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Abstract

In this paper we revisit the classical neuroscience paradigm of Hebbian
learning. We find that a necessary requirement for effective associative mem-
ory learning is that the efficacies of the incoming synapses should be uncor-
related. This is difficult to achieve in a robust manner by Hebbian synaptic
learning, since it depends on network level information. Effective learning
can yet be achieved by a neuronal process that maintains a zero sum of the
incoming synaptic efficacies. This normalization drastically improves the
memory capacity of associative networks, from an essentially bounded ca-
pacity to one that linearly scales with the network’s size. Such neuronal nor-
malization can be successfully carried out by activity-dependent homeostasis
of the neuron’s synaptic efficacies, which was recently observed in cortical
tissue. Thus, our findings strongly suggest that effective associative learning
with Hebbian synapses alone is biologically implausible and that Hebbian
synapses must be continuously remodeled by neuronally-driven regulatory
processes in the brain.
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1 Introduction
Synapse-specific changes in synaptic efficacies, carried out by long-term potentiation (LTP)

and depression (LTD) [Bliss and Collingridge, 1993], are thought to underlie cortical self-

organization and learning in the brain. In accordance with the Hebbian paradigm, LTP

and LTD modify synaptic efficacies as a function of the firing of pre and post synaptic

neurons. In this paper we revisit the Hebbian paradigm, studying the role of Hebbian

synaptic changes in associative memory storage, and their interplay with neuronally driven

processes that modify the synaptic efficacies.

The importance of neuronally driven normalization processes has already been demon-

strated in the context of self-organization of cortical maps [Miller and MacKay, 1994, von der

Malsburg, 1973] and in continuous unsupervised learning as in principal-component-analysis

networks [Oja, 1982]. In these scenarios normalization is necessary to prevent the excessive

growth of synaptic efficacies that occurs when learning and neuronal activity are strongly

coupled. This paper focuses on associative memory learning where this excessive synaptic

runaway growth is mild [Massica and Ruppin, 1998], and shows that even in this more

simple learning paradigm, normalization processes are essential. Moreover, while numerous

normalization procedures can prevent synaptic runaway, our analysis shows that a specific

neuronally-driven correction procedure that preserves the total sum of synaptic efficacies is

essential for effective memory storage.

The following section describes the associative memory model and derives constraints on

effective synaptic learning rules. Section 3 describes the main result of this paper, a neuronal

weight correction mechanism that can modify synaptic efficacies towards maximization of

memory capacity. Section 4 presents a biologically plausible realization of the neuronal

normalization mechanism in terms of neuronal regulation. Our results are discussed in the

last section.

2 Effective Synaptic Learning rules

We study the computational aspects of associative learning in a model of low-activity asso-

ciative memory network with binary firing {0, 1} neurons. M uncorrelated memory patterns
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{ξµ}Mµ=1 with coding level p (fraction of firing neurons) are stored in an N neurons network.

The ith neuron updates its firing state Xt
i at time t by

Xt+1
i = θ(f ti ), f ti =

1
N

N∑
j=1

WijX
t
j − T, θ(f) =

1 + sign(f)
2

, (1)

where fi is its input field (postsynaptic potential) and T is its firing threshold. The synaptic

weight Wij between the jth (presynaptic) and ith (postsynaptic) neurons is determined by

a general additive synaptic learning rule depending on the neurons’ activity in each of the

M stored memory patterns ξη

Wij =
M∑
η=1

A(ξηi , ξ
η
j ) , (2)

where A(ξηi , ξ
η
j ) is a two-by-two synaptic learning matrix that governs the incremental modi-

fications to a synapse as a function of the firing of the presynaptic (column) and postsynaptic

(row) neurons
presynaptic (ξj)

A(ξi, ξj) = postsynaptic (ξi)
1 0

1 α β

0 γ δ

.

In conventional biological terms, α denotes an increment following a long-term potentia-

tion (LTP) event, β denotes a heterosynaptic long-term depression (LTD) event, and γ a

homosynaptic LTD event.

