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Abstract

The way groups of auditory neurons interact to code acoustic in-
formation is investigated using an information theoretic approach.
Identifying the case of stimulus-conditioned independent neurons,
we develop redundancy measures that allow enhanced informa-
tion estimation for groups of neurons. These measures are then
applied to study the collaborative coding efficiency in two pro-
cessing stations in the auditory pathway: the inferior colliculus
(IC) and the primary auditory cortex (A1). Under two different
coding paradigms we show differences in both information content
and group redundancies between IC and cortical auditory neurons.
These results provide for the first time a direct evidence for re-
dundancy reduction along the ascending auditory pathway, as has
been hypothesized by Barlow (1959). The redundancy effects under
the single-spikes coding paradigm are significant only for groups
larger than ten cells, and cannot be revealed with the standard
redundancy measures that use only pairs of cells. Our results sug-
gest that redundancy reduction transformations are not limited to
low level sensory processing (aimed to reduce redundancy in input
statistics) but are applied even at cortical sensory stations.



1 Introduction

How do groups of sensory neurons interact to code information and how do these
interactions change along the ascending sensory pathways ? One view is that sensory
systems are composed of a series of processing stations, representing more and more
complex aspects of sensory inputs. Among the computational principles proposed
to govern the mapping between these stations are the transformation to sparse and
distributed representations, information maximization and redundancy reduction
[1, 7]. These ideas provide a computational framework to investigate changes in
the neural code along the sensory hierarchy. In order to investigate such changes
in practice, one has to develop methods to quantify interactions among groups of
neurons, and compare these measures in various processing stations of a sensory
system.

Interactions and high order correlations between neurons were mostly investigated
within single brain areas on the level of pairs of cells, showing both synergistic
and redundant interactions [5, 6, 4]. The current study focuses on developing re-
dundancy measures for larger groups of neurons and comparing these measures in
different processing stations.

To this end we use an information theoretic approach and identify a case for which
redundancy may be measured more reliably even for groups of neurons. We then
apply our measures to electro-physiological recordings from two auditory stations:
the inferior colliculus and the primary auditory cortex, and use complex acoustic
stimuli that are critical for the investigation of auditory cortical coding [8].

2 Redundancy measures for groups of neurons

To investigate high order correlations and interactions within groups of neurons
we start by defining information measures for groups of cells and then develop
information redundancy measures for such groups. The properties of these measures
are then further discussed for the specific case of stimulus-conditioned independence.

Formally, high order correlations between two variables X and Y are quantified
in terms of their mutual information (MI) [11, 3]. This well known quantity, now
widely used in analysis of neural data, is defined by

I(X;Y ) = DKL[P (X,Y )||P (X)P (Y )] =
∑
x,y

p(x, y)log
(
p(x, y)
p(x)p(y)

)
(1)

and measures how close the joint distribution P (X,Y ) is to the factorization by the
marginal distributions P (X)P (Y ) (DKL is the Kullback Leiber divergence [3]).

For larger groups of cells, an important generalized measure quantifies the infor-
mation that several variables provide about each other. This multi information
measure is defined as

I(X1, ..., Xn) = DKL[P (X1, ..., Xn)||P (X1)...P (Xn)] = (2)

=
∑

x1,...,xn

p(x1, ..., xn)log
(
p(x1, ..., xn)
p(x1)...p(xn)

)
.

Similar to the mutual information case, the multi information measures how close
the joint distribution is to the factorization by the marginals, and is always positive.

We now turn to develop measures for group redundancies. Consider first the simple



case of a pair of neurons (X1, X2) conveying information about the stimulus S, for
which the redundancy-synergy index ([2, 4]) is defined by

RSpairs(X1, X2, S) = I(X1, X2;S)− [I(X1;S) + I(X2;S)] (3)

Intuitively, RSpairs measures the amount of information on the stimulus S gained
by observing the joint distribution of both X1 and X2, as compared with observing
the two cells independently. In the extreme case where X1 = X2, the two cells
are completely redundant and provide the same information about the stimulus,
yielding RSpairs = I(X1, X2;S)−I(X1;S)−I(X2;S) = −I(X1;S), which is always
non-positive. On the other hand, positive RSpairs values testify for synergistic
interaction between X1 and X2 ([2, 4]).

For larger groups of neurons, two different measures of redundancy-synergy should
be considered. The first measure quantifies the residual information obtained from a
group of N neurons compared to all its N−1 subgroups. As with inclusion-exclusion
calculations this measure takes the form of a telescopic sum

RSN |N−1 = I(XN ;S)−
∑

{XN−1}

I(XN−1;S) + ...+ (−1)N−1
∑
{Xi}

I(Xi;S) (4)

where {Xk} are all the subgroups of size k out of the N available neurons . This
measure may obtain positive (synergistic), vanishing (independent), or negative
(redundant) values. Unfortunately, it involves 2N information terms, making its
calculation unfeasible even for moderate N values 1.

