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Abstract

The existence of noise, or variability due to random events, in biologi-
cal systems is a well-known phenomenon [Raser and O’Shea, 2005]. Here, we
study the stochastic processes in a metabolic network controlling protein pro-
duction which lead to variable protein levels across a culture of cells. Recent
studies have shown that different enzymes exhibit differing levels of noise
[Newman et al., 2006]. However, the sources, mechanisms, and regulation
of this metabolic noise remains a largely unexplained question. To address
these questions, we use optimization-based modeling to study the network
response to enzyme variability in the metabolic network of Saccharomyces
cerevisiae. Here, we use an optimization-based model of noise to construct
a compensation cost measure of the effect of noise in reaction rates on the
metabolic network. We then quantify the relationship between compensation
cost and observed noise and discover that reactions which have a lower com-
pensation cost, or smaller effect on the network under variation, also tend to
have lower noise. This implies that the cell may optimize for some measure
of protein “importance” in determining the noise tolerance for each enzyme.
Finally, we explore possible mechanisms behind the regulation of noise, and
find that burst frequency and burst size, the two main parameters control-
ling protein production [Cai et al., 2006] have strong inverse relationships to
noise.
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1 Introduction

1.1 Basics of Metabolic Networks

In order to survive, living organisms must convert energy from the surround-
ing environment into a form of usable energy. Specifically, the energy is
adapted from the environment to achieve three major objectives: (1) to per-
form mechanical work in muscle contraction or other cellular movements,
(2) to actively transport molecules and ions, and (3) to synthesize macro-
molecules and other bio-molecules from simple precursors [Berg et al., 2001].
To achieve these goals, cells use thousands of energy-transforming chemical
reactions, collectively referred to as metabolism. We would like to study
the metabolism of S. cerevisiae , or baker’s yeast, to better understand the
mechanisms behind the organisms survival.

1.1.1 Network Structure

Cellular metabolism can be viewed first from a structural standpoint. Each
chemical reaction in metabolism converts a certain set of compounds, its
substrates, into a set of different compounds, its products. These products
may then be used as substrates by another reaction and converted into other
compounds. This chain of events may continue until the desired end product
is obtained. Such a sequence of reactions is known as a metabolic pathway.
In cellular metabolism, these pathways are not independent. Rather, the
metabolic pathways and chemical reactions in them are densely intertwined.
The entire set of interconnected reactions is known as the metabolic network
[Berg et al., 2001].

It is common to model the metabolic network in silico as a graph struc-
ture where each node represents a single compound and each edge represents
a reaction converting one set of one or more compounds into a different set
of one or more compounds [Varma and Palsson, 1994, Forster et al., 2003].
First, the internal metabolic reactions within the cell are modeled as in this
graph structure. Then, we add external transport reactions, artificial reac-
tions added to allow the cell to interact with the surrounding environment.
These reactions, such as CO2xt → CO2, represent substrates entering the
cell or products leaving the cell. Finally, the growth of cellular biomass is
represented as an output of the cell. We model the growth as an additional
reaction which takes as its substrates a linear combination of the compounds
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Figure 1: The subset of central metabolic reactions in the yeast metabolic
network. Image was borrowed from [Blank et al., 2005].

needed for cellular growth and produces a single output, growth [Varma and
Palsson, 1994, Edwards et al., 2001]. Later, we describe in detail the use of
this network structure.

1.1.2 Network Function

The structure of a metabolic network only describes the set of achievable
chemical reactions in the cell. However, at any given time, not all of these
reactions are occurring. In fact, the cell often only “uses” a fraction of the
available metabolic pathways [Papp and Pál, 2004, Giaever et al., 2002].
Thus, network structure is insufficient for studying metabolism. We must
also consider the functional properties of the metabolic network.

A set of direct indicators of network activity are the reaction rates, or
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fluxes, in the metabolic network. A reactions flux is defined as the rate of
molecules per second at which the substrates are converted into the products
[Varma and Palsson, 1994, Edwards et al., 2002]. Although it is possible for
some reactions to occur spontaneously, in order to achieve significant reac-
tion rates, the cell must produce special proteins called enzymes to catalyze,
or speed up, reactions. Enzymes greatly accelerate the rate of reaction by
binding to substrates and lowering the energy needed for the reaction [Berg
et al., 2001]. A reaction may be catalyzed by one or more enzymes. Multiple
enzymes catalyzing the same reaction are known as isozymes or isoenzymes.
In simple terms, we can view a reactions flux as roughly dependent on the
total number of enzymes catalyzing that reaction.

1.1.3 Network Regulation

The cells regulation of enzyme levels, and therefore fluxes, is controlled by
three main factors: (1) the amounts of enzymes, (2) their catalytic activities,
and (3) the accessibility of substrates. At the lowest levels, fluxes depend on
the amount of substrates available. Substrates can be limited by both the
availability of substrate molecules in the cells external living environment, as
well as limits in the transfer of substrate molecules between different physical
locations within the cell, such as between the cytosol and mitochondria.
Fluxes also depend on the catalytic activities of enzymes, the amount by
which it speeds up a reaction. Catalytic activity can be affected by feedback
loops in the metabolic network. For example, in many biosynthetic pathways,
feedback inhibition occurs, where the enzyme catalyzing the first reaction in
the pathway is inhibited by the final product [Berg et al., 2001].