The parameters α, β, γ, δ define a four dimensional space in which all linear additive

Hebbian learning rules reside. However, in order to visualize this space, one may represent

these Hebbian learning rules in a reduced, two-dimensional space utilizing a scaling invari-

ance constraint and the requirement that the synaptic matrix should have a zero mean

(otherwise the synaptic values diverge, the noise overshadows the signal term and no re-

trieval is possible [Dayan and Willshaw, 1991]). These yield the following rule, having two

free parameters (xD, xP ) only
presynaptic (ξj)

A(ξi, ξj) = postsynaptic (ξi)
1 0

1 xP xD
0 c f(xP , xD, c)

where c is a scaling constant and f(xP , xD, c) = −1
(1−p)2

[
p2xP + p(1− p)(c+ xD)

]
.
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A. Memory capacity B. Synaptic covariance

C. Memory capacity of effective learning rules

Figure 1: A. Memory capacity of a 1000-neurons network for different values of xP and

xD as obtained in computer simulations. Capacity is defined as the maximal number of

memories that can be retrieved with overlap bigger than m = 0.95 when presented with

a degraded input cue with overlap m0 = 0.8. The overlap mη (or similarity) between the

current network’s activity pattern X and the memory pattern ξη serves to measure retrieval

acuity and is defined as mη = 1
p(1−p)N

∑N
j=1(ξηj − p)Xj . The coding level is p = 0.05. B.

Covariance between two synapses on the post synaptic neuron, as calculated analytically.

Zero covariance is obtained when xP = xD
1−p
−p . C. Memory capacity of the effective learning

rules. The peak values on the ridge of Figure A, are displayed by tracing their projection

on the xD coordinate. The optimal learning rule A(ξi, ξj) = (ξi − p)(ξj − p) calculated by

[5] (marked with an arrow) performs only slightly better than other effective learning rules.
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Figure 1A plots the memory capacity of the network as a function of the two free

parameters xP and xD. It reveals that considerable memory storage may be obtained only

along an essentially one dimensional curve, naturally raising the possibility of identifying

an additional constraint on the relations between (α, β, γ, δ). Such a constraint is revealed

by a signal-to-noise analysis of the neuronal input field fi during retrieval

Signal

Noise
=

E(fi|ξi = 1)− E(fi|ξi = 0)√
V ar(fi)

∝
√
N√

V ar [Wij ] +NpCOV [Wij ,Wik]
= (3)

=
√
N/M√

V ar [A(ξi, ξj)] +NpCOV [A(ξi, ξj), A(ξi, ξk)]
.

As evident from equation (3), when the postsynaptic covariance COV [A(ξi, ξj), A(ξi, ξk)]

(determining the covariance between the incoming synapses of the postsynaptic neuron) is

positive, the network’s memory capacity is bounded, i.e., it does not scale with the network

size. As the postsynaptic covariance is non negative (see appendix A), effective learning

rules that obtain linear scaling of memory capacity as a function of the network’s size

require a vanishing postsynaptic covariance. Intuitively, when the synaptic weights are cor-

related, adding any new synapse contributes only little new information, thus limiting the

number of beneficial synapses that help the neuron estimate whether it should fire or not.

Figure 1B plots the postsynaptic covariance for the values of the free parameters (xP , xD)

enumerated in Figure 1A, showing that it is indeed the covariance that limits the network

performance with non-optimal learning rules. Figure 1C depicts the memory capacity of

the effective synaptic learning rules that lie on the essentially one-dimensional ridge ob-

served in Figure 1A. It shows that all these effective rules are only slightly inferior to the

optimal synaptic learning rule calculated previously by [Dayan and Willshaw, 1991], which

maximizes memory capacity.

In addition to the known zero-mean constraint on the neuron’s input field, the vanishing

covariance constraint on effective learning rules implies a new requirement concerning the

balance between synaptic depression and facilitation: xD = −p
1−p xP . Thus, effective mem-

ory storage requires a delicate balance between LTP (xP ) and heterosynaptic depression

(xD). These two constraints make effective memory storage explicitly dependent on the

coding level p which is a global property of the network. It is thus difficult to see how
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effective rules can be implemented at the synaptic level. Moreover, as shown in Figure

1A, Hebbian learning rules lack robustness as small perturbations from the effective rules

may result in large decrease in memory capacity. Furthermore, it is important to note

that these problems cannot be circumvented by introducing a nonlinear Hebbian learning

rule of the form Wij = g
(∑

η A(ξηi , ξ
η
j )
)

as even for a nonlinear function g the covariance

Cov
[
g(
∑
η A(ξηi , ξ

η
j )), g(

∑
η A(ξηi , ξ

η
k))
]

remains positive if Cov(A(ξi, ξj), A(ξi, ξk)) is posi-

tive (see Appendix B). These observations show that effective associative learning with

Hebbian rules alone is implausible from a biological standpoint requiring locality of infor-

mation.

