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Abstract

This paper studies the storage of memory patterns with varying coding

levels (fraction of firing neurons within a pattern) in an associative memory

network. It was previously shown that effective memory storage (that scales

with the network’s size) requires that the synaptic modification rule used

during learning explicitly depends on the coding level of the stored memory

patterns. We show that the memory capacity of networks storing variably

coded memory patterns is inherently bounded and does not scale with the

network’s size. These results question the biological feasibility of associative

memory learning that uses synaptic level information only. However, we

show that applying a neuronal weight correction mechanism that uses local

neuronal level information, provides effective memory capacity even when

the coding levels vary considerably. Using neuronal weight correction yields

near optimal memory performance even with non-optimal synaptic learn-

ing rules. These findings provide further support to the idea that neuronal

level normalization processes play an important role in governing synaptic

plasticity and may be crucial for learning in the nervous system.

∗To whom correspondence should be addressed.
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1 Introduction

During the last decade various associative memory models have shown that neural networks

are capable of storing memories via Hebbian synaptic changes. However, a major caveat

of all Hebbian synaptic learning rules is their explicit dependency on the coding level of

the stored memory patterns (the fraction of firing neuron in the pattern). This information

about the patterns’ coding level is a global, network-level, property, and is unlikely to be

available at the synaptic level. For example, the optimal learning rule for hetero-associative

memory networks [Dayan and Willshaw, 1991], the covariance learning rule (first proposed

by [Sejnowski, 1977]), depends on the coding level of both the input and output patterns.

We have recently shown [Chechik et al., 1999a] that this coding level dependency is a

more general property of Hebbian synaptic learning rules. Namely, any Hebbian learning

rule must explicitly depend on the coding level of the stored memory patterns, otherwise

the network memory capacity is drastically reduced to one that does not scale with the

network’s size. We have then shown that effective memory storage that scales with the

network’s size is obtained even for synaptic learning rules that do not utilize explicit coding

level information if appropriate neuronal level remodeling of synaptic efficacies is employed.

Our previous work [Chechik et al., 1999a] has focused on the special case where all

memory patterns stored in the network have the same coding level. When dealing with a

noisy biological system, the coding level dependency naturally raises the question of storing

memory patterns with a variety of coding levels. Could the brain effectively store such

memory patterns within the same network? Could effective memory storage be obtained

using local information only? Could this be accomplished via a single learning rule that

does not critically depend on the patterns’ coding levels?

In the current article we answer these questions by analyzing the memory performance

of a network that stores memory patterns with varying coding levels. We show that the

coding level variability leads to three problems that limit the memory storage capacity of

the network: non-zero synaptic mean, non-zero postsynaptic covariance, and non-optimal

neuronal threshold. These problems reduce the network memory capacity from an effective
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capacity that scales linearly with the network’s size to a bounded memory capacity that

does not scale with the size of the network. We then show that a simple normalization

process at the neuronal level results in a vanishing synaptic mean and postsynaptic covari-

ance, and that the addition of global inhibition may replace the optimal threshold. These

mechanisms qualitatively improve the network memory capacity: instead of the bounded

memory capacity obtained when using Hebbian learning rules only, they provide linear

memory capacity even when storing patterns whose coding levels are highly variable.

Neuronal normalization mechanisms have already been shown to play an important

role in the process of self-organization of neural networks and in preventing the problem

of synaptic runaway in unsupervised learning [Miller and MacKay, 1994, Oja, 1982]. The

current article shows that it is a specific form of neuronal level normalization that is required

to enable effective memory storage of variably coded noisy patterns via associative memory

learning.

The next section describes the model and section 3 analyses the problems encountered

when storing memory patterns with varying coding levels. Section 4 describes a neuronal

weight correction mechanism that addresses these problems, and presents analytical and

simulations results. Assuming the operation of this neuronal correction mechanism, section

5 derives optimal learning rules as a function of the coding levels’ distribution. Our results

are then discussed in section 6.

2 The Model

We analyze a model of auto-associative memory network with binary firing {0, 1} neurons.

M uncorrelated memory patterns are stored in an N -neuron network, forming attractors of

the network’s dynamics. Memory pattern ξµ (1 ≤ µ ≤M) has coding level pµ (that is, there

are 1T ξµ = pµN firing neurons out of the N neurons). The updating rule for the state Xt
i

of neuron i at time t is

Xt+1
i = θ(fi) , fi =

1
N

N∑
j=1

WijX
t
j − T , (1)
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where fi is the neuron’s input field, T is the neuronal threshold, and θ(f) = 1+sign(f)
2 .

