
Discrete profile comparison using information bottleneck

Sean O’Rourke∗1, Gal Chechik2 , Robin Friedman1 and Eleazar Eskin1

1Department of Computer Science and Engineering,University of California San Diego, 9500 Gilman Dr.,San Diego, CA 92093
2Department of Computer Science, Stanford University,353 Serra Mall,Stanford University,Stanford CA 94305

Email: Sean O’Rourke∗- seano@cs.ucsd.edu; Gal Chechik - gal@stanford.edu; Robin Friedman - rcfriedm@ucsd.edu; Eleazar Eskin -

eeskin@cs.ucsd.edu;

∗Corresponding author

Abstract

Sequence homologs are an important source of information about proteins. Amino acid profiles, representing
the position-specific mutation probabilities found in profiles, are a richer encoding of biological sequences than the
individual sequences themselves. However, profile comparisons are an order of magnitude slower than sequence
comparisons, making profiles impractical for large datasets. Also, because they are such a rich representation,
profiles are difficult to visualize. To address these problems, we describe a method to map probabilistic profiles to
a discrete alphabet while preserving most of the information in the profiles. We find an informationally optimal
discretization using the Information Bottleneck approach (IB). We observe that an 80-character IB alphabet
captures nearly 90% of the amino acid occurrence information found in profiles, compared to the consensus
sequence’s 78%. Distant homolog search with IB sequences is 88% as sensitive as with profiles compared to 61%
with consensus sequences (AUC scores 0.73, 0.83, and 0.51, respectively), but like simple sequence comparison,
is 30 times faster. Discrete IB encoding can therefore expand the range of sequence problems to which profile
information can be applied to include batch queries over large databases like SwissProt, which were previously
computationally infeasible.

Introduction

One of the most powerful techniques in protein anal-
ysis is the comparison of a target amino acid se-
quence with phylogenetically related or homologous
proteins. Such comparisons can give insight into
which portions of the protein are important by re-
vealing the parts that were conserved through natu-
ral selection. While mutations in non-functional re-
gions may be harmless, mutations in functional re-
gions are often lethal. For this reason, functional
regions of a protein tend to be conserved between
organisms while non-functional regions diverge.

Many of the state-of-the-art protein analysis
techniques incorporate homologous sequences by
representing a set of homologous sequences as a
probabilistic profile, a sequence of the marginal dis-
tributions of amino acids at each position in the se-
quence. For example, PSI-BLAST [1] uses profiles
to refine database searches. The PHD algorithm [2]
uses them purely for structure prediction. Yona et
al. [3] used profiles to align distant homologs from
the SCOP database [4]; the resulting alignments are
similar to results from structural alignments, and
tend to reflect both secondary and tertiary protein

1

structure.
Although profiles provide a lot of information

about the sequence, their use comes at a steep price.
While efficient algorithms exist for aligning pro-
tein sequences and performing database queries (e.g.
BLAST [1]), these algorithms operate on strings
and are not applicable to profile alignment or pro-
file database queries. Profile-based comparisons can
be substantially more accurate than sequence-based
ones, but are about 30 times slower, since substitu-
tion penalties must be calculated by computing dis-
tances between probability distributions rather than
simply looked up in a table. This makes probabilistic
profiles impractical for use with large bioinformat-
ics databases like SwissProt, which recently passed
160,000 sequences and 64 million amino acids [5].

We propose a new discrete representation of pro-
teins that incorporates information from homologs
in a textual form we call IB (Information Bottle-
neck) sequences. Once a profile is represented us-
ing this discrete alphabet, alignment and database
search can be performed using the efficient string al-
gorithms developed for sequences, making profile in-
formation applicable to a greater range of problems.
For example, the runtime for full pairwise Smith-
Waterman [6] alignment between this sequence and
all of SwissProt decreases from 250 hours to less
than 8; a query for high-scoring alignments to 100
sequences of interest would take nearly three CPU-
years with profiles, but just over a month with IB
sequences. Either the resulting IB sequence align-
ments can be used directly, or a small set of high-
scoring matches from this initial query can be re-
aligned using profiles for greater precision. There-
fore with IB sequences, profile information may be
applied to a greater range of sequence problems with
no loss in precision and minimal loss in recall.

IB sequences have another incidental benefit: By
representing each class as a letter, discretized profiles
can be presented in plain text, conveying more pro-
file information than the original sequences in the
same amount of space. These IB sequences are more
accurate than consensus sequences and denser than
profile matrices or sequence logos (see Figure 1).
While sequence logos are likely a better represen-
tation for examining individual alignments, terse IB
sequences are useful for presenting many alignments
at once, such as when interpreting database query
results. For example, Figure 1(c) shows that while
logos more accurately reflect the first profile column,
information about lower-conservation regions is com-

pletely lost at ordinary text size.