A different RS measure quantifies the information embodied in the joint distribution
of N neurons compared to that provided by N single independent neurons, and is
defined by

RSN |1 = I(X1, ..., XN ;S)−
N∑
i=1

I(Xi;S) (5)

Interestingly, this synergy-redundancy measure may be rewritten as the difference
between two multi-information terms

RSN |1 = I(X1, ..., XN ;S)−
N∑
i=1

I(Xi;S) = (6)

= H(X1, ..., XN )−H(X1, ..., XN |S)−
N∑
i=1

H(Xi)−H(Xi|S) =

= I(X1; ...;XN |S)− I(X1; ...;XN )

where H(X) = −
∑
x p(x)log(p(x)) is the entropy of X 2. We conclude that the

index RSN |1 can be separated into two terms: one that is always non-negative,
and measures the coding synergy, and the second which is always non-positive and
quantifies the redundancy among the group of neurons. The current work focuses
on the latter redundancy term I(X1; ...;XN ).

1Our results below suggest that some redundancy effects become significant only for
groups larger than 10-15 cells.

2When comparing redundancy in different processing stations, one must consider
the effects of the baseline information conveyed by each set of neurons. We thus use
the normalized redundancy (compare with [10] p.315 and [2]) defined by RSN|1 =(
I(X1, ...,XN ;S)−

∑N

i=1
I(Xi;S)

)
/I(X1; ...;XN ;S) .



The formulation of RSN |1 in equation 6 proves highly useful in the case where neural
activities are independent given the stimulus P ( ~X|S) = ΠN

i=1P (Xi|S). In such
scenario, the first (synergy) term vanishes, thus limiting neural interactions to the
redundant regime. More importantly, under the independence assumption we only
have to estimate the marginal distributions P (Xi|S = s) for each stimulus s instead
of the full distribution P ( ~X|S = s). It thus allows to estimate an exponentially
smaller number of parameters, which in our case of small sample sizes, provides more
accurate information estimates. This approximation hence allows to investigate
redundancy among considerably larger groups of neurons than the two-three neurons
considered in the literature.

How reasonable is the conditional-independence approximation ? It is fully accurate
in the case of non-simultaneous recordings which is indeed the case in our data. The
approximation is also reasonable whenever neuronal activity is mostly determined
by the presented stimulus and to a lesser extent by interactions with nearby neurons,
but the experimental evidence in this regard is mixed (see e.g.[6]). To summarize,
the stimulus-conditioned independence assumption limits us to interactions in the
redundant regime, but allows us to compare the extent of redundancy among large
groups of cells in different brain areas.

3 Experimental Methods

To investigate redundancy in the auditory pathway, we analyze extracellular record-
ings from two brain areas of Halothane anesthetized cats: 16 cells from the Inferior
Colliculus (IC) - the third processing station of the ascending auditory pathway
- and 19 cells from the Primary Auditory Cortex (A1) - the fifth station. Neu-
ral activity was recorded non-simultaneously from a total of 6 different animals
responding to a fixed set of stimuli. Because cortical auditory neurons respond
considerably different to simplified and complex stimuli [8], we refrain from using
artificial over-simplified acoustic stimuli but instead use a set of stimuli based on
bird vocalizations which contains complex ’real-life’ acoustic features. A represen-
tative example is shown in figure 1.

Figure 1: A representative stimulus containing a short bird vocalization recorded in
a natural environment. The set of stimuli consisted of similar natural and modified
recordings. A. Signal in time domain B. Signal in frequency domain.

4 Experimental Results

In order to estimate in practice the information content of neural activity, one must
assume some representation of neural activity and sensory inputs. In this paper
we consider two extreme cases: coding acoustics with single spikes and coding the
stimulus identity with spike counts.



4.1 Coding acoustics with single spikes

The current section focuses on the relation between single spikes and short windows
of the acoustic stimuli shortly preceding them (which we denote as frames). As the
set of possible frames is very large and no frame actually repeats itself, we must
first pre-process the stimuli to reduce frames dimensionality.