The synaptic weight Wij between the jth (presynaptic) neuron and the ith (postsynaptic)

neuron is determined by a synaptic learning rule that depends on the neurons’ activity in

each of the M stored memory patterns

Wij =
M∑
µ=1

(ξµi − a)(ξµj − a) . (2)

where a is a parameter of the learning rule. In the case of a homogeneous coding level, that

is when all memories share exactly the same coding level, a is optimally set to their coding

level and the model reduces to the model analyzed by [Tsodyks and Feigel’man, 1988].

This learning rule was proved to be optimal for the homogeneous coding case by [Dayan

and Willshaw, 1991]. The overlap mµ (or similarity) between the current network’s activity

pattern X and the memory ξµ serves as a measure of memory performance (retrieval acuity)

and is defined in terms of the coding level pµ as

mµ =
1

pµ(1− pµ)N

N∑
j=1

(ξµj − pµ)Xj , (3)

3 Analysis

To analyze the network’s memory performance we derive the signal-to-noise ratio of the

neuronal input field, a the primary determinant of retrieval capacity [Meilijson and Ruppin,

1996]. Restricting attention, without loss of generality, to the retrieval of memory pattern

ξ1, the network is initialized in a state X generated independently of the other memory

patterns. This state is assumed to have activity level p1 (thus equal to the coding level of ξ1),

and overlap m1
0 = (1−p1−ε)

(1−p1) with ξ1, where ε = P (Xi = 0|ξ1
i = 1) = (1−p1

p1
)P (Xi = 1|ξ1

i = 0).

Denoting W ∗ij = Wij − (ξ1
i − a)(ξ1

j − a), the conditional mean of the neuronal input field is

E
[
fi|ξ1

i

]
= E

 1
N

N∑
j=1

WijXj |ξ1
i

− T = (4)

= E

 1
N

N∑
j=1

(ξ1
i − a)(ξ1

j − a)Xj |ξ1
i

+ E(W ∗ij)E(Xj |ξ1
i )− T =

= (ξ1
i − a)(1− a)P (Xj = 1|ξ1

j = 1)P (ξ1
j = 1) +
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+(ξ1
i − a)(0− a)P (Xj = 1|ξ1

j = 0)P (ξ1
j = 0) + p1

M∑
µ=2

(pµ − a)2 − T =

= (ξ1
i − a)(1− a− ε)p1 + p1

M∑
µ=2

(pµ − a)2 − T ,

and its variance is

V [fi] = V

 1
N

N∑
j=1

WijXj

 ≈ V
 1
N

N∑
j=1

W ∗ijXj

 = (5)

=
1
N
V
[
W ∗ijXj

]
+ COV

[
W ∗ijXj ,W

∗
ikXk

]
=

=
1
N
p1 V

[
W ∗ij

]
+ p2

1 COV
[
W ∗ij ,W

∗
ik

]
.

The signal-to-noise ratio of the neuron’s input field is thus

Signal

Noise
=

E(fi|ξ1
i = 1)− E(fi|ξ1

i = 0)√
V (fi)

≈ (1− a− ε)p1√
1
N p1V [Wij ] + p2

1COV [Wij ,Wik]
. (6)

Therefore, for large enough networks the noise term in the neuronal input field is domi-

nated by the postsynaptic covariance COV [Wij ,Wik] between the efficacies of the incoming

synapses. To obtain the signal-to-noise ratio as a function of the distribution of the coding

levels {pµ}Mµ=1, we calculate the relevant moments of the synaptic weights’ distribution

E(Wij) =
M∑
µ=1

E
[
Wµ
ij

]
=

M∑
µ=1

(pµ − a)2 , (7)

V (Wij) =
M∑
µ=1

V
[
Wµ
ij

]
=

M∑
µ=1

E
[
(Wµ

ij)
2
]
− E2

(
Wµ
ij

)
= (8)

=
M∑
µ=1

pµ(1− pµ)
[
pµ(1− pµ) + 2(pµ − a)2

]
,

and

COV [Wij ,Wik] = (9)

≈
M∑
µ=1

E
[
(ξµi − a)2(ξµj − a)(ξµk − a)

]
−

M∑
µ=1

E2
[
(ξµi − a)(ξµj − a)

]
=

=
M∑
µ=1

pµ(1− pµ)(pµ − a)2 .