However, the main regulatory mechanism we will examine in this study is
the high-level control pathway beginning from the cells DNA. The blueprint
for constructing each enzyme, or protein, is stored by a gene in the organisms
DNA. It takes two main steps to convert the blueprint into a working enzyme.
First, the gene undergoes transcription, the process by which a DNA sequence
is copied into mRNA, a type of information carrying molecule. Then, the
gene undergoes translation, the process by which mRNA is decoded into a
protein. The rate of transcription and translation of the genetic blueprint
determines how much of the protein is produced. The amount of protein
produced, in turn, largely determines the amount of flux in the catalyzed
reactions [Berg et al., 2001].

What determines the rate of transcription and translation? Certainly,
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the cell’s environment plays a large role [Raser and O’Shea, 2005]. However,
we are interested in the internal regulatory control: in a given environment,
how is protein production determined? In this study, we interpret the ge-
netic regulatory pathway as a control mechanism which the organism, or
cell, “operates” by manipulating the rate of transcription and translation.
We assume that the cell has developed as a result of evolutionary pressure
some internal metabolic “objective function,” a set of goals which maximize
its chances of survival. It then attempts to “optimize” its objective function
through flux control [Edwards et al., 2001]. By using this view of regulation,
it will be possible to develop a computational model of cellular regulation.

1.2 Modeling Metabolic Networks

Generally, fluxes are very difficult to measure, especially on a genome-scale.
Recently, a few labs have produced biological measurements of small subsets
of fluxes in a few organisms; large scale flux measurements are generally not
available [Blank et al., 2005]. Enzyme abundance and gene expression levels
are somewhat easier to measure through biological experiments. Thus, our
study of functional properties will use biological data at the level of expression
and protein production, but in order to examine fluxes themselves, we must
model the behavior of the flux network in silico.

1.2.1 Reconstructing the Network

Modeling a metabolic network first requires the reconstruction of the net-
work structure. Recent advances in genome sequencing and large databases
of known metabolic reactions have made possible full reconstructions of the
metabolic network [Forster et al., 2003, Duarte et al., 2004]. First, a large
reaction database is used to identify metabolic reactions and their stoichiom-
etry: the substrates, products, and appropriate stoichiometric ratios of the
compounds in the reaction. Then, the annotated genome is used to identify
the genes, or open reading frames (ORFS), which encode the proteins that
catalyze each reaction. The process is not trivial and for many reactions, the
corresponding protein, gene, or both is still not known. After reconstruction,
a complete network consisting of a list of reactions, the enzymes that cat-
alyze them, and the genes that encode the enzymes is available for modeling
[Forster et al., 2003, Duarte et al., 2004].
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1.2.2 Flux Balance Analysis (FBA)

After the network structure is reconstructed, we can use a computational
model to study fluxes. A widely used method of modeling genome-scale
flux distributions is known as Flux Balance Analysis (FBA). FBA is used
to model the metabolic network at a steady-state, when flux levels are in a
dynamic equilibrium and therefore constant. FBA models metabolic fluxes
by using a linear programming problem to solve for the set of feasible flux
solutions [Edwards et al., 2002, Varma and Palsson, 1994, Schilling et al.,
1999, Bonarius et al., 1997].

Linear programming, sometimes known as linear optimization, is the
problem of maximizing (or minimizing) a linear function over a convex poly-
hedron specified by linear and non-negativity constraints [Schrijver, 1998].
The set of constraints describe a bounded polytope which represents the n

dimensional space of possible solutions, where n is the number of variables
in the solution space. The goal is to maximize the objective function within
this constraint space. However, as is the case for flux networks, sometimes
there is no unique maximum for the objective function [Edwards et al., 2002,
Lee et al., 2000, Bonarius et al., 1997]. Nevertheless, linear programming
provides a useful description of the flux capabilities of the metabolic network
[Edwards et al., 2001].

FBA models the cell’s regulatory system and manipulates the metabolic
network in silico to optimize some metabolic objective function. Since the
cell’s true objective function is hidden from us, a simple objective function
is used to approximate it. In FBA, we assume that the cell always optimizes
its biomass growth. As explained in section 1.1.1, we can use the artifi-
cial biomass growth reaction as a linear objective function which represents
growth [Varma and Palsson, 1994, Pramanik and Keasling, 1997]. Then, we
can develop a set of linear constraints derived from reaction stoichiometry
and environmental limitations. This allows us to solve a linear program-
ming problem for the set of optimal flux solutions [Varma and Palsson, 1994,
Edwards et al., 2002]. Note that the optimal solutions are the set of flux
distributions which allow for the maximum possible level of growth given
the constraints. The details of our implementation of FBA are described in
section 3.1.1.
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1.2.3 FBA Assumptions

The key assumption in FBA lies in the choice of the metabolic objective
function [Varma and Palsson, 1994, Edwards et al., 2002]. The model as-
sumes that the cell always attempts to maximize its biomass growth. In cells
of micro-organisms such as S. cerevisiae which have undergone evolution-
ary pressures, it is reasonable to assume that the cell, or organism, will at-
tempt to maximize growth. Furthermore, the accuracy of FBA in estimating
growth and nutrient use has been experimentally validated against biologi-
cal experiments [Edwards et al., 2001]. However, it has also been shown in
some organisms such as Bacillus Subtilis that even micro-organisms subject
to evolutionary pressures do not always maintain a flux distribution which
optimizes growth [Fischer and Sauer, 2005]. In fact, Fischer et al. discovered
that there exist knockout B. Subtilis strains (organisms with genes artificially
removed) with higher growth levels than the wild-type strain. This implies
that the wild-type B. Subtilis is not using growth as its only metabolic objec-
tive, since clearly higher growth is possible. What could be the motivation
behind such metabolic behavior? In the next section, we describe an addi-
tional consideration for the metabolic objective function.