3 Effective Learning via Neuronal Weight Correction

The above results show that in order to obtain effective memory storage, the post-synaptic

covariance must be kept negligible. How then may effective storage take place in the brain

with Hebbian learning? We now proceed to show that a neuronally-driven procedure (es-

sentially similar to that assumed by [von der Malsburg, 1973, Miller and MacKay, 1994] to

take place during self-organization) can maintain a vanishing covariance and enable effec-

tive memory storage by acting upon ineffective Hebbian synapses and turning them into

effective ones.

3.1 The Neuronal Weight Correction Procedure

The solution emerges when rewriting the signal-to-noise equation (Eq. 3) as

Signal

Noise
∝ N√

NV ar [Wij ] (1− p) + pV ar(
∑N
j=1Wij)

. (4)

showing that the post synaptic covariance can be greatly diminished when the variance of

the sum of incoming synapses is vanishing. (see Eq (11) in appendix A) We thus propose

that during learning, as a synapse is modified, its postsynaptic neuron additively modifies

all its synapses to maintain the sum of their efficacies at a baseline zero level. As this

neuronal weight correction is additive, it can be performed either after each memory

pattern is stored or at a later time after several memories have been stored.
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Interestingly, the joint operation of weight correction over a linear Hebbian learning

rule is equivalent to the storage of the same set of memory patterns with another Hebbian

learning rule. This new rule has a zero-covariance learning matrix, as follows

1 0
1 α β

0 γ δ

=⇒
1 0

1 (α− β)(1− p) (α− β)(0− p)
0 (γ − δ)(1− p) (γ − δ)(0− p)

.

To intuitively see this, focus on a firing neuron in the current memory pattern. When

an LTP event occurs, the pertaining synaptic efficacy is strengthened by α, thus all other

synaptic efficacies must be reduced by α
N to keep their sum fixed. As there are on average

Np LTP events for each memory, all incoming synaptic efficacies will be reduced by αp.

This and a similar calculation for quiescent neurons yields the synaptic learning matrix

displayed on the right. It should be emphasized that the matrix on the right is not applied

at the synaptic level but is the emergent result of the operation of the neuronal mechanism

on the matrix on the left, and is used here as a mathematical tool to analyze network’s per-

formance. Thus, using a neuronal mechanism that maintains the sum of incoming synapses

fixed enables the same level of effective performance as would have been achieved by using a

zero-covariance Hebbian learning rule, but without the need to know the memories’ coding

level. Note also that neuronal weight correction applied to the matrix on the right will

result in the same matrix, thus no further changes will occur with its re-application.

3.2 An Example

To demonstrate the beneficiary effects of neuronal weight correction we have applied it to a

non-effective rule having non-zero covariance. In particular, we have investigated a common

realization of the Hebb rule A(ξi, ξj) = ξiξj with inhibition added to obtain a zero-mean

input field (otherwise the capacity vanishes) yielding A(ξi, ξj) = ξiξj − p2 [Tsodyks, 1989],

or in matrix form

Zero-mean Hebb rule
1 0

1 1− p2 −p2

0 −p2 −p2

.
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As evident, this learning rule employs both homo-synaptic and hetero-synaptic LTD main-

taining a zero mean synaptic matrix, but its postsynaptic covariance is non-zero and is thus

still an ineffective rule. Applying neuronal weight correction to the synaptic matrix formed

by this rule results in a synaptic matrix which is identical to the one generated without

neuronal correction by the following rule

Neuronally corrected Hebb rule
1 0

1 1− p −p
0 0 0

which has both zero mean and zero postsynaptic covariance. Figure 2 plots the memory

capacity obtained with the zero mean Hebb rule, before and after neuronal weight correction,

as a function of the network’s size. The memory capacity of the original zero-mean Hebb

rule is essentially bounded, while after applying neuronal weight correction it scales linearly

with the network’s size.

Figure 2: Network capacity as a function of network size. While the original zero-mean

learning rule has bounded memory capacity, the capacity becomes linear in the network’s

size when the same learning rule is coupled with weight correction. The lines plot analytical

results and the squares designate simulation results (p = 0.05).
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Figure 3 shows that the beneficial effect of the neuronal correction remains marked for

a wide range of coding level values p.