The main idea behind our approach is to com-
press profiles in a data-dependent manner by clus-
tering the actual profiles and representing them by
a small alphabet of distributions. Since this dis-
cretization removes some of the information carried
by the full profiles, we cluster the distribution in a
way that is directly targeted at minimizing the in-
formation loss. This is achieved using a variant of
the Information Bottleneck (IB) method [7], a dis-
tributional clustering approach for informationally
optimal discretization. To preserve a clear textual
representation, we want this discretization to also
reflect biologically meaningful categories by form-
ing a superset of the standard 20-character amino
acid alphabet. For example, we use “A” and “a”
for strongly- and weakly-conserved Alanine. This
formulation demands two types of constraints: simi-
larities of the clusters’ conditional amino acid distri-
butions to predefined values, and specific structural
similarities between strongly- and weakly-conserved
variants. We show below how the original IB formal-
ism can be extended to naturally account for such
constraints.

We apply our algorithm to SCOP [4], a database
of proteins grouped hierarchically by structural sim-
ilarity, and analyze the results in terms of both infor-
mation loss and alignment quality. We show that IB
discretization preserves much of the information in
the original profiles using a small number of classes.
We then show that like profile alignments, high-
scoring IB alignments reflect distant homology, but
that IB alignments can be computed 30 times faster
than profile ones. IB discretization is therefore an
attractive way to gain some of the additional sen-
sitivity of profiles on tasks for which profile-profile
comparison is not computationally feasible.

Information Bottleneck

Information Bottleneck [7] is an information theo-
retic approach for distributional clustering. Given a
joint distribution p(X, Y) of two random variables
X and Y , the goal is to obtain a compressed repre-
sentation C of X, while preserving the information
about Y . The two goals of compression and informa-
tion preservation are quantified by the same measure

2

of mutual information,

I(X;Y) def=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X) + H(Y)−H(X, Y)

where H(X) is the entropy of p(X), and H(X, Y)
of p(X, Y). I(X;Y) is symmetric and non-negative,
and is zero only when X and Y are conditionally
independent. The IB problem is defined as the con-
strained optimization problem

min
p(c|x):I(C;Y)>K

I(C;X) (1)

where K is a constraint on the level of informa-
tion preserved about Y . The solution must also
obey the constraints p(y|c) =

∑
x p(y|x)p(x|c) and

p(y) =
∑

x p(y|x)p(x). This constrained optimiza-
tion problem can be reformulated using Lagrange
multipliers, and turned into a tradeoff optimization
function with Lagrange multiplier β:

min
p(c|x)

L def= I(C;X)− βI(C;Y) (2)

As an unsupervised learning technique, IB aims to
characterize the set of solutions for the complete
spectrum of constraint values K. This set of solu-
tions is identical to the set of solutions of the tradeoff
optimization problem obtained for the spectrum of
β values.

When X is discrete, its natural compression is
fuzzy clustering. In this case, the problem is not
convex and cannot be guaranteed to contain a single
global minimum. Fortunately, its solutions can be
characterized analytically by the following set of self
consistent equations:

p(c|x) =
p(c)

Z(x, β)
exp (−βDKL[p(y|x)||p(y|c)]) (3)

p(y|c) =
∑

x

p(y|x)p(x|c) (4)

p(c) =
∑

x

p(c|x)p(x)

where

Z(x, β) =
∑

c

p(c) exp (−βDKL[p(y|x)||p(y|c)])

By first computing p(c|x) using Eq. (3), then re-
computing the other distributions via Eqs. (4), these
equations yield an iterative algorithm that is guaran-
teed to converge to a local minimum [7]. While the

optimal solutions of the IB functional are in gen-
eral soft clusters, hard clusters are often more easily
interpreted in practice. A series of algorithms was
developed for hard IB, including an algorithm that
can be viewed as a one-step look-ahead sequential
version of K-Means [8]. See the Methods section for
a description and comparison of the iterative and
sequential IB algorithms.

Applying IB to our profile discretization prob-
lem, X ranges over the set of single-position prob-
abilistic profiles obtained from a set of aligned se-
quences and Y ranges over the set of 20 amino acids.
In other words, p(y|x) is the probability of observ-
ing amino acid y at profile position x. Our goal is
to construct clusters c of positions x sharing simi-
lar amino acid distributions: for each position x as-
signed to each cluster c, the profile at x, p(Y |X = x),
should be well-approximated by c’s representative
profile p(Y |C = c).

Constraints on cluster conditional distributions

The application studied in this paper differs from
standard IB in that we are interested in obtaining a
representation that is both efficient and biologically
meaningful. This requires that we add two kinds of
constraints on clusters’ distributions.