1.3 Noise in Metabolic Networks

One potential consideration behind the cell’s metabolic regulation may be
variation, or noise, in the control pathway. The control signals sent out by
the cell from the highest levels may not be accurately received at the lowest
levels of reaction flux. Rather, the signals are obscured by stochastic pro-
cesses in each step of the regulatory pathway, from transcription to catalysis
[Raser and O’Shea, 2005, Newman et al., 2006]. By the time a control sig-
nal to produce protein reaches the flux level, it has been altered by the noisy
processes in the control path. Thus, a reaction’s flux may experience random
fluctuations as a result of this noise.

Here, we will refer to the variability in the metabolic network which results
from stochastic processes in the control path as metabolic noise. There may
also exist variation in network behavior which results from environmental
differences between cells and differences in the internal states of cells [Raser
and O’Shea, 2005]. However, studies have shown that noise in the control
pathway is a significant source of variability in the network [Newman et al.,
2006]. In this study, we will assume that the primary source of the observed
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variation in the metabolic network is noise in the control pathway.
The variation in the metabolic flux network can be observed at several

levels. Starting at the beginning of the regulatory pathway, we can observe
variation in gene expression and mRNA expression. Then, we can observe
variation in enzyme abundance [Raser and O’Shea, 2005, Newman et al.,
2006]. Finally, although it is not currently measurable, variation in reac-
tion fluxes themselves may be the most direct measurement of variation in
metabolic functionality.

2 Problem Statement

2.1 Motivation

We would like to study the cells regulation of metabolic networks by exam-
ining the relationship between the effect of noise on the metabolic network
and its control. Recent results have suggested that there may be biological
motivations underlying the cells management of metabolic noise [Raser and
O’Shea, 2005, Newman et al., 2006]. Newman et al. observe metabolic noise
at the enzyme-level and quantify the variation in protein abundance between
individual cells [Newman et al., 2006]. One important result by Newman et
al. indicates that different enzymes exhibit different levels of noise, as mea-
sured by the coefficient of variation (CV) of enzyme abundance. Furthermore,
Newman et al. demonstrate that an inverse relationship exists between en-
zyme noise and enzyme abundance. This inverse relationship between noise
and abundance supports the idea that much of the observed noise may be
due to stochastic variation in the regulatory pathway, and is not simply a
result of environmental factors and differences internal states [Newman et al.,
2006]. However, Newman et al. also observe that even when enzyme noise is
normalized by abundance, we still see a distribution in the magnitude of rel-
ative noise (DM) in the set of metabolic enzymes (see section 3.3.2. In figure
2, we show the distribution of relative enzyme noise (DM) for all enzymes.

Why do different enzymes exhibit different degrees of relative noise? Or-
ganisms are generally known to evolve their survival strategies to an optimum
due to evolutionary pressure [Varma and Palsson, 1994, Schilling et al., 1999,
Edwards et al., 2001]. In the case of noise the existence of evolutionary pres-
sure implies that the amount of noise in each enzyme may be “selected for”
and optimized according to some underlying objective function. However,
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Figure 2: Distribution of relative enzyme noise (DM) in S. cerevisiae .

the motivation and mechanisms for optimizing metabolic noise remains an
unexplained question.

Studies have examined this problem through different approaches. First,
using a more biological approach, Newman et al. examine the role that
protein functionality plays in determining the permitted level of variation
[Newman et al., 2006]. They find that enzymes that allow the cell to ad-
just to environmental effects may have larger variation, due to both actual
environmental differences and robustness to possible environmental change.
On the other hand, enzymes which catalyze core functionality in the cell, for
instance, protein production, may be more tightly regulated and therefore
exhibit lower variation. Also, more generally, it may be advantageous for a
population of organisms to maintain variation in certain enzymes to benefit
the overall population [Newman et al., 2006, Raser and O’Shea, 2005]. For
example, allowing greater variation in enzymes which respond to environ-
mental shock would improve the entire populations probability of survival at
the cost of individual cells growth.

In computational approaches, it has been demonstrated in FBA studies
that organisms sometimes maintain suboptimal flux distributions and sacri-
fice growth for robustness [Fischer and Sauer, 2005]. Fischer et al. suggest
that one component of the cell’s metabolic objective may be to maintain ro-
bustness against environmental change. However, organisms may also main-
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tain robustness against internal change, which may result from noise in the
regulatory pathway. How does the flux network account for noise in regula-
tion? In our study, we will use metabolic flux distributions to explore the
“motivation” behind the cell’s regulation of enzyme noise.

2.2 Approach

We assume that the cell has some “optimal” strategy which determines its
regulation of metabolic noise. We propose to examine this strategy by relat-
ing the robustness of the metabolic network to noise in its reactions using a
flux model. The classic approach to studying robustness is to use knockout
analysis. This is done by conducting knockout experiments either in vivo or
in silico where a gene (or reaction) is disabled, and the resulting phenotype
is observed [Giaever et al., 2002, Papp and Pál, 2004]. We take a different
approach and instead consider the effects of “non-disabling” reductions in
enzyme or reaction functionality on the network.

In particular, we focus on exploring how the metabolic network responds
to changes such as those which can be caused by noise. How large of an
effect does variation in an enzyme or a reaction’s functionality have on the
network? High noise levels may often cause downward fluctuations in a re-
action’s flux. We want to develop a measurement of how these fluctuations
may affect the network. We then use this measure to judge how“important”
each reaction is to an organisms survival. We hypothesize that the impor-
tance of a reaction to an organisms survival will relate to the cell’s regulation
of that reaction’s noise. Since downward variation can significantly impede
a reaction’s functionality, we propose that more important reactions should
have lower variation.