Figure 3: Comparison of network memory capacity for memory patterns with different

values of the coding level p. All memories were stored in a network of N = 5000 neurons.

The effect of neuronal correction is marked for a wide range of the p values, especially in

the low coding levels observed in the brain. The lines plot analytical results and the squares

designate simulation results.

4 Neuronal Regulation Implements Weight Correction

The proposed neuronal algorithm relies on the availability of explicit information about the

total sum of synaptic efficacies at the neuronal level. Several mechanisms for conservation

of the total synaptic strength have been proposed [Miller, 1996]. However, as explicit

information on the synaptic sum may not be available, we turned to study the possibility

that the total synaptic sum is regulated indirectly by estimating the neuronal average

postsynaptic potential with a Neuronal Regulation (NR) mechanism [Horn et al., 1998].

NR maintains the homeostasis of neuronal activity by regulating the postsynaptic activity

(input field fi) of the neuron around a fixed baseline. This homeostasis is achieved by

multiplying the neuron’s incoming synaptic efficacies by a common factor such that changes
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in the postsynaptic potential are counteracted by inverse changes in the synaptic efficacies.

Such activity-dependent scaling of quantal amplitude of excitatory synapses, which acts to

maintain the homeostasis of neuronal firing in a multiplicative manner, has already been

observed in cortical tissues by [Turrigano et al., 1998, Rutherford et al., 1998]. These studies

complement their earlier studies showing that neuronal postsynaptic activity can be kept

at fixed levels via activity-dependent regulation of synaptic conductances [LeMasson et al.,

1993, Turriango et al., 1994].

We have studied the performance of NR-driven correction in an excitatory-inhibitory

memory model where excitatory neurons are segregated from inhibitory ones in the spirit

of Dale’s law [Horn et al., 1998, Chechik et al., ]. This model is similar to our basic model,

except that Hebbian learning takes place on the excitatory synapses

Wij =
M∑
η=1

A(ξηi , ξ
η
j ) , (5)

with a learning matrix A that has a positive mean E(A) = a. The input field is now

f ti =
1
N

N∑
j=1

W excit
ij Xt

j −W inhib
i

N∑
j=1

Xt
j , (6)

replacing the original term in Equation (1). When Winhib = Ma, this model is mathemati-

cally equivalent to the model described above in Eqs. 2 - 1.

NR is performed by repeatedly activating the network with random input patterns, and

letting each neuron estimate its input field. During this process, each neuron continuously

gauges its average input field f ti around a zero mean by slowly modifying its incoming

excitatory synaptic efficacies in accordance with

κ
dW excit

ij (t′)
dt′

= −W excit
ij (t′)f ti . (7)

When all W excit are close to a large mean value, multiplying all weights by a common factor

approximates an additive change 1. Figure 4 plots the memory capacity of networks storing

memories according to the Hebb rule W excit
ij =

∑M
η=1A(ξηi , ξ

η
j ) =

∑M
η=1 ξ

η
i ξ
η
j , showing how

1The above learning rule results in synapses that are are normally distributed, N(Mp2, (
√
Mp(1− p))2),

therefor all synapses reside relatively close to their mean when M is large. We may thus substitute Wij(t
′) =

Mp2 + ε in Eq. (7) yielding Wij(t
′ + 1) = Wij(t

′) + d
dt′Wij(t

′)/κ = (Mp2 + ε)(1− fi/κ). As fi/κ and ε are
small, this is well approximated by Wij(t‘)−Mp2fi/k
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NR, which approximates the additive neuronal weight correction, succeeds in obtaining a

linear growth of memory capacity as long as the inhibitory synaptic weights are close to the

mean excitatory synaptic values (i.e., the zero synaptic mean constraint is obeyed).

Figure 4: Memory capacity of networks storing patterns via the Hebb rule. Applying NR

achieves a linear scaling of memory capacity with a slightly inferior capacity compared with

that obtained with neuronal weight correction. Memory capacity is measured as in Figure

2, after the network has reached a stable state. W inhib
i is normally distributed with a mean

of E(W excit) = p2M and a standard deviation of 0.1p2M0.5, where p = 0.1.

