategy can yield better memory per-
formance than the intact network. A similar result was previously shown by [Sompolinsky,
1988] in the Hopfield model. However, the use here of signal-to-noise analysis enables us to
proceed and derive optimal functions under different constraints on modification functions,
and evaluate the performance of various modification functions.

When no constraints are involved, pruning has no beneficial effect. However, since
synaptic activity is strongly correlated with energy consumption in the brain, its resources
may be inherently limited in the adult, and synaptic modification functions should satisfy
various synaptic constraints. The following two subsections study deletion under two dif-

ferent synaptic constraints: limited number of synapses, and limited total synaptic efficacy
2

2.3 Optimal Modification With Limited Number Of Synapses

In this section we find the optimal synaptic modification strategy when the number of
synapses is restricted. The analysis consists of the following stages: First we show that under
any deletion function, the remaining weights’ efficacies should not be changed. Second, we
show that the optimal modification function satisfying this rule is minimal-value deletion.
Finally, we calculate the S/N and memory capacity of networks deleted with this strategy
as a function of the deletion level.

Let g4 be a piece-wise equicontinuous deletion function, which zeroes all weights whose
values are not in some set A and possibly modifies the remaining weights. To find the
best modification function over the remaining weights we should maximize p(ga(z),z) =
FEl294(2)]/\/E [¢%(2)], that is invariant to scaling. Therefore, we keep F [¢%(z)] fixed and
look for a g4 which maximizes F'[2g4(2)] = [4 29(2)¢(2). Using the Lagrange method we
write (as in [Meilijson and Ruppin, 1996])

[ 79@0G)dz = ([P0 = o) (1)

for some constant ¢;. Denoting ¢; = g(z;) we approximate (11) by

S0 zigio(z) —v( Y, gid(z) — ). (12)
{ilzicA} {ilzi€ A}

Differentiating with respect to g; yields that g; = %, Vz; € Aj; hence, g is linear homogeneous
in z. We conclude that the optimal function should leave the undeleted weights unchanged

(except for arbitrary linear scaling).

21t should be noted that we do not derive general optimal synaptic matrices, but optimal modifications

of a previously learned Hebbian synapses. A study of the former can be found in [Bouten et al., 1990].



To find the weights that should be deleted, we write the deletion function as
ga(z) = zR4(z), where

1 when z€ A
0 otherwise.

Ra(z) = Rj(2) = {

Since zg4(z) = 22Ra(2) = g%(2), then E[2g94(2)] = F [¢%(2)] and
plga(z),z) = \/f 22R4(2)¢(z)dz. Given a constraint [, ¢(z)dz = const which holds the

number of synapse fixed, the term [, 22¢(z)dz is maximized when A supports the larger

values of |z|. To summarize, if some fraction of the synapses are to be deleted, the optimal
(“minimal value”) pruning strategy is to delete all synapses whose magnitude is smaller
than some threshold, and leave all others intact, as illustrated in figure 1(a).

To calculate p(g(z), z) as a function of the deletion level let
gi(2) = zRy(2), where Ry(2) = Rygpcisy(2) (13)

and ¢ is the threshold below which weights are removed. Using the fact that ¢'(z) = —z¢(z)

and integrating by parts, we obtain

Bl = Elgt)] = [ 2R 6 =2 [ 220()d: = 2[0°() +16(0)] (14

and

ploi(2), 2) = \/20(1) + 297 (1), (15)
where ®*(t) = P(z > t) is the standard normal tail distribution function.

(a) Minimal value deletion  (b) Clipping modification  (c) Compressed deletion

9(2) 9(2) 9(2)

t ( =t L
) t z t z t z

Figure 1: Different synaptic modification strategies. (a) Minimal value deletion: g(z) = z

for all |z| > t, and zero otherwise (see Eq. 13). (b) Clipping: ¢(z) = sign(z) for all |z| > t
and zero otherwise. (c) Compressed deletion: g(z) = z — sign(z)t for all |2| > ¢ and zero

otherwise (see Eq. 16).