To explore the relationship between noise and reaction importance, we
create a model of metabolism and “observe” the cell’s fluxes in silico. We
then experiment with the network’s robustness to change by exposing each
reaction in the network to downward “noise.” We quantify the network’s
response to these flux reductions, and construct a measure of the importance
of reactions. We can then compare these measurements to observed reaction
noise. Finally, we examine additional mechanisms underlying the relationship
between robustness and noise.
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3 Experiments and Results

3.1 Modeling Network Fluxes

In order to examine the effect of noise on cellular metabolism in S. cerevisiae
, we must first establish the cell’s original, “intended” flux distribution. The
first step is to create a model of fluxes in silico. Since biological measurements
of the full flux distribution do not exist, we must make several simplifying
assumptions about the cell’s fluxes in order to estimate them. First, we
assume, as in FBA [Varma and Palsson, 1994, Edwards et al., 2002], that
the cell chooses a flux distribution which maximizes growth. We also assume
that the cell will use a minimal flux distribution to achieve maximum growth
[Kuepfer et al., 2005, Blank et al., 2005]. In section 3.2.4, we will consider
the effects of these assumptions on our results. Using these assumptions, we
can compute a flux distribution to represent the cell’s intended target flux
distribution.

3.1.1 FBA Implementation

We first describe the implementation of the basic FBA model in S. cerevisiae
which forms the basis for the later models that we will construct. In FBA, we
attempt to maximize biomass growth subject to a set of linear mass balance
and environmental constraints [Edwards et al., 2002, Varma and Palsson,
1994].

First, we view growth as an additional reaction vgrowth which takes as its
substrates a linear combination of k components of growth in the necessary
ratios and generates a single product, biomass [Forster et al., 2003]. We add
the following reaction to the network, where αi is the coefficient of compound
ci:

α1c1 + α2c2 + . . . + αkck −→ biomass (1)

Since we assume that the cell wants to maximize its growth, we simply use
the flux of the biomass growth reaction as the objective function to maximize.
We then form several sets of linear constraints on the fluxes. We add one
mass balance constraint for each node (compound) X in our network which
requires that the amount of X produced by reactions involving X must equal
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the amount of X consumed [Forster et al., 2003]. Thus, for each compound
X, we have the equation:

vin − vout =
dX

dt
= 0 (2)

We can summarize the entire set of mass balance equations by a single
matrix equation. We represent the set of all reactions by a m × n matrix
S, where each row represents a compound and each column in the matrix
represents a reaction. Thus, entry Si,j represents the stoichiometric coeffi-
cient of compound i in reaction j. We can then write the set of mass balance
constraints from equation 2 as:

S • ~v =
dX

dt
= 0 (3)

where ~v is the n×1 vector of all reaction fluxes. Then, to model the avail-
ability of nutrients in the environment, we add additional artificial reactions
to allow compounds to enter and leave the cell. The input reactions are then
bounded by inequality constraints based on known physical data about the
cell’s environment. Additional information about the cell’s physical environ-
ment or metabolic capabilities is similarly added as constraints. For instance,
non-reversible reaction fluxes are constrained to be greater than or equal to
0. Thus, combining 3 and 1, our final optimization problem is constructed
as follows [Varma and Palsson, 1994, Forster et al., 2003]:

maximize vgrowth = α1c1 + α2c2 + . . . + α3c3

subject to S • ~v = ~0

~vinput ≤ ~ubinput

~vnon−rev ≥ ~0 (4)

where ~ubinput represents the vector of upper bounds on the input fluxes.
We may then solve this linear optimization problem using any of a number of
well-researched algorithms. In our work, we construct an FBA problem and
solve it using the simplex algorithm implemented by the CPLEX optimiza-
tion toolbox. The output of the optimization problem is a set of fluxes which
achieve maximal growth. However, the flux solution may not be unique;
there may be several different flux distributions which can be used to achieve
the same levels of growth. Thus, FBA cannot be used to determine a unique
flux solution [Bonarius et al., 1997, Lee et al., 2000].
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3.1.2 Incorporating Biological Information

FBA is not sufficient for determining a unique biologically meaningful distri-
bution of fluxes [Bonarius et al., 1997, Lee et al., 2000]. However, variants of
FBA have been developed which can be adapted to produce more meaningful
flux solution [Segre et al., 2002, Shlomi et al., 2005].

One variant of FBA which was developed to analyze knockout mutations
is the minimization of metabolic adjustment (MOMA) method [Segre et al.,
2002]. The principal behind MOMA is that organisms which have been
genetically engineered with knocked-out genes would have not been subject
to the same evolutionary pressures as the wild-type organism. Thus, it would
be unreasonable to assume that knockout mutants will have adapted a flux
distribution which maximizes their growth. Rather, Segre et al. argue that a
knockout mutant will undergo a minimal flux redistribution with respect to
the flux configuration of the original wild-type organism. Thus, given a set
of fluxes ~vwt for the wild-type, they compute the fluxes ~v for a knockout by
minimizing the Euclidean distance between the knockout and the wild type
fluxes:

minimize D(wt, ko) =

√

√

√

√

n
∑

i=1

(vi − vwt
i )2

subject to S • ~v = ~0

~vinput ≤ ~ubinput

~vnon−rev ≥ ~0

vknockout = 0 (5)

This method has been shown to produce more accurate flux results than
FBA for knockout mutants. We can adapt this principal to compute a more
accurate flux distribution for the wild-type as well. MOMA attempts to
minimize the distance between the mutant fluxes and some known flux dis-
tribution for the wild-type. Since no known biological measurements of the
flux distribution for the wild-type exist, MOMA uses FBA estimates as the
“known” flux distribution. However, recently biologists have been able to
measure small subsets of flux distributions in vivo. Thus, studies by Kuepfer
et al have adapted the MOMA strategy in order to compute a more accurate
wild-type flux distribution relative to the subset of measured fluxes [Kuepfer
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et al., 2005]. We use a subset of 30 reactions whose fluxes have been measured
in vivo as our known fluxes and compute the wild-type flux distribution such
that the fluxes in the measured subset of reactions undergo a minimal flux
redistribution relative to the measured fluxes [Kuepfer et al., 2005].