First, some clusters’ meanings are naturally de-
termined by limiting them to correspond to the com-
mon 20-letter alphabet used to describe amino acids.
From the point of view of distributions over amino
acids, each of these symbols is used today as the
delta function distribution which is fully concen-
trated on a single amino acid. For the goal of find-
ing an efficient representation, we require the con-
ditional distributions p(Y |C = c) to be close to
these delta distributions. More generally, we re-
quire p(Y |C = c) for a specific cluster c to be
close to predefined value p(Y |C = ĉ), thus adding
constraints to the IB target function of the form
DKL[p(y|ĉ)||p(y|c)] < K(c) for each such constraint.
While solving the constrained optimization problem
is difficult, the corresponding tradeoff optimization
problem can be made very similar to standard IB.
With the additional constraints, the IB trade-off op-
timization problem becomes

min
p(c|x)
L′ ≡ I(C;X)− βI(C;Y)

+β
∑
c∈C

β(c)DKL[p(y|ĉ)||p(y|c)] (5)

3

We now use the following identity∑
x,c

p(x, c)DKL[p(y|x)||p(y|c)]

=
∑

x

p(x)
∑

y

p(y|x) log p(y|x)

−
∑

c

p(c)
∑

y

log p(y|c)
∑

x

p(y|x)p(x|c)

= −H(Y |X) + H(Y |C) = I(X;Y)− I(Y ;C)

to rewrite the IB functional of Eq. (2) as

L = I(C;X) + β
∑
c∈C

∑
x∈X

p(x, c)DKL[p(y|x)||p(y|c)]

−βI(X;Y)

When
∑

c∈C β(c) ≤ 1, we can similarly rewrite
Eq. (5) as

L′ = I(C;X) (6)

+β
∑
x∈X

p(x)
∑
c∈C

p(c|x)DKL[p(y|x)||p(y|c)]

+β
∑
c∈C

β(c)DKL[p(y|ĉ)||p(y|c)]− βI(X;Y)

= I(C;X)

+β
∑

x′∈X′

p(x′)
∑
c∈C

p(c|x′)DKL[p(y|x′)||p(y|c)]

−βI(X;Y)

The optimization problem therefore becomes equiv-
alent to the original IB problem, but with a modified
set of samples x ∈ X ′, containing X plus additional
pseudo-counts x′ with prior probability p(x′) = β(c)
(hence the requirement that

∑
c∈C β(c) ≤ 1). This

is similar to the inclusion of priors in Bayesian esti-
mation.

Formulated this way, the biases can be easily in-
corporated in standard IB algorithms as additional
pseudo-data. From an initial dataset defined by
p(y|x) and p(x) (typically 1

|X| for profiles) and bi-

ases Ĉ = {ĉ} with values pβ(y|ĉ), we construct a
new dataset X ′ = X ∪ Ĉ defined by

p′(y|x′) =
{

p(y|x′) if x′ ∈ X

pβ(y|x′) if x′ ∈ Ĉ

and

p′(x′) =
{

(1−
∑

c β(c)) p(x′) if x′ ∈ X

β(x′) if x′ ∈ Ĉ

Finally, Eq. (5) is augmented to assign each pseudo-
datapoint ĉ to its cluster c, with p(c|ĉ) = 1, thereby
fixing the biases to their clusters.

Constraints on relations between cluster distribu-
tions

We want our discretization to capture both strongly-
and weakly-conserved variants of the same symbol.
While this can be done with standard IB using sepa-
rate classes for the alternatives, the strong and weak
variants’ distributions are likely to be correlated. It
is therefore preferable to define a single shared prior
for both variants, and to learn a model capturing
their correlation.

Friedman et al. [9] describe multivariate informa-
tion bottleneck (mIB), an extension of information
bottleneck to joint distributions over several corre-
lated input and cluster variables. Instead of a sin-
gle observed variable X and a single cluster variable
C, mIB incorporates sets of observed variables X
and compression variables C with a specific condi-
tional dependency structure. Intuitively, mIB’s goal
is to find distributions p(C|X) and p(Y |C) such that∑

c∈C p(Y |c)p(c|X) approximates p(Y |X). For fur-
ther details, including a formulation of the problem
for arbitrary compression structures and a deriva-
tion of an analogous loss function, see Friedman et
al. [9].

For profile discretization, we define two com-
pression variables connected as in Friedman et al.’s
“parallel IB”: an amino acid class C ∈ {A,C, . . .}
with an associated prior, and a conservation strength
S ∈ {0, 1}. Our goal is to maximize the information
about amino acid distribution Y contained in C and
S together, while independently minimizing the in-
formation about position X contained in C and S.
The IB loss function therefore becomes

Lm
def= I(C;X) + I(S;X)− βI(Y ;S, C) (7)

Figure 2 illustrates our two models’ dependency
structures and parameterizations. Since the multi-
variate model correlates strong and weak variants
of each category, it requires fewer priors than sim-
ple IB. It also has fewer parameters: a multivari-
ate model with ns strengths and nc classes has as
many categories as a univariate one with nc′ = nsnc

classes, but has only ns + nc − 2 free parameters for
each x, instead of nsnc − 1.