2.4 Optimal Modification With Restricted Overall Synaptic Strength

As synapses differ by their strength, a possible different goal may be implied by the energy

consumption constraints, minimizing the overall synaptic strength in the network. We thus



wish to maximize the S/N while keeping the total synaptic strength [ |g(z)| fixed. Using
the Lagrange method (the full derivation is brought in the Appendix A.4) we find that the
optimal modification function is

z—1t when z>t

gi(z)=¢ 0 when |z| <t (16)

z4+t when z < —t
that is, the absolute value of all synapses with magnitude above some threshold ¢ are
reduced by ¢, and the rest are eliminated. We denote this modification function “compressed
deletion” (figure 1(c)).

The S/N under this strategy is calculated using the function R;(z) described above (Eq.
13) and then writing ¢(2) = (2 — t)R¢(z) for positive z values. The calculation is done
similarly to Eq. (14), yielding

20*(t)

p(g(2),2) = V20 + 12) (@ (1) — 2t(1)) "

3 Numerical Results

To quantitatively evaluate the performance gain achieved by the strategies described in
the previous section, the network’s performance is measured by calculating the memory
capacity of the network as a function of synaptic deletion levels. The capacity is measured
as the maximal number of memories which can be stored in the network and retrieved
almost correctly (m# > 0.95), starting from patterns with an initial overlap of my = 0.8.
Simulations shown below, are for the more biologically plausible low activity network, with
N = 800 neurons and coding level p = 0.1, and similar results were obtained with Hopfield
model simulations. The analytic curves were calculated using the overlap equation (Egs.
23), which enable to calculate of the overlap after a single step for any memory load, by
finding the highest load that yields an overlap (m* > 0.95). Simulation results are reported
both for a single iteration and for ten iterations.

Figure 2 compares the capacity obtained with three modification strategies: minimal
value deletion (Eq. 13), random deletion (independent of the connections strength) and
a “clipping” deletion. In clipping deletion, all weights with magnitude below a threshold
value are removed, and the remaining ones are assigned a +1 value, according to their
sign (see figure 1(b)). Two sets of simulations are presented. The first set was performed
with an arbitrary fixed threshold, and the second with a threshold optimally tuned for each

deletion level 3. Minimal-value deletion is indeed significantly better than the other deletion

9In one-step simulations, the optimal threshold was determined according to Eq. 26, and in ten-steps
simulations, the optimal threshold was found numerically to maximize the network’s performance.



strategies, but in high deletion levels, it is almost equaled by the clipping strategy.
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Figure 2: Capacity of a network with different synaptic modification strategies as a function
of the synaptic deletion level. The left column shows results of the low activity model
with a fixed threshold, while results with optimal neural threshold (i.e. threshold that is
varied optimally with the deletion level) are shown in the right column. Both analytical
and simulation results of single step and multiple step dynamics are presented, showing a

qualitatively similar behavior.



Figure 3 compares the “compressed-deletion” modification strategy (Eq.16) to random
deletion, as a function of the fraction of the total synaptic strength that is deleted from the

network.

10
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Figure 3: Capacity of a network with different synaptic modification strategies as a function
of the fraction of the total synaptic strength removed from the network. The left column
shows results of the low activity model with fixed threshold, while results with optimal

threshold are shown in the right column.

The above results show that if a network must be subjected to synaptic deletion, minimal

value deletion will minimize the damage, yet deletion reduces performance and is hence

11



unfavorable. We now proceed to show that in the case where the amount of synapses is
restricted in the adult organism, an initial over-growth of synapses followed by deletion,
is beneficial. Figure 4 compares the memory capacity of networks with the same number
of synapses, but with a varying number of neurons. The smallest network (N = 800) is
fully connected while larger networks are pruned by minimal value deletion to end up with
the same amount of synapses. The optimal deletion ratio is found around 80% deletion,
and improves capacity by 45% . This optimally pruned network, that has more neurons,
can store three times more information than the fully connected network with the same

number of synapses. When the threshold is sub-optimal or the energy cost for neurons is

non-negligible, the optimum drifts to a deletion levels of 50% — 60%.
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Low activity model
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Figure 4: Capacity of networks with different number of neurons but the same total number
of synapses as a function of network connectivity. The networks are pruned according to
minimal value deletion to keep the total number of synapses (k) constant. Simulation

parameters are & = 8002, p = 0.1, and 7T is kept optimal.