Substituting Eqs. (7)-(9) in the signal-to-noise ratio (Eq. 6) one obtains

Signal

Noise
≈

√
N

M

(1− a− ε)√p1√
1
M

∑M
µ=1 p

2
µ(1− pµ)2 + (2 +Np1) 1

M

∑M
µ=1 pµ(1− pµ)(pµ − a)2

. (10)
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This signal-to-noise calculation yields an important conclusion: When all the pµ are equal

and equal to a, the last term of the denominator vanishes and the signal-to-noise ratio

remains constant as M grows linearly with N . In this case effective learning is obtained,

i.e., the network’s memory capacity grows linearly with the network’s size. However, if

some of the pµ’s differ from each other, then for every a the noise term grows linearly

with N , resulting in a bounded memory capacity that does not scale with the size of the

network. Thus, unless all memory patterns share the same coding level and the

learning rule is properly adjusted to this coding level, the memory capacity of

the network is inevitably bounded. In this case the network’s memory capacity mainly

depends on the coding level a used in the learning rule, and on the variance of the actual

coding levels {pµ}Mµ=1 of the stored memory patterns.

The above signal-to-noise analysis assumes that the neuronal threshold is optimally set

to maximize memory retrieval. Such optimal setting requires that the threshold be set to

TOptimal(ξ1) =
E(fi|ξ1

i = 1) + E(fi|ξ1
i = 0)

2
(11)

= (
1
2
− a)(1− a− ε)p1 + p1

M∑
µ=1

(pµ − a)2

during the retrieval of the memory pattern ξ1 [Chechik et al., 1998]. The optimal threshold

thus depends both on the coding level of the retrieved pattern p1 and on the variability

of the coding levels pµ. These parameters are global properties of the network that may

be unavailable at the neuronal level, making optimal setting of the threshold biologically

implausible.

To summarize, the signal-to-noise analysis reveals three problems that prevent effective

memory storage of patterns with varying coding levels using a single synaptic learning rule.

First, the mean synaptic efficacy is no longer zero, and depends on the coding level variability

(Eq. 7). Second, the correlation between incoming synaptic efficacies is non-zero (Eq. 9);

this correlation results in a positive postsynaptic covariance COV (Wij ,Wik), that bounds

the memory capacity of the network. Third, the optimal neuronal threshold explicitly

depends on the coding level of the stored memory patterns (Eq. 11). It is important to

note that these problems are inherent to all Hebbian additive synaptic learning rules, since
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these must explicitly depend on the coding level of the stored memory patterns to obtain

effective memory storage [Chechik et al., 1999b].

To demonstrate the effects of these problems on the network’s memory performance we

have stored memory patterns with coding levels that are normally distributed around a,

in a network that uses the optimal learning rule for coding level a (Eq. 2). The neuronal

threshold was also set to its optimal value for the mean coding level a (Eq. 11). The

memory capacity of such networks as a function of the network size is depicted in Figure

1, for various values of coding level variability. Clearly, even small perturbations from the

mean coding level a result in considerable deterioration of memory capacity. Moreover, this

deterioration becomes more pronounced for larger networks, revealing a bounded network

memory capacity.

Figure 1: Memory capacity as a function of network’s size for various coding level distri-

butions. Memory capacity is measured as the number of memory patterns that can be

stored in the network and then retrieved almost correctly (with an average overlap greater

than m = 0.95) when the network is presented with a degraded pattern (ε = 0.18 that

results in an average initial overlap of m0 = 0.8). Coding levels are normally distributed

pµ ∼ N(a, σ2) with mean of a = 0.1 and standard deviations of σ = 0, 0.01, 0.02, 0.03.
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4 Effective Memory Storage

The above results show that current Hebbian learning alone cannot provide effective memory

storage (where the memory capacity grows linearly with network’s size) unless all patterns

share exactly the same coding level. How then can noisy biological networks store memo-

ries effectively? We now turn to describe a mechanism that compensates for coding level

variability and provides successful memory storage of such patterns.

4.1 Neuronal Weight Correction

We analyze a neuronal level process that is basically similar to the normalization process

first proposed by [von der Malsburg, 1973] to operate during cortical self-organization. In

this process, as a synapse is modified during learning, its postsynaptic neuron additively

modifies all its synapses to maintain the sum of their efficacies at a baseline zero level. As

this neuronal weight correction is additive it can be performed either “online” after

each memory pattern is stored or “offline” at a later time after several memories have been

stored.