To this end, we first transform the stimuli into the frequency domain (roughly ap-
proximating the cochlear transformation) and then extract overlapping windows
of 50 millisecond length, with 1 millisecond spacing. This set is clustered into
32 representatives, which capture different acoustic features in our stimulus set.
This representation allows us to estimate the joint distribution (under the stimulus-
conditioned independence assumption) of cells activity and stimuli, for groups of
cells of different sizes. Figure 2 shows the incremental mutual information as a
function of number of cells for both A1 and IC neurons, compared with the aver-
age information conveyed by single cells. The difference between these two lines
measures the redundancy RSN |1 of equation 6. The information conveyed by IC
neurons saturates already with 15 cells, exhibiting significant redundancy for groups
larger than 10 cells. More importantly, single A1 neurons provide less information
(note the y-axis scale) but their information sums almost linearly.

A. Primary Auditory Cortex B. Inferior Colliculus

Figure 2: Information about stimulus frames as a function of group size. Information
calculation was repeated for several subgroups of each size, and with several random
seed initializations. The dark linear curve depicts the average information provided
by neurons treated independently k

N

∑
i I(Xi) while the curved line depicts average

information from joint distribution of sets of neurons Mean[I(X1, ...Xk;S)]. All
information estimations were corrected for small-samples bias by shuffling methods
[9].

4.2 Coding stimuli by spike counts

We now turn to investigate a second coding paradigm, and calculate the information
conveyed by A1 and IC spike counts about the identity of the presented
stimulus. To this end, we calculate a histogram of spike counts and estimate the
counts’ distribution as obtained from repeated presentations of the stimuli.

Figure 3A depicts MI distribution obtained from single cells and figure 3B presents
the distribution of redundancy values among all cell-pairs (equation 3) in IC and
A1. As in the case of coding with single spikes, single A1 cells convey on average
less information about the stimulus. However, they are also more independent,
thus allowing to gain more information from groups of neurons. IC neurons on
the other hand, provide more information when considered separately but are more
redundant.



To illustrate the high information provided by both sets, we trained a neural network
classifier that predicts the identity of the presented stimulus according to spike
counts of a limited set of neurons. Figure 4 shows that both sets of neurons achieve
considerable prediction accuracy, but IC neurons obtain average accuracy of more
than 90 percent already with five cells, while the average prediction accuracy using
cortical neurons rises continuously 3.

A. Single Cell Information B. Pairwise redundancy

Figure 3: A. Distribution of MI across cells. A1 cells (light bars) convey slightly
less information on average than IC neurons. B. Distribution of the normalized
redundancy . A1 pairs (light bars) are concentrated near zero, while IC pairs have
significantly higher redundancy values. Spike counts were collected over a window
that maximizes overall MI. Number of bins in counts-histogram was optimized sep-
arately for each stimulus and every cell. Information estimations were corrected for
small-samples bias by shuffling methods [9].

Figure 4. Prediction accuracy of
stimulus identity as a function of
number of cells used by the classi-
fier. Error bars denote standard de-
viation across several subgroups of
the same size. For each subgroup, a
one-hidden layer neural network was
trained separately for each stimulus
using some stimulus presentations as
a training set and the rest for test-
ing. Performance reported is for the
testing set.

5 Discussion

We have developed information theoretic measures of redundancy among groups of
neurons and applied them to investigate the collaborative coding efficiency in the
auditory modality. Under two different coding paradigms, we show differences in
both information content and group redundancies between IC and cortical auditory

3The probability of accurate prediction is exponentially related to the input-output
mutual information, via the relation Pcorrect = exp(−missing nats) yielding MInats =
ln(no. of stimuli) + ln(Pcorrect). Classification thus provides lower bounds on information
content.



neurons. Single IC neurons carry more information about the presented stimulus,
but are also more redundant. On the other hand, auditory cortical neurons carry
less information but are more independent, thus allowing information to be summed
almost linearly when considering groups of few tens of neurons. The results provide
for the first time direct evidence for redundancy reduction along the ascending
auditory pathway, as has been hypothesized by Barlow [1]. The redundancy effects
under the single-spikes coding paradigm are significant only for groups larger than
ten cells, and cannot be revealed with the standard redundancy measures that use
only pairs of cells.

Our results suggest that redundancy reduction transformations are not limited to
low level sensory processing (aimed to reduce redundancy in input statistics) but are
applied even at cortical sensory stations. We suggest that an essential experimental
prerequisite to reveal these effects is the use of complex acoustic stimuli whose
processing occurs at the cortical stations.

The above findings are in agreement with the view that along the ascending sensory
pathways, the number of neurons increase, their firing rates decrease, and neurons
become tuned to more complex and independent features. Together, these suggest
that the neural representation is mapped into a representation with higher effec-
tive dimensionality. Interestingly, recent advances in kernel-methods learning have
shown that nonlinear mapping into higher dimension and over-complete represen-
tations may be useful for learning of complex classifications. It is therefor possible
that such mappings provide easier readout and more efficient learning in the brain.
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