The conclusion is that an organism that first over-grows synapses in a large network and
then judiciously prunes them, can store much more memories than another adult organism
that uses the same synaptic resources, but settles for the adult synaptic density already in
infancy.

Until now, we have analyzed synaptic deletion of previously established synaptic matri-
ces (storing a given set of memories). We next turn to simulate the continuous process of

learning that is superimposed on the profile of synaptic density changes occurring during
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human development. These changes naturally define a time step equivalent to one year.
Within each time step we store some memories and change the synaptic density following
the human data. Synapses are incrementally added, increasing synaptic density until the
age of 3 “years”. At the age of 5 “years” synaptic pruning begins, lasting until puberty (see
the dot-dashed line in figure 5). Addition of new synapses is done at a constant rate, and
synaptic efficacies are determined by the new memories stored in the network. The deletion
of synapses is done according to the minimal value deletion strategy. The network is tested
for recall of the stored memories twice: once, at the age of 3 “years” when synaptic density
is at its peak, and again at an age of 15 “years” when synaptic elimination has already
removed 40% of the synapses.

Figure 5 traces the networks performance during this experiment, measured by the
retrieval acuity (final overlap with the cued memory obtained after one step of the dy-
namics). It superimposes the synaptic density (dot-dashed line) and memory performance
data. Two observations should be noted: First is the inverse temporal gradient in the recall
performance of memories stored during the synaptic pruning phase. That is, there is a de-
terioration in the performance of the “teenage” network as it recalls more recent childhood
memories (see the decline in the dashed line). The second is the marked difference between
the ability of the “infant” network (the solid line) and the “teenage” network (the dashed
line) to recall memories stored at “early childhood”; Older networks totally fail to recall

any memory before the age of 3-4 “years”, manifesting “childhood amnesia”.
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Continuous learning and deletion

Low activity model, fixed threshold
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Figure 5: Memory retrieval as a function of storage period. The figure displays both synaptic
density and memory performance data. At each time step (“year”) m memories are stored
in the network, and the network’s connectivity is changed following human data (dot-dashed
line). The network is tested for retrieval twice: in an early (“infant”) stage when network
connectivity has reached its peak (solid line), and in a later (“teenage”) phase after more
memories have been stored in the network (dashed line). In each such test, we look back
in time and examine how well does the network currently retrieve memories from its past,
as a function of their storage time. Network parameters are N = 800, m = 10 and p = 0.1.

The threshold is kept fixed at T'= (1/2 — p)p(1 — p).

4 Discussion

We have analyzed the effect of modifying Hebbian synapses in an optimal way that max-
imizes memory performance, while keeping constant the overall number or total strength
of the synapses. The optimal functions found for these criteria use only local information
about the synaptic strength, do not depend on the activity level of the network, and are
not effected by initial noise in the synaptic matrix. Moreover, they are exactly the same
functions in a large family of associative memory networks.

We have shown that under a restricted number of synapses, the optimal local modifi-
cation function of a given Hebbian matrix is to delete the small weights, and maintain the
values of the remaining connections. Under restricted total synaptic strength, the optimal

synaptic modification is to delete the small weights and linearly reduce the strength of the
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remaining synapses. Qur results predict that during the elimination phase in the brain
synapses undergo weight-dependent pruning in a way that deletes the weak synapses (one
should expect that both constraints described above may concomitantly apply in reality,
with some relative weighting that would determine the exact desired synaptic modification
function).

As we have shown, synaptic deletion cannot improve performance of a given network.
What then is its role 7 Until now, several computational answers were suggested. Some had
hypothesized that synaptic elimination can improve network performance, but this paper
proves this argument is incorrect in several associative memory models. Others have claimed
that the brain can be viewed as a cascade of filters which can be modeled by feed forward
networks models [Sharger and Johnson, 1995]. In these models it is known that a reduction
in the amount of free parameters may improve the ability of the network to generalize if the
size of the network is too large [Reed, 1993]. This explanation holds when the complexity
of the problem is unknown at the time the networks are created (and therefore cannot be
pre-programmed genetically), and applies to networks that should generalize well. Another
possible argument for justifying synaptic deletion arises if synaptic values are assumed to
have £1 values only (as in the clipping function described above). Under such an assumption
(as can be observed in figure 2), maximal performance is obtained at non-zero deletion levels.
However the biological plausibility of uni-valued synapses is in doubt.