We have previously shown that the joint operation of neuronal weight correction over a

linear Hebbian learning rule is equivalent to the use of another Hebbian learning rule that

has both zero synaptic mean and zero post-synaptic covariance (see [Chechik et al., 1999a]

for details). In the case of variable coding levels discussed here, the application of neuronal

weight correction combined with the learning rule of (Eq. 2) results in the same synaptic

matrix as when storing memory patterns via the learning rule

Wij =
M∑
µ=1

(ξµi − a)(ξµj − pµ) . (12)

To see this, consider the synaptic efficacy changes that follow the storage of one memory

pattern with coding level pµ (using Eq. 2), and focus on a synapse Wij between two firing

neurons (ξi = 1, ξj = 1): Following learning with Eq. 2, the synaptic strength is first

increased by (1−a)(1−a). Then, when other synapses of the same postsynaptic neuron are

strengthened, the synapse Wij weakens by 1
N (1−a)(1−a), and when other synapses weaken,

the synapse Wij is strengthened by 1
N a(1−a). As there are pµN such strengthening events
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and (1− pµ)N weakening events, the total change in synaptic strength is (1−a)(1− pµ). A

similar calculation for synapses between quiescent and firing neurons completes the learning

rule of Eq. (12).

This formalization of neuronal weight correction operating on one learning rule as equiva-

lent to storage with another learning rule, enables us to calculate the memory performance

of networks that undergo neuronal weight correction using a conventional signal-to-noise

analysis as in Eqs. (7)-(9). These calculations yield synaptic mean

E(Wij) = 0 , (13)

variance

V (Wij) =
M∑
µ=1

p2
µ(1− pµ)2 +

M∑
µ=1

(pµ − a)2pµ(1− pµ) , (14)

and postsynaptic covariance

COV [Wij ,Wik] = 0 , (15)

resulting in a signal-to-noise ratio

Signal

Noise
=

√
N

M

(1− a− ε)√p1√
1
M

∑M
µ=1 p

2
µ(1− pµ)2 + 1

M

∑M
µ=1 pµ(1− pµ)(a− pµ)2

. (16)

A comparison of Eq. (16) with Eq. (10) readily shows that the dependence of the noise term

on the networks’ size (evident in Eq. 10) is now eliminated. Thus, a neuronal mechanism

that maintains a fixed sum of incoming synapses effectively calibrates to zero the synaptic

mean and postsynaptic covariance, providing a memory storage capacity that grows linearly

with the size of the network. This is achieved without the need to explicitly monitor the

actual coding level of the stored memory patterns.

8



4.2 Global Inhibition Networks

The neuronal weight correction mechanism solves two of the three problems of storing mem-

ory patterns with variable coding level, setting to zero the synaptic mean and postsynaptic

covariance. But even after neuronal weight correction is applied the optimal threshold is

TOptimal(ξ1) = (
1
2
− p1)(1− a− ε)p1 , (17)

retaining a dependence on the coding level of the retrieved pattern. We suggest that this

difficulty may be partially circumvented by replacing the neuronal threshold with a global

inhibitory term. To this end, Eq. (1) is substituted with

Xt+1
i = θ(fi) , fi =

1
N

N∑
j=1

(Wij − I)Xt
j =

1
N

N∑
j=1

WijX
t
j −

I

N

N∑
j=1

Xt
j , (18)

where I is the global inhibition term set to I = (1
2 − a)(1− a− ε). Since E [Xj ] = pµ, the

mean neuronal field in a network that uses global inhibition of this form is corresponds to a

network that uses a neuronal threshold with T = (1
2 − a)(1− a− ε)p1. In the case of small

p1 this yields a fair approximation to the field of a neuron that uses the optimal threshold

(Eq. 17).

To demonstrate the beneficial effect of neuronal weight correction and activity-dependent

inhibition, we turn again to store memory patterns whose coding levels are normally dis-

tributed as in Figure 1 using the learning rule of Eq. (2). Figure 2 compares the memory

capacity of networks with and without neuronal weight correction and activity-dependent

inhibition. The memory capacity is also compared to the case were all memories share

exactly the same coding level (dot-dashed line), showing that the application of neuronal

weight correction and activity-dependent inhibition (long dashed line) successfully compen-

sates for the coding level variability, obtaining almost the same capacity as the capacity

achieved with a homogeneous coding level.
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A. Analytical results B. Simulations results (1-step)

Figure 2: Memory capacity as a function of the network’s size when storing patterns with

normally distributed coding levels pµ ∼ N(0.1, 0.02) using the original learning rule of

Eq. (1). The four curves correspond to the following cases: no correction at all (solid line),

neuronal weight correction (dashed line), neuronal weight correction with activity dependent

inhibition (long dashed line), and homogeneous coding - all patterns share exactly the same

coding level (dot dashed line). A. Analytical results, B. Simulations results of a network

performing one step of the dynamics.