The issue with this approach is that the subset of 30 measured fluxes
vmeas is not large enough to determine all 672 fluxes in the network. We
must decide what to do with the remaining flexibility in the flux solution
space. Here, we follow the assumption made by Kuepfer et al. that the cell
will use the minimal fluxes necessary to achieve maximum growth [Kuepfer
et al., 2005]. This assumption is needed to remove futile cycles from the
network. There are cycles in the network where a loop involving two or more
reactions of the form v1 : c1 → c2 and v2 : c2 → c1 develops. Here, unless
fluxes are minimized, v1 and v2 could assume an arbitrarily large amount
of flux without violating any constraints. Thus, we set such cycles at the
minimum flux level needed to maintain growth. Although this assumption
is not accurate, we show in section 3.2.4 that it is reasonable enough for our
purposes of studying robustness.

We thus calculate the wild-type flux distribution by computing the mini-
mal fluxes needed to both achieve the maximum growth and to maintain the
measured fluxes vmeas within one percent of their measurements. We adapt
this as shown by Kuepfer et al. into an L1 (linear) optimization problem by
using substitution variables to minimize the sum of the absolute values of
the fluxes [Kuepfer et al., 2005]. Thus, we write:

minimize
n

∑

i=1

(xi + yi)

subject to xi − yi = vi − fi

S • ~v = ~0

~vnon−rev ≥ ~0

(1 − ǫ) × ~fmeas ≤ ~vmeas ≤ ~fmeas × (1 + ǫ)

where ǫ = 0.01 (6)

where ~fmeas is the vector of biological flux measurements in which any
flux which has no flux measurement is set to 0. Using this minimization, we
obtain a flux solution which conforms to the known biological measurements,
optimizes growth, and minimizes extraneous fluxes. Although this flux solu-
tion will be generally biased downwards due to the minimization of fluxes,
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we can interpret it as a biased estimate of the cell’s observed fluxes. Using
this “observation,” we can now examine how the cell responds to changes
in its fluxes, which may result from either environmental shocks or internal
noise.

3.2 Modeling Network Robustness

To explore the cell’s strategy for controlling levels of noise in metabolic net-
works, we would like to explore the effect of noise in each reaction and cat-
alysts (enzymes) in the network. First, we use the FBA assumption that
cellular growth is the main metabolic objective. Thus, we are interested in
the robustness of the network’s optimal growth to fluctuations in reaction
fluxes: how important is each reaction to maintaining an optimal solution
to the cell’s objective function, or growth? Past studies have answered this
question by using hard constraints which knockout the flux completely [Gi-
aever et al., 2002, Blank et al., 2005]. We instead develop a “soft” measure of
the effect of downward variation in a reaction on the network, which we call
the compensation cost of a reaction. We then examine how each reaction’s
compensation cost compares to its noise.

3.2.1 Measuring Compensation Distance

To compute the measure of compensation cost for each reaction, we first
construct a “compensation curve” plotting the cost of maintaining optimal
growth as a reaction is varied. We note that we are only concerned with
downward variation, because increasing flux in a reaction will never make
it more “difficult” to maintain optimal growth. We begin by computing an
“observed” flux distribution by using our flux minimization estimate of fluxes
(section 3.1.2). Then, we take each flux vi and vary it below it’s observed
level. We then measure how much the rest of the network must compensate
in order to maintain a high percentage (90%) of the optimal growth level.

To construct the compensation curves, we solve a set of optimization
problems for each reaction r of interest. To compute the compensation curve
for a target reaction r∗ with flux v∗, we enforce an upper bound constraint on
v∗ and reduce the upper bound in increments. For each level of v∗, we then
solve for the flux distribution which maintains near-optimal growth and is
the closest (using Euclidean distance) to the original “observed” distribution.
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Specifically, we add the following constraints to each optimization prob-
lem. First, the other internal fluxes are not bounded, since we assume that
the cell will be able to re-route fluxes in response to perturbations in one flux
(not always biologically valid). The inputs to the network are bounded be-
tween zero and their observed flux levels (from previous section) in order to
simulate a static external environment, since we only want to observe internal
metabolic changes. Finally, the growth flux is lower bounded to 90% of the
optimal growth to require that the cell remain in a near-optimal metabolic
state. We also maintain the mass balance and reversibility constraints. Thus,
for each target flux v∗ ǫ~v, we write the following set of optimization problems
for the set of reduction factors δ ǫ D = {1, 0.95, 0.9, . . . , 0}:

foreach δ ǫ D :

minimize
n

∑

i=1

(vi − fi)
2

subject to S • ~v = ~0

~vnon−rev ≥ ~0

~vinput ≤ ~ubinput

vgrowth ≥ 0.9 × fgrowth

v∗ ≤ δ × f ∗ (7)

where v∗ is the target reaction for which we are computing the com-
pensation cost, ~ubinput is the vector of upper bounds on the input, ~f is the
vector of “observed” fluxes from the minimization estimate, and fgrowth is
the optimal growth flux. Thus, we obtain a set of minimum flux distances
Dist = d1, d2, . . . , dm where dj corresponds to the minimized distance d

computed for δj ǫ D and m is the number of δ increments. Importantly, we
must now normalize each distance di by the original flux of the target reac-
tion f ∗. This is done to account for the magnitude of the original flux f ∗ of
the target reaction r. Clearly, a larger f ∗ would require a larger amount of
compensation in the network. However, we only want to consider the relative
levels of network compensation between reactions.