4

Results
We evaluate IB alignment’s ability to detect distant
homologs by comparing the orders of profile, IB, and
consensus alignment scores for a set of proteins with
known evolutionary and structural relations. We
also compare the pattern of gaps in individual profile
alignments to those in the equivalent IB and consen-
sus alignments. IB scores, like profile scores, capture
a significant number of relations missed by consensus
scores, and individual IB alignments more closely re-
flect the pattern of insertions in the original profile
alignments.

Our data come from SCOP [4], a manually-
constructed database of proteins grouped hierarchi-
cally by structural similarity and evolutionary relat-
edness. We expect proteins within the same SCOP
family, which have clear evolutionary relationships
and ∼ 30% sequence identity, to have high-scoring
profile and sequence alignments. We also expect pro-
teins from different families in the same superfamily,
which have probable evolutionary relationships but
low sequence identity, to have significant but lower-
scoring profile alignments but no significant sequence
alignments.

For each protein, we first generate a profile from
a CLUSTALW [10] multiple alignment with other
proteins in its family, yielding 425,150 individual se-
quence positions, then compute probabilistic profiles
ignoring gap characters. We then compute IB classes
from these profiles using iIB and the priors described
below. Finally, we discretize the profiles into the re-
sulting classes, using the Jensen-Shannon (JS) dis-
tance with mixing coefficient 0.5 rather than the KL
distance optimized in encoding profiles to be consis-
tent with Yona et al. [3].

In the following sections, we first examine how
the amount of information from the original profiles
encoded by IB categories varies with the number of
clusters. We then consider how model structure, i.e.
priors and relations between clusters, affects this in-
formation. Next, we compare individual IB, consen-
sus, and profile alignments, and compare the order of
alignment scores between distantly-related and un-
related proteins. Finally, we show how running time
for profile and IB alignment varies with sequence
length.

Information loss from discretization

One measure of the quality of IB clusters is the
amount of information about Y (the amino acid

distribution) lost through discretization, I(Y ;X) −
I(Y ;C). This represents the total information dis-
tance between profiles and the centers of their as-
signed clusters, and is a task-independent measure
of the quality of a discretization. The change in
I(Y ;X) − I(Y ;C) between successive values of |C|
represents the amount of information gained by
adding more categories, and thus the number of ac-
tual clusters of a particular scale in the data. Fig-
ure 4 shows the cluster information I(Y ;C) and po-
sition information I(C;X) for consensus sequences,
profiles, and (iterative) IB with no priors for |C| =
40, . . . , 500. With |C| ≥ 80 the IB alphabet captures
over 90% of the available information.

Figure 3 shows the sequence logos for discretiza-
tions with |C| = 20, 40, 80 illustrating compression’s
effects. First, when the number of labels equals
the the number of amino acids (|C| = 20), the
frequently-occurring amino acid A is allocated two
labels, forcing D and R share a label. Second, as
the number of labels increases, the least common
amino acid C is allocated only a single label, while
the number of labels assigned to the more common
A and L consistently increases. This shows the data-
dependence of our discretization compared to the
simpler approach of allocating one or more clusters
to each amino acid with varying levels of sequence
conservation.

Effect of category constraints

For univariate IB, we have used four types of pri-
ors reflecting biases on stability, physical properties,
and observed substitution frequencies: (1) Strongly
conserved classes, in which a single symbol is seen
with S% probability. These are the only priors used
for multivariate IB. (2) Weakly conserved classes, in
which a single symbol occurs with W% probability;
(S −W)% of the remaining probability mass is dis-
tributed among symbols with non-negative log-odds
of substitution. (3) Physical trait classes, in which
all symbols with the same hydrophobicity, charge,
polarity, or aromaticity occur uniformly S% of the
time. (4) A uniform class, in which all symbols oc-
cur with their background probabilities.

The choice of S and W depends upon both
the data and one’s prior notions of “strong” and
“weak” conservation. Unbiased IB on a large sub-
set of SCOP with several different numbers of unbi-
ased categories yielded a mean frequency approach-
ing 0.7 for the most common symbol in the 20 most

5

sharply-distributed classes (0.59± 0.13 for |C| = 52;
0.66± 0.12 for |C| = 80; 0.70± 0.09 for |C| = 100).
Similarly, the next 20 classes have a mean most-
likely-symbol frequency around 0.4. These numbers
can be seen as lower bounds on S and W . We there-
fore chose S = 0.8 and W = 0.5, reflecting a bias to-
ward stronger definitions of conservation than those
inferred from the data.