Figure 3 plots the network’s memory capacity as a function of the coding level variability.

While the original learning rule provides effective memory storage only when coding levels

are close to the mean, the application of neuronal correction mechanism provides effective

memory storage even when storing an ensemble of patterns with high variability of coding

levels. The addition of activity-dependent inhibition is mainly needed when the coding level

variability is very high.
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Figure 3: Memory capacity as a function of coding level variability of the stored memory

patterns. Memory storage was obtained using the original learning rule of Eq (1) with a =

0.1, but actually storing patterns with normally distributed coding levels pµ ∼ N(0.1, σ2),

for several values of the standard deviation σ. Simulation parameters: N = 1000, ε = 0.18

yielding m0=0.8 on average.

Memory patterns that differ by their coding level also differ by their retrieval acuity.

Figure 4 plots the retrieval acuity of memory patterns stored in the same network as a

function of their coding level, showing that lower coding levels results in lower retrieval

acuity. This phenomenon results from the dependency of the signal-to-noise term on the

coding level of the retrieved pattern (Eq. 16): Patterns with lower coding levels have a

lower signal-to-noise ratio, resulting in a lower retrieval acuity.
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Figure 4: Retrieval acuity of patterns as a function of their coding level. 600 patterns are

stored in a 1000-neurons network using the learning rule of Eq. (1) with a = 0.1, followed by

the application of neuronal weight correction. The coding levels of the pattern are uniformly

distributed with pµ ∼ U(0.05, 0.15).

5 Optimal Memory Storage

The above results show that neuronal weight correction must be applied when the coding

level is heterogeneous. We now turn to study the effects of the underlying synaptic rule on

the network memory performance when neuronal weight correction is applied. To obtain

a yardstick for comparing various learning rules, we derive the rule that (together with

neuronal weight correction) maximizes the network memory performance.

Following the arguments used to derive Eq. (12), the family of learning rules resulting

from the application of neuronal weight correction can all be written in the form

Wij =
M∑
µ=1

(ξµi −∆)(ξµj − pµ) , (19)

where the parameters ∆ determines the learning rule (for example, in the case of Eq. (12) we

have ∆ = a). Note that a single parameter is needed to describe all effective learning rules

as these rules are defined by four parameters that satisfy three constraints: The synaptic
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mean and postsynaptic covariance are zero, and the learning rules can be arbitrarily scaled if

the neuronal threshold is properly set [Chechik et al., 1999a]. Following an analysis similar

to Eqs. (4)-(10) the signal-to-noise ratio of this learning rule is

Signal

Noise
≈

√
N

M
(1− p1 − ε)

√
p1

1√
1
M

∑M
µ=1 pµ(1− pµ)(∆− pµ)2

. (20)

The signal-to-noise ratio is separated to a product of three terms: one that depends on the

memory load only, another that depends on the coding level p1 of the retrieved pattern and

a third one that depends on the learning rule parameter ∆ and the coding level distribution.

To optimize with regard to ∆, rewrite the denominator of this last term in the form

(Noise)2 ∝
M∑
µ=1

pµ(1− pµ)

[
∆−

∑M
µ=1 p

2
µ(1− pµ)∑M

µ=1 pµ(1− pµ)

]2

+ (21)

+
M∑
µ=1

p3
µ(1− pµ)−

(
∑M
µ=1 p

2
µ(1− pµ))2∑M

µ=1 pµ(1− pµ)
,

to see that the optimal ∆ (that minimizes the noise term) is determined by the first three

moments of the coding level distribution

∆Optimal =
∑M
µ=1 p

2
µ(1− pµ)∑M

µ=1 pµ(1− pµ)
. (22)

This optimal ∆ value can also be written as ∆Optimal =
∑M
µ=1 pµ[ pµ(1−pµ)∑M

µ=1
pµ(1−pµ)

] showing

that the parameter ∆ is an average of pµ with regard to the distribution function

qµ = pµ(1−pµ)∑M

µ=1
pµ(1−pµ)

. In the case of homogeneous coding level, qµ = 1
M and we obtain

∆Optimal = 1
M

∑M
µ=1 pµ, corresponding to the covariance learning rule (Eq. 2), known to

be optimal for this case [Dayan and Willshaw, 1991]. However, for any heterogeneous

distributions with pµ < 0.5, ∆Optimal > 1
M

∑M
µ=1 pµ, and the underlying learning rule is

inherently different from the covariance rule.