Finally, given a set of distances, we can plot the normalized network com-
pensation distance distj = dj

f∗
for j = 1 . . .m as a function of the downward

variation (1− δj) for each target reaction. This gives us a compensation cost
curve for each reaction. We focus on analyzing the compensation cost curves
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for target reactions in the set of 30 measured reactions. These reactions are
less affected by the minimization bias, since the “starting point” f ∗ of the
target reaction is not computed from the flux minimization. We show three
examples of the types of curves we obtain in figure 3. From these curves, we
will calculate a measure of each reaction’s compensation cost.

Figure 3: Network compensation distance curves for three reactions in S.
cerevisiae .

3.2.2 Mechanisms of Compensation Distance

In general, when a target reaction r∗’s flux v∗ is varied below its observed
level, the network must re-route fluxes through alternative pathways to pro-
duce the compounds which r∗ originally supplied [Blank et al., 2005, Segre
et al., 2002]. We develop a measure of the magnitude of the flux re-routing,
the compensation distance. In general, the curve of compensation distance
as a function of downward variation in v∗ becomes a function with linear
segments of increasing slope, as seen in figure 3.
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Figure 4: Diagram of a hypothetical section of the metabolic network. Nodes
represent compounds and arrows represent pathways of one or more reactions.

Individual segments of the compensation distance curve often reveal a
linear relationship between compensation distance and downward variation.
This may occur when there is a direct redundant pathway between r∗’s sub-
strates and products, since every decrease in v∗ will cause a corresponding
increase in the redundant pathway’s flux. However, for many reactions, the
slope of the line also changes at many points along the x axis. This may be
explained by the network’s use of additional alternative pathways to com-
pensate for r∗ when the original pathway becomes insufficient. We consider
a simplified example of network compensation in figure 4. Here, each node
represents a set of one or more compounds, and each arrow represents a
pathway of one or more reactions converting the compounds. We also ignore
the stoichiometric ratios between compounds and assume that each set of
compounds is required in a 1:1 ratio.

We consider the case when our target reaction r∗ = rab. When reaction
rab’s flux is decreased, the network may first compensate for the reduced pro-
duction of compound B by increasing the flux in rcb to convert C to B. The
“extra” A may the be used to produce the amount of D originally produced
by C. However, C is a compound which is taken from the environment.
Thus, if we decrease rab further, we may need to produce more B than we
can produce using C, since the environment may not supply enough of com-
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pound C. In our model, the constraint on the amount of substrate D is
represented by an upper bound on the external inputs to the network.

At this point, if there is another compound F which can supply B in the
same way, the network will “switch” and use this alternative pathway. At this
point, the slope of the distance function must increase, since we are increasing
the flux in a second alternative pathway. Note that the second pathway must
be longer than the first, since we are always minimizing distance. Thus, we
eventually end up with a compensation distance curve with linear segments
of increasing slope.

In the above example, if there did not exist a second redundant pathway
through some F in the network, the network would become unable to sus-
tain optimal growth for further decreases in r. In plots of these reactions, the
curve becomes infeasible after some level of decrease. This is shown in reac-
tion Glucose → GLC in figure 3, where a reduction of the reaction beyond
approximately 90% makes it impossible for the network to maintain optimal
growth.

3.2.3 Measuring Compensation Cost

Using the compensation distance curves, we can quantify the magnitude of
the effect of a reaction’s variation on the network. We can measure how
“difficult” it is for a network to compensate for a decrease in the target
reaction. The compensation distance is related to the number of fluxes which
must be altered (usually increased) to compensate for variance. Thus, a
larger compensation distance implies that variance in a reaction is more costly
to a cell in terms of both energy use and feasibility We quantify the cost of
a reaction’s variance on the network using a compensation cost measure,
which we measure as the average gradient across the entire curve (equation
8). A larger gradient indicates that the reduction in a reaction’s flux requires
more changes in the network to maintain optimality, while a smaller gradient
suggests that a reaction has shorter alternative pathways available.

compensation cost =
distlast − distfirst

δlast − δfirst
(8)

The compensation cost can be viewed as a measure of how noise in each
reaction would affect the metabolic network. In particular, it measures how
“important” each reaction is to the network by quantifying how “difficult” it
is for the cell to maintain near-optimal growth when that reaction experiences
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downward noise. We note that the compensation cost is independent of the
target flux’s magnitude, since it is normalized by the amount of flux decrease.
As a result, it depends on the structure of the network and the magnitudes
of the other fluxes in the network. In the next section, we consider the effect
of our flux estimation on the compensation cost. Then, we will examine how
compensation cost is related to reaction noise.

3.2.4 Effect of Flux Estimation Bias

Since we are estimating our flux distribution by using the minimization de-
scribed in section 3.1.2, we expect that our estimated fluxes will have a
downward bias [Kuepfer et al., 2005, Blank et al., 2005]. However, we note
that we do not minimize each flux independently; rather, we minimize the
sum of the fluxes. Thus, we expect the overall distribution to be lower than
the true flux distribution, but we do not consider each individual estimated
flux to be a minimum; rather, it is simply a downward biased estimator of
the true flux.