Figure 4 shows the effect on information loss of
varying the prior weight

∑
c β(c) with three sets of

priors: 20 strongly conserved symbols and one back-
ground; these plus 20 weakly conserved symbols; and
these plus 10 categories for physical characteristics.
As expected, increasing the number or weight of pri-
ors increases information loss. However, with a small
additional pool of unbiased categories information
loss is nearly independent of prior strength. This
suggests that our priors correspond to actual regu-
larities in the data. Finally, note that despite having
fewer free parameters than the univariate models,
mIB’s achieves comparable performance, suggesting
that our decomposition into conserved class and de-
gree of conservation is reasonable.

Alignment similarity and distant homolog search

Since we are ultimately using the resulting IB classes
in alignments, the true cost of discretization is best
measured by the amount of change between pro-
file and IB alignments, and the significance of this
change. The latter is important because the best
path can be very sensitive to small changes in the
sequences or scoring matrix; if two radically differ-
ent alignments have similar scores, neither is clearly
“correct”.

We can represent an alignment as a pair of index-
insertion sequences, one for each profile sequence to
be aligned (e.g. “1,2, , ,3,...” versus “1, ,2, ,3,...”).
The edit distance between these sequences for two
alignments then measures how much they differ.
However, even when this distance is large, the differ-
ence between two alignments may not be significant
if both choices’ scores are nearly the same. That is, if
the optimal profile alignment’s score is only slightly
lower than the optimal IB class alignment’s score as
computed with the original profiles, either might be
correct. We therefore report both the edit distance
between alignments and this change in profile align-
ment score.

The score for aligning two IB symbols c and d is

1
2
(
1−DJS[p(y|c)||p(y|d)]

)(
1+DJS[q(y)||p̄(y)]

)
−ks

where q(y) = 1
2 (p(y|c) + p(y|d)), p̄(y) is the average

probability of amino acid y across all profiles, and ks

is a constant chosen so that the average alignment
score between pairs of randomly-chosen symbols is
negative. We use ks = 0.45 and gap open and exten-
sion penalties of ko = 2 and ke = 0.2, where ks, ko,
and ke have been chosen by Yona et al. [3] so that lo-
cal alignment scores between random sequences fol-
low the expected extreme value distribution.

Figure (6a) shows both the edit distance and
score change per length between profile alignments
and those using IB classes, mIB classes, and the
original sequences with the BLOSUM62 scoring ma-
trix. Unless otherwise noted, IB alignments use
|C| = 52 clusters, a number chosen to be conve-
niently represented by the 26 upper- and lower-case
letters. To compare the profile and sequence align-
ments, profiles corresponding to gaps in the origi-
nal sequences are replaced by gaps, and resulting
pairs of aligned gaps in the profile-profile alignment
are removed. We consider both sequences from the
same family and those from other families in the
same clan, the former being more similar than the
latter, and therefore having better alignments. As-
suming the profile-profile alignment is closest to the
“true” alignment, IB alignment significantly outper-
forms sequence alignment in both cases, with mIB
showing a slight additional improvement.

Since alignment scores predict structural relat-
edness, sequences with distant structural relation-
ships, defined as those in the same SCOP superfam-
ily, should have positive-scoring alignments. Yona et
al. [3] compare the ranking of high-scoring profile-
profile alignments to that of PSI-BLAST e-values,
and show that profiles consistently assign high scores
to more distant homologs. We perform this same
test to compare profile, IB, and consensus sequence
alignment scores. Figure (6b) shows the ROC curve
for detecting superfamily relationships between 117
families contained in 10 randomly-chosen SCOP su-
perfamilies with between 3 and 35 members. While
IB fares worse than profiles, consensus sequences
perform essentially at chance.

6

Alignment running time

Most of the cost of aligning two profile sequences
comes from computing JS distances between pairs of
profiles. Encoding unencoded profile sequences be-
fore alignment, by significantly reducing the number
of JS distance computations, yields a 4- to 20-fold
improvement in alignment running time. Further-
more, sequences can be pre-encoded to perform re-
peated comparisons, yielding a 30-fold improvement.

Encoding two sequences of lengths n and m for
IB alignment requires computing the |C|(n + m) JS
distances between each profile and each category, a
significant improvement over the mn distance com-
putations required for profile-profile alignment when
|C| � min(m,n)

2 . Once the sequences are encoded
or the pairwise distances computed, both methods
take essentially the same amount of time to perform
Smith-Waterman alignment. Figure 5 compares the
running time of profile and IB alignment for different
sequence lengths, showing best fit curves for both to
f(x) = axb. The results show that the number of JS
distance computations dominates running time for
typical sequence lengths: despite both methods’ per-
forming O(n2) work in Smith-Waterman alignment,
IB alignment time is essentially linear in sequence
length, while profile alignment is quadratic. Fig-
ure 5 also plots the time taken to encode both input
profiles in a 40-character IB alphabet, showing that
encoding accounts for most of the cost of alignment.
Since useful values of |C| are much smaller than the
average sequence length, and since most database
applications can use pre-encoded sequences, the ef-
fect of |C| on real running times is negligible. In
particular, the time taken to align pre-encoded se-
quences is independent of |C| for the values pre-
sented here.