The above analysis pertains to learning rules that result from the combined action of

the underlying synaptic learning rule and neuronal weight correction. For each ∆ there

is a three dimensional family of learning rules that are transformed by neuronal weight

correction into the optimal learning rule (Eq. 19, 22). These rules should only satisfy the

following constraint (if the neuronal threshold is properly set):

∆(ξi = 1, ξj = 1)−∆(ξi = 1, ξj = 0)
∆(ξi = 0, ξj = 1)−∆(ξi = 0, ξj = 0)

=
(1−∆Optimal)
(−∆Optimal)

(23)
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where ∆(ξi, ξj) is the additive change to the synaptic efficacy following some combination of

pre (ξj) and post (ξi) synaptic activities. It should be stressed that while optimal learning

requires the above constraint, all additive learning rules are transformed into effective rules

via the application of neuronal weight correction [Chechik et al., 1999a].

To quantify the effect of the underlying learning rule, we have compared the network

memory performance of networks as a function of the learning rule parameter ∆, for various

coding levels distributions. These simulations show that the superiority of the optimal

learning rule over other effective rules is small, improving memory capacity by few percents

only. In particular, the covariance learning rule, that uses only the first moment of the

coding levels distribution approximates well the optimal learning rule (that uses the first

three moments). These results thus show that neuronal weight correction achieves

almost-optimal memory performance even with non optimal synaptic learning

rules.

6 Discussion

We have analyzed associative memory networks that store memory patterns with variable

coding levels. Our analysis shows that three problems limit the memory storage capacity of

such networks: non-zero mean synaptic value, non-zero postsynaptic covariance and inade-

quate neuronal threshold. We then presented a neuronal weight correction mechanism that

zeroes the postsynaptic covariance and synaptic mean. This weight correction mechanism

provides an effective memory capacity that scales linearly with the network’s size, while

only a bounded number of memory patterns can be stored without such mechanism. When

neuronal weight correction is applied the underlying synaptic learning rule itself has only

a slight effect on memory performance. In particular, a learning rule that uses only mean

coding level information, successfully approximates the optimal learning rule and provides

almost optimal memory capacity.

These results suggest that the storage of patterns with variable coding levels in biologi-

cal memory networks cannot be restricted to the use of synaptic level information only but

must also use neuronal-level information. Indeed, there is increasing evidence that neuronal
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level normalization processes shape the synaptic efficacies in an activity dependent manner

(e.g. [Turrigano et al., 1998]). [van Ooyen, 1994, Miller, 1996] provide a review of mecha-

nisms that perform normalization of synaptic efficacies in a manner that conserves the total

synaptic weight of the postsynaptic neuron. In a previous paper [Chechik et al., 1999a]

we have computationally studied one of these mechanisms, Neuronal Regulation [Horn et

al., 1998b, Horn et al., 1998a] and showed that this mechanism zeroes the postsynaptic

covariance. The results of the current article, showing that the postsynaptic covariance is

the term that limits the memory capacity in face of coding level variability, suggest that

neuronal regulation is essential in the more general case of effective storage of patterns with

coding level variability.

The need to store memory patterns with highly variable coding levels arises when con-

sidering possible realizations of human memory systems. It has been suggested that human

memory is organized in a hierarchy of memory modules, where lower-level modules represent

simple features and concepts and higher level modules bind them into more complex enti-

ties (e.g. [Damasio, 1989, Moll et al., 1994]). Within this framework, neurons in a binding

module should respond to patterns that are the combination of several features. However,

as the number of features combined into a concept may vary considerably, the binding neu-

rons must be able to correctly respond to memory patterns with high variation in their

coding level. Our results, described within the framework of an auto-associative memory,

pertain also to this hetero-associative memory task. Neuronal weight correction may hence

be a universal mechanism that is necessary to provide effective hierarchical memory storage,

involving both auto and hetero associative memory networks.
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