First, we verify the downward bias in our estimation by using a leave-one-
out (LOO) cross-validation on our subset of 30 measured reactions. To do
so, we compute the flux minimization estimate of the full flux distribution,
but leave one flux vi of the 30 measured fluxes out of the measurement ~f

constraint. We instead obtain an estimate of vi from the estimated flux
distribution, and compare it with its true measurement. We repeat this for
all vi ǫ~vmeas. We thus obtain the plot in figure 5, which compares the true
fluxes of the measured subset of reactions against their estimated values. The
plot shows a strong correlation (r = 0.92 and p < 1015) between the true
and estimated fluxes, but also demonstrates the expected downward bias in
the estimated fluxes. The estimated fluxes have a median downward bias of
approximately 44% below their true values.

We would like to know what impact the estimation bias has on the final
compensation costs. To observe the effect of having a higher true flux dis-
tribution, we perform a rough simulation as follows. We assume, based on
empirical results, that the distribution for the true flux for each reaction is
centered 60% above the estimated flux, with a standard deviation of 60%.
We then sample a flux for each reaction (independently) from the distribution
of “true” fluxes to obtain a full set of “permuted” flux estimates. Using this
set of permuted fluxes, we then re-compute the compensation cost measure
for each target reaction in the measured subset. We repeat this process for
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Figure 5: Flux minimization estimates vs. flux measurements from a LOO
cross validation.

n = 100 samples, and obtain a set of permuted compensation costs. We then
compare these compensation costs to the costs computed from the original
flux distribution and observe their correlation in figure 6.

We see that, aside from the three outliers in the lower right, there is a
fairly clear positive relationship between the compensation costs calculated
from the flux minimization estimates and the compensation costs calculated
from the permuted flux distributions. The correlation coefficient between
the average compensation cost computed from the permuted samples and
the original compensation cost is r = 0.5856, p = 0.0021. We note that
the permuted flux samples tend to have lower compensation cost because
the permuted fluxes are on average higher than the minimized fluxes; thus,
there is already “extra” flux available for compensation in the permuted
distributions. This implies that the compensation costs calculated using the
“true” flux distribution would have a strong correlation with the estimated
compensation costs. Thus, although a better flux estimation would clearly
benefit our analysis, the biased minimized fluxes may still provide fairly
realistic estimations of the compensation cost.
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Figure 6: Compensation costs from original minimized flux estimates vs.
sample compensation costs from permuted flux distributions. Here, each set
of colored symbols represent a set of permuted compensation cost samples
for a single target reaction. Each square represents the mean permuted
compensation cost of the given target reaction and the bars represent the
standard deviation of the permuted compensation cost samples.

3.3 Computing Reaction Noise

The compensation cost gives us a measure of how the network is affected by
the noise in each reaction. Now, we would like to relate that to the observed
noise in S. cerevisiae cells. Recent studies have used single-cell proteomic
analysis on S. cerevisiae to measure variation in single cell enzyme abundance
levels [Newman et al., 2006]. As is explained in section 1.3, Newman et
al. hypothesize that much of the noise in enzyme abundance levels may be
explained by internal stochastic processes. Thus, we can interpret enzyme-
level noise as noise which is regulated by the cell’s metabolic control. Thus,
we will use an enzyme-level measurement of variability [Newman et al., 2006]
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to compute an estimated noise level for each reaction. We can then compare
the cell’s regulation of noise against the network’s compensation costs.

3.3.1 Enzyme Noise

We first review Newman et al.’s computation of enzyme noise, and then
extend it to compute noise at the reaction level. First, they compute the
coefficient of variation (CV) using abundance and variation measurements
for each enzyme. For enzyme e, they compute CV (e) as:

CV (e) =
σe

µe

(9)

where σe is the standard deviation of e’s abundance and µe is the mean.
Newman et. al. show that the CV (e) of an enzyme is shown to be inversely
related to its abundance µe. This is a typical characteristic of stochastic
processes internal to a call such as the production and destruction of protein
molecules. However, we would like to observe relative noise levels between
different enzymes; thus, we use Newman’s computation of distance to the
median (DM) as a measure of noise normalized by abundance. To compute
DM, we first plot 1

µ
vs. CV and compute a set of running medians of the

CV ’s across this plot using a window of size 60. Then, we fit a line to the
plot of 1

µ
vs median(CV ) and compute each DM as follows:

DM(e) = CV (e) − median(CV (E)) (10)

where E is the set of 60 fluxes which are centered around e by 1

µ
. The

DM output for each enzyme represents its relative noise level normalized for
abundance.

3.3.2 Reaction Noise

Since multiple enzymes can catalyze a reaction (see section 1.1.2), a reaction’s
noise may be influenced by variation in more than one enzyme [Berg et al.,
2001]. Thus, we must combine the enzyme-level noise measurements into
appropriate reaction-level noise estimates. To do so, we will combine the
abundance and variation measurements for the set of enzymes E catalyzing
a reaction ri to compute the coefficient of variation for that reaction CV (ri).
Then, given a set of CV (ri)’s for all reactions, we can repeat the above DM
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computation on the reaction-level. We first compute reaction-level CV’s as
follows:

CV (r) =

√

∑

e ǫ E

σ2

e

∑

e ǫ E

µe

(11)

We then repeat the DM computation as above for reaction CV’s by sorting
by 1

µ
, fitting a line to the median of the CV’s, and computing the distances

to the median for each reaction: DM(r) = CV (r) − median(CV (r)). Our
final output is a set of noise measurements DM(r) for all reactions r. Each
reaction’s noise measurement represents the level of noise regulated for that
reaction by the cell’s metabolic control.