Our proposal is that synaptic over-growth and deletion emerge because synaptic re-
sources must be scrupulously utilized, due to metabolic energy consumption constraints. If
we have to use a restricted amount of synapses in the adult, better performance is achieved
if the synapses are first over-grown, and then cleverly pruned after more memories are
stored. The optimally pruned network is not advantageous over the undeleted network
(which has many more synapses), but over all other networks, with the same total number
of synapses. It should be noted, however, that our results pertain to associative memory
networks and that synaptic elimination probably plays different roles in other neural sys-
tems. For example, it was shown that in the primary visual cortex, synaptic elimination
determines the architecture and the function of the network [Miller et al., 1989]. Interest-
ingly, although rising from different basic principles, recent studies have found that in the
neuro-muscular junction synapses are pruned according to their initial synaptic strength,
deleting the weaker synapses [Frank, 1997, Colman et al., 1997].

In biological networks, synaptic growth and deletion occur in parallel with memory
storage. As shown in Figure 5, the implementation of a minimal value pruning strategy

during such process yields two cognitive predictions: one for the rising phase of synaptic

15



density curve and the other for the descending phase. At the descending phase of synaptic
density an inverse temporal gradient is observed. That is, as long as synapses are eliminated,
remote memories are easier to recall than recently stored memories (dashed curve in figure
5). The reason for this inverse gradient is the continuous change in network connectivity:
earlier memories are stored into a highly-connected network, while memories stored later are
engraved into a sparser network. The early memories take a prominent role in determining
the synapses which are pruned by the minimal value algorithm, and therefore are only
slightly damaged by the synaptic deletion. The more recent memories are engraved into an
already deleted network, and hence have little influence on determining which synapses are
deleted. From the “point of view” of recent memories the network hence undergoes random
deletion. However, adding accumulative noise to the network or assuming synaptic decay
damages remote memory retrieval more than recent ones. Therefore, the model predicts
that the plot of human memory retrieval as a function of storage time within the synaptic
elimination period should have a U-shaped form. Interestingly, such a result can be observed
in previous studies of long term memory ([Sheingold and Tenney, 1982]) but was unnoticed
before.

A comparison of retrieval quality of early memories by the teenager network versus
the infant network (see figure 5 at the age of 2 years) shows a sharp change in retrieval
quality of early memories. This is reminiscent of the infantile amnesia phenomenon, which
is the inability of the adult to recall events from infancy that he could previously recall
[Bachevalier et al., 1993, Markievwicz et al., 1986]. In our model, this pattern arises from
the fact that earlier memories are stored in sparsely-connected networks (that is, embedded
in less synapses) and hence are more sensitive to the noise known to accumulate in the
network as additional memories are stored in it. This scenario may provide a network-
level perspective to infantile-amnesia, complementing the previous theories suggesting that
maturation of memory related structures such as the Hippocampus are responsible for the
amnesia [Nadel, 1986].

Synaptic elimination is a broad phenomenon found throughout different brain structures
and not restricted to associative memory areas. We believe that our explanation may
be generalized to other network models. For example, feed forward Hebbian projections
between consecutive networks share similar properties with a single step of synchronous
dynamics of associative memory networks analyzed here. There is also some evidence that
synaptic growth followed by deletion is not limited to the developmental stage, but may
have a more general scope, and can be found in adults [Greenough et al., 1987]. These

interesting open issues await further studies in the future.

16



References

[Bachevalier et al., 1993] J. Bachevalier, M. Brickson, and C. Hagger. Limbic dependent

recognition memory in monkeys develops early in infancy. Neuroreport, 4(1):77-80, 1993.

[Bourgeois and Rakic, 1993] J.P. Bourgeois and P. Rakic. Changing of synaptic density in
the primary visual cortex of the Rhesus monkey from fetal to adult age. J. Neurosci.,

13:2801-2820, 1993.