Figure 5 plots the temporal evolution of the retrieval acuity (overlap) and the aver-

age postsynaptic covariance, showing that NR slowly removes the interfering covariance,

improving memory retrieval.
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Figure 5: The temporal evolution of retrieval acuity and average postsynaptic covariance

in a 1000-neurons network. 250 memories are first stored in the network using the Hebb

rule, resulting in a poor retrieval acuity (m ≈ 0.7 at t = 0 in the upper figure). However,

as NR is iteratively applied to the network, the retrieval acuity gradually improves as the

post-synaptic covariance vanishes. p = 0.1, κ = 0.1, other parameters as in Figure 4.

5 Discussion

The characterization of effective synaptic learning rules reopens the discussion of the compu-

tational role of heterosynaptic and homosynaptic depression. Previous studies have shown

that long-term synaptic depression is necessary to prevent saturation of synaptic values

[Sejnowski, 1977], and to maintain zero mean synaptic efficacies [Willshaw and Dayan,

1990]. Our study shows that proper heterosynaptic depression is needed to enforce zero

postsynaptic covariance - an essential prerequisite of effective learning. The zero covariance

constraint implies that the magnitude of heterosynaptic depression should be smaller than

that of homosynaptic potentiation by a factor of (1− p)/p. However, effective learning can

be obtained regardless of the magnitude of the homosynaptic depression changes, as long

as the zero mean constraint stated above is satisfied.

The terms potentiation/depression used in the above context should be cautiously inter-

preted: As neuronal weight normalization may modify synaptic efficacies in the brain, the

apparent changes in synaptic efficacies measured in LTD/LTP experiments may involve two
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kinds of processes: Synaptic-driven processes, changing synapses according to the covari-

ance between pre and post synaptic neurons, and neuronally-driven processes, operating

to zero the covariance between incoming synapses of the neuron. Although our analysis

pertains to the combined effect of these processes, they may be experimentally segregated

as they operate on different time scales and modify different ion channels ([Bear and Abra-

ham, 1996, Turrigano et al., 1998]). Thus, the relative weights of neuronal versus synaptic

processes can be experimentally tested by studying the temporal changes in synaptic ef-

ficacy following LTP/LTD events, and comparing them with the theoretically predicted

potentiation and depression end values.

This paper highlights the role of neuronally-driven synaptic plasticity in remodeling

synaptic efficacies during learning. Our findings show that the combined action of synaptic-

specific and neuronally-guided synaptic modifications yields a robust learning system. This

allows for the usage of biologically feasible but ineffective synaptic learning rules, as long as

they are further modified and corrected by neurally driven weight correction. Several forms

of synaptic constraints were previously suggested in the literature to improve the stability

of Hebbian learning - such as preserving the sum of synaptic strengths or the sum of their

squares [von der Malsburg, 1973, Oja, 1982]. Our analysis shows that in order to obtain

effective memory storage it is the sum of synaptic strengths which must be preserved, thus

predicting that it is this specific form of normalization that occurs in the brain. While the

previously suggested normalization techniques can be well approximated by synaptic rules,

associative memory learning requires neuronally-driven processes that govern the synaptic

changes.

Our results, obtained within the paradigm of autoassociative memory networks, apply

also to hetero-associative memory networks. More generally, neuronal weight correction

qualitatively improves the ability of a neuron to correctly discriminate between a large

number of input patterns. It thus enhances the computational power of the single neuron

and may be applied in other learning paradigms. This interplay between cooperative and

competitive synaptic changes is likely to plays a fundamental computational role in a variety

of brain functions such as visual processing and associative learning.
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Appendices

A Signal-To-Noise Calculation Of The Neuronal Input Field
For A General Learning matrix

We calculate the signal-to-noise ratio of a network storing memory patterns according to a

learning matrix A with zero mean E(A(ξi, ξj)) = 0. The network is initialized in a state

with overlap m0 with memory pattern ξ1 and with activity p (the overlap with the other

patterns is assumed to be negligible). Let ε = P (Xi = 0|ξi = 1) implying an initial overlap

of m0 = (1−p−ε)
(1−p) . Denoting W ∗ij = Wij −A(ξ1

i , ξ
1
j ) the conditional mean of the neuron input

field is

E
[
fi|ξ1

i

]
= E

 1
N

N∑
j=1

WijXj |ξ1
i

 = (8)

= E

 1
N

N∑
j=1

A(ξ1
i , ξ

1
j )Xj |ξ1

i

+ E

 1
N

N∑
j=1

W ∗ijXj |ξ1
i

 =

= E

 1
N

N∑
j=1

A(ξ1
i , ξ

1
j )Xj |ξi

 =

= A(ξ1
i , 1)P (Xj = 1|ξj = 1)P (ξj = 1) +

+A(ξ1
i , 0)P (Xj = 1|ξ1

j = 0)P (ξ1
j = 0) =

= A(ξ1
i , 1)(1− ε)p+A(ξ1

i , 0)εp .