On current hardware, each profile distance com-
putation takes about 16.5µs. At this rate, just the
distance computations for a full pairwise alignment
of SwissProt’s 160,000 sequences, comprising 60 mil-
lion residues, requires 3×1010 CPU-seconds or ∼ 950
years. The distance computations required to en-
code the database in a 40-character alphabet take
11 hours. Similarly, the distance computations for
aligning a single 200-element sequence with every el-
ement of SwissProt take about 260 hours, or nearly
the entire observed running time for performing full
profile alignments. To compare, our unoptimized
implementation of Smith-Waterman takes around 8
hours to align a typical sequence against SwissProt.

This agrees well with the figure obtained by assum-
ing an average sequence length of 365 residues and
the observed single alignment times shown in fig-
ure 5 (minus encoding time). Even with IB encod-
ing, full pairwise alignment of SwissProt would take
an impractical 60 years with our simplistic Smith-
Waterman code. However, discretizing the data
makes it possible to apply more efficient algorithms
and indexing schemes like BLAST [1], which were
developed for simple sequences.

Conclusions
We have described IB sequences, a discrete encoding
of amino acid profiles that allows profile information
to be used for alignment and search at essentially the
same computational cost as simple sequence align-
ment. The encoding is based on minimizing infor-
mation loss, and its classes can be constrained to cor-
respond to the standard amino acid representation,
thus yielding an intuitive, compact textual form for
profile information. Alignments of IB sequences en-
coded with a modest number of classes correspond
significantly better to the original profile alignments
than do alignments of the consensus sequences (edit
distance 0.15 versus 0.39). High-scoring IB align-
ments reflect distant homology detected with pro-
files but not with consensus sequences (AUC score
0.73 versus 0.51).

Our model is potentially advantageous in three
ways: First, it models rich conditional distribution
structures and class constraints. It can, for example,
be extended to incorporate structural information in
the input representation, and to assigning structural
significance to the resulting categories. Second, it
allows us to apply existing fast discrete algorithms
to continuous profile sequences when either profile
comparison is computationally impractical, or only
discrete-sequence algorithms exist.

Third, discretization avoids undersampling prob-
lems while going beyond single-position profiles. Or-
dinary profile applications are limited by high di-
mensionality to considering only single positions of
a multiple alignment. This ignores significant cor-
relation both between adjacent profile positions and
between adjacent symbols in individual aligned ho-
mologs. Single-position profiles thus represent a
drastic simplification of the underlying data. For
example, while the average entropy of a single pro-
file in our dataset is 0.99, the average entropy of

7

an adjacent pair is only 1.23, suggesting an infor-
mation loss far greater than the 10% lost by IB
discretization. Therefore profile pairs can be rep-
resented more compactly than the cross-product of
the single-position alphabet. Instead of consider-
ing sequences of adjacent single-position profiles, our
method can be extended to discretize distributions
over pairs or k-tuples of symbols in a multiple align-
ment. By applying IB to the 20k-dimensional space
of k-tuple profiles, we can avoid undersampling and
obtain a richer sequence representation incorporat-
ing previously-ignored local correlation. Extending
this approach to variable-length substrings yields an
algorithm similar to suffix trees, known to be some of
today’s most efficient text compression methods [11].

Acknowledgments
The authors would like to thank the anonymous review-
ers for their many helpful suggestions.

Methods: Iterative vs. sequential IB
Slonim [8] compares the performance and runtime of
several IB algorithms. The first, iterative IB (iIB)
(Figure 7), alternately updates the cluster assignment
p(c|x) and the resulting cluster distributions p(y|c) and
weights p(c) via Eqs. (3,4). If hard clusters are de-
sired, hard assignments are made in the first step. Since
this algorithm only guarantees convergence to a local
extremum, we repeated our experiments with five ran-
dom initializations. In the current implementation, iter-
ation was stopped when the current and previous distri-
butions were sufficiently close together, as measured byP

y,s,c |pt+1(y|s, c)− pt(y|s, c)|.
The second IB algorithm, sequential IB (sIB) (Fig-

ure 8), first assigns elements to a fixed number of clus-
ters, then individually moves them from cluster to cluster
while calculating a 1-step lookahead score, until the score
converges. Like iIB, sIB only guarantees convergence to
a local extremum, and was therefore initialized with the
results of five separate iIB runs.