[Bourgeois, 1993] J.P. Bourgeois. Synaptogenesis in the prefrontal cortex of the macaque.
In B. do Boysson-Bardies, editor, Developmental Neurocognition: Speech and Face Pro-

cessing in the First Year of Life, pages 31-39. Kluwer Academic Publishers, 1993.

[Bouten et al., 1990] M. Bouten, A. Engel, A. Komoda, and R. Serneel. Quenched versus
annealed dilution in neural networks. J. Phys. A: Math Gen., 23:4643-4657, 1990.

[Colman et al., 1997] H. Colman, J. Nabekura, and J.W. Lichtman. Alteration in synaptic
strength preceding axon withdrawal. Science, 275:356-361, 1997.

[Eckenhoff and Rakic, 1991] M.F. Eckenhoff and P. Rakic. A quantitative analysis of synap-
togenesis in the molecular layer of the dentate gyrus in the resus monkey. Developmental

Brain Research, 64:129-135, 1991.

[Frank, 1997] E. Frank. Synapse elimination: For nerves it’s all or nothing. Science,

275:324-325, 1997.

[Greenough et al., 1987] W.T. Greenough, J.E. Black, and C.S. Wallace. Experience and
brain development. Child Development, 58:539-559, 1987.

[Huttenlocher and Courten, 1987] P.R. Huttenlocher and C. De Courten. The development

of synapses in striate cortex of man. J. Neuroscience, 1987.

[Huttenlocher et al., 1982] P.R. Huttenlocher, C. De Courten, L.J. Garey, and H. Van der
Loos. Synaptogenesis in human visual cortex - evidence for synapse elimination during

normal development. Neuroscience letters, 33:247-252, 1982.

[Huttenlocher, 1979] P.R. Huttenlocher. Synaptic density in human frontal cortex. Devel-
opment changes and effects of age. Brain Res., 163:195-205, 1979.

[Innocenti, 1995] G.M. Innocenti. Exuberant development of connections and its possible

permissive role in cortical evolution. Trends Neurosci, 18:397-402, 1995.

17



[J.Takacs and Hamori, 1994] J.Takacs and J. Hamori. Developmental dynamics of Purkinje
cells and dendritic spines in rat cerebellar cortex. J. of Neuroscience Research, 38:515—

530, 1994.

[Markievwicz et al., 1986] B. Markievwicz, D. Kucharski, and N.E. Spear. Ontogenic com-
parison of memory for Pavlovian conditioned aversions. Developmental psychobiology,

19(2):139-54, 1986.

[Meilijson and Ruppin, 1996] 1. Meilijson and E. Ruppin. Optimal firing in sparsely-
connected low-activity attractor networks. Biological cybernetics, 74:479-485, 1996.

[Miller et al., 1989] K.D. Miller, J.B. Keller, and M.P. Stryker. Ocular dominance column
development: analysis and simulation. Science, 245:605-615, 1989.

[Nadel, 1986] L. Nadel. Infantile amnesia: A neurobiological perspective. In M. Moscovitch,
editor, Infant Memory; Its Relation To Normal And Pathological Memory In Humans
And Other Animals. Plenum Press, 1986.

[Rakic et al., 1994] P. Rakic, J.P. Bourgeois, and P.S. Goldman-Rakic. Synaptic devel-
opment of the cerebral cortex: implications for learning, memory and mental illness.

Progress in Brain Research, 102:227-243, 1994.

[Reed, 1993] R. Reed. Pruning algorithms - a survey. IEEFE transactions on neural networks,
4(5):740-747, 1993.

[Roe et al., 1990] A.W. Roe, S.L. Pallas, J.O. Hahm, and M. Sur. A map of visual space
induced in primary auditory cortex. Science, 250:818-820, 1990.

[Roland, 1993] Per E. Roland. Brain Activation. Willey-Liss, 1993.

[Sharger and Johnson, 1995] J. Sharger and M.H. Johnson. Modeling development of corti-
cal functions. In B.Julesz 1. Kovacs, editor, Maturational windows and cortical plasticity.

The Santa Fe institute press, 1995.

[Sheingold and Tenney, 1982] K. Sheingold and J. Tenney. Memory for a salient childhood

event. In U. Neisser, editor, Memory observed. W.H. Freeman and co., 1982.