The variance is

V ar [fi| ξ1
i ] = V ar

 1
N

N∑
j=1

WijXj

 ≈ V ar
 1
N

N∑
j=1

W ∗ijXj

 = (9)

=
1
N
V ar

[
W ∗ijXj

]
+ COV

[
W ∗ijXj ,W

∗
ikXk

]
=

=
M

N
p V ar [A(ξi, ξj)] +Mp2 Cov [A(ξi, ξj), A(ξi, ξk)] .

The neuronal field’s noise is thus dominated by the covariance between its incoming synaptic

weights. The signal-to-noise ratio of the neurons input field is

Signal

Noise
=

E(fi|ξi = 1)− E(fi|ξi = 0)√
V ar(fi|ξi)

= (10)

=

√
N

M

[A(1, 1)−A(0, 1)](1− ε) + [A(1, 0)−A(0, 0)]ε√
V ar [A(ξi, ξj)] +NpCov [A(ξi, ξj), A(ξi, ξk)]

.
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When the postsynaptic covariance is zero, the signal-to-noise ratio remains constant as

M grows linearly with N , thus implying a linear memory capacity. However, when the

covariance is a positive constant, the term on the right is almost independent of N , and the

memory capacity is bounded. The variance can also be presented as

V ar [fi| ξ1
i ] ≈ V ar

 1
N

N∑
j=1

W ∗ijXj

 = (11)

=
1
N2

 N∑
j=1

N∑
k=1,k 6=j

Cov(W ∗ij ,W
∗
ik)

E2(Xj) +
1
N2

 N∑
j=1

V ar(W ∗ij)

E(Xj) =

=
p2

N2
V ar(

N∑
j=1

W ∗ij)−
p2

N
V ar(W ∗ij) +

p

N
V ar(W ∗ij)p =

=
1
N
p(1− p)V ar

[
W ∗ij

]
+

p2

N2
V ar(

N∑
j=1

W ∗ij) ,

thus, keeping the sum of the incoming synapses fixed results in a beneficial effect similar to

that of removing postsynaptic covariance, and further improves the signal-to-noise ratio by

a factor of 1√
1−p . The postsynaptic sum (

∑
W ∗ij) remains fixed if each memory pattern has

exactly pN firing neurons out of the N neurons of the network.

The covariance of a learning matrix with scaling invariant c = 1 and zero mean is

Cov [A(ξi, ξj), A(ξi, ξk)] =
p

(1− p)
[p xP + (1− p)xD]2 (12)

that is always non-negative and equals zero only when

xD =
−p

1− p
xP . (13)

B The Postsynaptic Covariance of Non-Additive Learning
Rules

In this section we show that the postsynaptic covariance cannot be zeroed by introducing

a non-additive learning rules of the form

Wij = g

 M∑
η=1

A(ξηi , ξ
η
j )

 (14)

for some nonlinear function g.
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To show that, note that when X,Y are positively correlated random variables with

marginal standard normal distribution and E(g(X)) = 0, we can write (using independent

normally distributed random variables U, V,W )

E [g(X)g(Y )] = E [g(U + V )g(W + V )] = (15)

= E [E(g(U + V )g(W + V )|V )] =

= E
[
E(g(U + V )|V )2

]
=

= V ar [E(g(U + V )|V )] ≥ 0.

Equality holds only when φ(v) = E(g(U +V )|V = v) = E(g(U + v)) is a constant function,

as such it must be zero because E(g(X)) = 0. To further show that the equality holds only

when g is constant, we look at

0 = E(g(U + v)) = (16)

=
∫ 1√

2πσ
g(v + u)e

−u2

2σ2 du =

= e−
v2

2σ2
1√
2πσ

∫
e
vt
σ2 g(t)e−

t2

2σ2 dt ,

or Ψ(v) =
∫
e
vt
σ2 g(t)e−

t2

2σ2 dt ≡ 0. As Ψ(v) = 0 is the Laplace transform of g(t)e−
t2

2σ2 , g

is almost everywhere uniquely determined and the solution g = 0 is essentially the only

solution.
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