Slonim [8] found that hard-clustering sIB outper-
formed soft-clustering iIB on a document clustering task
with 5,000 to 500,000 documents, finding fewer and bet-
ter solutions on 100 random restarts. However, while
sIB is more efficient than exhaustive bottom-up clus-
tering methods like agglomerative clustering, sIB is still
more expensive than iIB, since each reassignment of an
instance requires recomputing the class conditional dis-
tributions. Therefore we used iIB with hard clustering,
which only recomputes the conditional distributions af-
ter performing all updates. This reduces the convergence
time from several hours to around ten minutes.

Slonim argued that sIB outperforms soft iIB in part
because sIB’s discrete steps allow it to escape local op-
tima. We expect hard iIB to have similar behavior. To
test this, we applied three complete sIB iterations to clus-
ters obtained by multivariate iIB. sIB decreased the loss
L by only about 3 percent (from 0.380 to 0.368), with
most of this gain occurring in the first iteration. Up to
exchanging labels, the 20 strongly-conserved categories
were nearly unchanged, while about half of the weakly-
conserved categories changed only slightly. This suggests
that hard iIB and sIB find similar regularities in our data.

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman D: Ba-

sic local alignment search tool. J Mol Biol 1990,
215(3):403–10.

2. Rost B, Sander C: Prediction of protein secondary
structure at better than 70% accuracy. J Mol Biol
1993, 232:584–99.

3. Yona G, Levitt M: Within the twilight zone: A sen-
sitive profile-profile comparison tool based on in-
formation theory. J Mol Biol 2002, 315:1257–75.

4. Murzin A, Brenner S, Hubbard T, Chothia C: SCOP:
a structural classification of proteins database for
the investigation of sequences and structures. J
Mol Biol 1995, 247:536–40.

5. Bairoch A, et al: The Universal Protein Resource
(UniProt). Nucl. Acids Res. 2005, 33(suppl. 1):D154–
159.

6. Smith T, Waterman M: Identification of common
molecular subsequences. J Mol Biol 1981, 147:195–
197.

7. Tishby N, Pereira F, Bialek W: The information bot-
tleneck method. In Proc. of the 37-th Annual Allerton
Conference on Communication, Control and Computing
1999:368–77.

8. Slonim N: The Information Bottleneck: Theory
and Applications. PhD thesis, Hebrew University,
Jerusalem, Israel 2002.

9. Friedman N, Mosenzon O, Slonim N, Tishby N: Mul-
tivariate Information Bottleneck. In Uncertainty in
Artificial Intelligence: Proceedings of the Seventeenth
Conference (UAI-2001), San Francisco, CA: Morgan
Kaufmann Publishers 2001:152–161.

10. Thompson J, Higgins D, Gibson T: CLUSTAL
W: improving the sensitivity of progressive-
multiple sequence alignment through sequence
weighting,position-specific gap penalties and
weight matrix choice. Nucleic Acids Res 1994,
22:4673–80.

11. Ron D, Singer Y, Tishby N: The Power of Amnesia. In
NIPS, Volume 6. Edited by Cowan J, Tesauro G, Alspec-
tor J, Morgan Kaufmann Publishers, Inc. 1994:176–83.

12. Crooks G, Hon G, Chandonia J, Brenner S: WebLogo:
a sequence logo generator. Genome Research 2004,
14(6):1188–90.

8

Figures
Figure 1
Five representations of a part of an alignment of Pepsin A precursor P00790: (a) probabilistic profile; (b)
sequence logo [12]; (c) four textual representations. The IB sequence is more compact than profiles or
logos, but retains much of the conservation information lost by other textual formats. In the IB sequence,
uppercase letter X represents strong conservation (∼ 80%) of amino acid X, while lowercase x represents low
conservation (∼ 50%) of X.

Figure 2
Graphical model representations of multivariate and univariate information bottleneck showing input (dashed)
and output (solid) conditional dependencies.

Figure 3
Sequence logos for |C| = 20, 40, 80, showing several features of IB discretization. First, variable numbers
of clusters are assigned to different amino acids according to their overall frequencies: A and L are more
common, while C is least common. Second, clusters capture strongly- and weakly-conserved variants, as well
as some chemical similarities: I, V, L, and M are all hydrophobic.

Figure 4
Left: Information versus sequence type for consensus sequence, profiles, and IB without priors. Right:
I(Y ;X) − I(Y ;C) as a function of w for different groups of priors. The information loss for 52 categories
without priors is 0.359, for 10, 0.474.

Figure 5
Running times for profile-profile and IB-profile alignment, and (twice) running time for IB discretization.
Alignments were performed using the Smith-Waterman algorithm and computing the complete dynamic
programming matrix. For IB, each sequence was first discretized using 50 categories. For profiles, distances
were precomputed between every pair of sequence positions.