[Sompolinsky, 1988] H. Sompolinsky. Neural networks with non linear synapses and static

noise. Phys Rev A., 34:2571-2574, 1988.

[Stryker, 1986] M.P. Stryker. Binocular impulse blockade prevents the formation of ocular

dominance columns in cat visual cortex. J. of Neuroscience, 6:2117-2133, 1986.

18



[Tsodyks and Feigel’'man, 1988] M.V. Tsodyks and M. Feigel’man. Enhanced storage ca-
pacity in neural networks with low activity level. Furophys. Lett., 6:101-105, 1988.

[Wolff et al., 1995] J.R. Wolff, R. Laskawi, W.B. Spatz, and M. Missler. Structural dy-
namics of synapses and synaptic components. Behavioural Brain Research, 66:13—-20,

1995.

19



A Appendix: Signal To Noise Ratio In A Low Activity Model
A.1 Field Moments

The network is initialized with activity p and overlap my with memory u. Let e = P(X; =

0|¢ = 1) (which implies an initial overlap of mg = ﬁﬁl). We write

BUEIE) = NP& = 1) | aWile = 1]+ NPl& = 08 [ Lol =0 (8)
The first term is calculated as follows
NP =1) Elg(Wij)lg =1]= (19)

(1-p)(&—p) -

= Np(1=9 [oW)owy - LB i
(A-p)E~p)
p(1—p)VM

A-p)E-p)
p(1—p)VM

(S T
p(l—p)\/ME[g( )]

2

Np(l—¢) /Q(Wi‘) [¢(Wz’j) - ¢'(Wij)] dWi; =

= Np(1-e)E[g(z)]+ Np(1-¢) Elzg(z)] =

= NpE[g(2)]+ Np(1-p—¢)

A similar calculation for the second term, where g is anti-symmetric yields

ey B (S ) o]
E(fil&) = Np(1—p )p(l—p)\/ME[g( N-T. (20)

The variance is calculated following
V(fil&) = NE(g*(Wij) X7) = NE*(g(Wij) X;) + N (N = 1)Cov(g(Wij) X, g(Wir) Xi), (21)

in a similar manner to yield

E(fle) Fomo(& —p)E[29(2)] - T (22)
VTG NpE[g*(2)] '

A.2 The Overlap Equation

Given the overlap mg between the network’s initial state and a pattern £&* we calculate myq,

the overlap in the next step, by

1
my, = mN(l —-p)P&=1)P(X; =1, =1) (23)

_mNpP(& =0)P(X;=1|§=0) =
= PX;=1|=1)-P(X; =1, =0) =
EIG) (o _ o EUiG) (o

MY R v L
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where & = 1 — ®* is the standard Gaussian cumulative distribution function.

A.3 Optimal Threshold

In order to find the threshold that maximizes the overlap we differentiate m; ( Eq. 23) with
respect to T,

P (MLKE =1)— (ME =0)
aTnl _ \/ fz|§ ¢ \/ fe|£ ! _ 0 (24)
or oT N

which yields

Jem, (1= p)E[2g(2)] - T) B (%ﬁmo(o —p)Efzg(2)] - T

A re) Sz
and N1
= \/—H(§ —p) mo Efzg(2)]. (26)
Using the optimal threshold in Eq. 22 yields
SIN =[5 p(aie).) (1)

Similarly to the case of Hopfield model, the S/N of the neuron i can be expressed as a
product of independent factors: the load M/N, the deletion strategy ¢, the activity level p

and the activity of the neuron &;.

A.4 Derivation of the compressed deletion

Using the Lagrange method we have

| sa@eEds =l P#@ed—a) =l lg@)lol)d: - ) =
= [ Blls@eE)d = n([ 9@ - o) = e[ la@)lo)dz ) (29
which is approximated by
S illadéz) = 21 (3 lgiP(e) — ) = 32X lailo=) = ) (29)

Assuming ¢(z) to be piece-wise equicontinuous and equating to zero the derivative with

respect to |g;| we obtain
|2i|¢(2i) — 12]g:ld(2:) — 720(2i) = 0 (30)
or
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1
g )= Ul = 72),
9] = 3=z = )
from where
z—t when z>1t
g(2)=¢ 0 when  |z| <t
z4+t when z < —t
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