Figure 6
Left: Alignment differences for IB models and sequence alignment, within and between superfamilies. Right:
ROC curve for same/different superfamily classification by alignment score. 52 IB categories are used
throughout.

Figure 7
Pseudocode for the iterative IB algorithm.

Figure 8
Pseudocode for the sequential IB algorithm.

9

A 0.0 0.0 0.0 0.09 0.34 0.23 0.12 0.0 0.0 0.0
C 0.0 0.0 0.0 0.04 0.01 0.01 0.03 0.0 0.0 0.0
D 0.0 0.0 1.0 0.01 0.05 0.14 0.09 0.0 1.0 0.0
E 0.0 0.0 0.0 0.38 0.04 0.00 0.04 0.0 0.0 0.0
F 0.0 0.0 0.0 0.06 0.00 0.08 0.04 0.0 0.0 1.0
G 0.0 0.0 0.0 0.00 0.06 0.01 0.03 1.0 0.0 0.0
H 0.0 0.0 0.0 0.02 0.00 0.04 0.00 0.0 0.0 0.0
I 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0.0 0.0 0.0
K 0.0 0.0 0.0 0.04 0.01 0.01 0.00 0.0 0.0 0.0
L 0.0 0.0 0.0 0.01 0.01 0.00 0.09 0.0 0.0 0.0
M 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0.0 0.0 0.0
N 0.5 1.0 0.0 0.05 0.05 0.01 0.01 0.0 0.0 0.0
P 0.0 0.0 0.0 0.02 0.00 0.23 0.00 0.0 0.0 0.0
Q 0.0 0.0 0.0 0.04 0.05 0.00 0.00 0.0 0.0 0.0
R 0.0 0.0 0.0 0.04 0.01 0.00 0.00 0.0 0.0 0.0
S 0.5 0.0 0.0 0.16 0.10 0.06 0.29 0.0 0.0 0.0
T 0.0 0.0 0.0 0.02 0.10 0.05 0.20 0.0 0.0 0.0
V 0.0 0.0 0.0 0.00 0.14 0.03 0.04 0.0 0.0 0.0
W 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.01 0.00 0.04 0.04 0.0 0.0 0.0

(a)

(b)

P00790 Seq.: ---EAPT---

Consensus Seq.: NNDEAASGDF

IB Seq.: NNDeaptGDF

Logo:
(c)

10

Position

Conservation

Profile

Residue

 P(S|X)

P(Y|X)

 P(C|X)

 P(Y|S)
P(Y|C)

Position Profile

Residue +
Conservation

P(Y|X)

 P(S,C|X) P(Y|S,C)

UnivariateMultivariate

11

12

Seq. type I(Y ;C) I(C;X)
Consensus 2.8503
|C| = 40 3.0596 5.0793
|C| = 80 3.2083 5.7160
|C| = 160 3.3248 6.2442
|C| = 320 3.3986 6.6517
|C| = 500 3.4267 6.8297
Profiles 3.643

 0.38

 0.42

 0.46

 0.2 0.4 0.6 0.8

I(
Y

;X
)

-
I(

Y
;C

)

prior weight

multivariate
21/52 priors
41/52 priors
51/52 priors

13

 1

 4

 16

 64

 400 800 1600

T
im

e
 (

s
e
c
)

Sequence Length

Profiles (2e-5*x^2)
IB (1.8e-3*x^1.07)

2*Disc (1.5e-3*x^1.06)

14

Edit distance Score change

Same Superfamily

mIB 0.154± 0.182 0.086± 0.166

IB 0.170± 0.189 0.107± 0.198

BLOSUM 0.390± 0.065

Same Clan

mIB 0.124± 0.209 0.019± 0.029

IB 0.147± 0.232 0.022± 0.037

BLOSUM 0.360± 0.062

15

Randomly initialize p(c | x)
Find the corresponding p(c), p(y | c) through Eqs. (4)
repeat

pi+1(c|x)← pi(c)
Zi+1(x,β) exp (−βDKL[pi(y|x)||pi(y|c)]) , ∀ c ∈ C, ∀ x ∈ X

if hard clustering,

pi+1(c|x) =
{

1 if c = argmaxc p(c|x)
0 otherwise

endif
pi+1(c)←

∑
x p(x)pi+1(c|x) , ∀ t ∈ C

pi+1(y|c) = 1
pi+1(c)

∑
x pi+1(c|x)p(x, y) , ∀ c ∈ C, ∀ y ∈ Y

until (stopping criterion)

16

C ← random partition of X into K clusters
while not done

done← TRUE
for every x ∈ X :

Remove x from current cluster c(x)
c′(x)← argminc∈C ∆L({x}, c)
if c′(x) 6= c(x)

done← FALSE .
Merge x into c′(x)

end for
end while

17