3.4 Robustness and Noise

We can now compare the effect of each reaction’s noise on the network with
the cell’s control of that reaction’s noise. We use the compensation cost
as a measurement of the network response to a reaction’s noise, and the
reaction noise (DM(r)) computed in section 3.3.2 as an estimate of the noise
permitted by the cell. We consider the question: are reactions with a higher
compensation cost regulated more strictly? To answer this question, we plot
the compensation cost (CC) of each reaction against its noise (DM) in figure
7.

3.4.1 Results

We first focus on comparing the compensation cost and noise for the sub-
set of measured reactions rmeas. Since the target flux measurements for the
measured reactions were not estimated through the flux minimization (see
section 3.1.2), they represent a less biased measurement of the flux “starting
points.” However, we note that even these compensation costs are still af-
fected by the minimization, since they still depend on the changes in the full
network.

In figure 7, we see a significant inverse relationship between CC and DM ,
with a Pearson correlation score of r = −0.525 and p = 0.0142. Thus, we
observe that reactions whose downward variation causes larger changes in
the network tend to have lower noise.
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Figure 7: Compensation cost vs. reaction-level noise (DM) for the subset of
measured reactions.

We then consider the same comparison across all fluxes. Since our flux
“starting points” in this case are obtained through the flux minimization, we
know that they will be biased downwards. This bias may affect the resulting
compensation cost. First, we see in figure 8(a) that there is no apparent re-
lationship between the compensation cost and the reaction noise (p = 0.646)
across the full network. However, the reactions on the graph appear to be
clearly separable into two distinct sets: those with extremely high compen-
sation cost (> 107), and those with “normal” compensation costs. Upon
closer examination, the reactions with extremely high compensation cost all
become “un-compensate-able”: at some point, the network can no longer
compensate for reductions in the fluxes of these reactions. The compensa-
tion distance of these reactions becomes extremely high before reductions in
their flux cause optimal growth to become infeasible. Thus, we would expect
that these reactions have high compensation cost. Here, we will refer to these
reactions as “essential” reactions.
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(a) Compensation cost vs. reaction-level
noise (DM) for all reactions.
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(b) Compensation cost vs. reaction-level
noise (DM) for all reactions high compen-
sation cost outliers.

Figure 8: Compensation cost vs. reaction-level noise.

Set of Reactions Correlation Coeff (r) P-value
Measured reactions only -0.525 0.0142
All reactions 0.0485 0.6463
All non-essential reactions -0.3029 0.0186
All essential reactions 0.1343 0.4637

Table 1: Summary of correlations between compensation cost and reaction-
level noise (DM).

We would like to examine these sets of reactions separately. Thus, we
filter out essential reactions and compare the compensation cost and noise of
the remaining reactions in figure 8(b). Here, we see that among non-essential
reactions, there is a significant negative relationship between compensation
cost and reaction noise. This is confirmed by the correlation coefficient where
r = −0.3029 and p = 0.0186. Finally, we note that there is no significant
relationship between compensation cost and reaction noise in essential reac-
tions. This is unsurprising, since these reducing the flux of these reactions
essentially causes an uniformly infinitely large compensation distance. We
summarize the correlations in table 1.
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3.4.2 Interpretation

We can interpret the relationship between compensation cost and noise in
several different ways. First, we can consider compensation cost as a measure
of the “importance” of a reaction to maintaining optimal growth. A reaction
with many redundant pathways, such as the reaction G6P → F6P in figure
3, will have a low compensation cost, as it will be easy to duplicate that
reaction’s functionality [Kuepfer et al., 2005]. Thus, such a reaction is not
uniquely essential to maintaining the network’s optimality. However, a reac-
tion with a high compensation cost, such the reaction Glucose → GLC in
figure 3, may have fewer direct redundant pathways. Instead, to compensate
for the variability, the network must re-route fluxes through longer alter-
native pathway(s) change the flux distribution in many different pathways.
This may be disruptive to cellular function, and may not even be possible in
vivo [Segre et al., 2002, Shlomi et al., 2005]. Thus, the flux in reactions with
high compensation cost may be considered more “important” to achieving
metabolic objectives such as growth. Therefore, it may not be surprising
that the cell allows more noise in less “important” reactions, since variability
in these reactions will most likely not affect growth, while strictly regulating
the noise in more “important” reactions to prevent the disruption of growth.

We can also consider the implications of the relationship between com-
pensation cost and noise in terms of energy. Compensation cost is primarily
related to the number of reactions whose flux must change in order to main-
tain optimal growth (since we normalize for the magnitude of the flux). Since
we are decreasing flux in the varied reaction r, we can assume that most of the
flux changes will be flux increases. Thus, the cell will be forced to increase
reaction rates in the alternative pathway(s) to compensate for variability,
which requires energy ?cite. Reactions with larger compensation costs will
require increases in more reaction rates and therefore have a higher energy
cost of compensation. Thus, downward variability in high compensation cost
reactions would require considerably more energy to prevent disruption of
growth. Furthermore, we note that in vivo the cell may not always be able
to increase reaction rates in any given pathway [Segre et al., 2002, Shlomi
et al., 2005]. Thus, we would expect reactions with a higher compensation
cost to have lower noise.
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Variables Correlation Coeff (r) P-value
Flux vs. abundance (measured reactions) 0.5093 0.0259
Compensation cost vs. Flux (measured reactions) 0.2695 0.1927
Noise (DM) vs. abundance (all reactions) -0.1213 0.0565
Noise (DM) vs. abundance (measured reactions) -0.3708 0.118

Table 2: Summary of correlations between confounding variables.
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(a) Flux vs. abundance in the measured re-
actions.
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(b) Flux vs. abundance in all estimated
fluxes.

Figure 9: Flux vs reaction-level enzyme abundance.

3.5 Confounding Variables

We would like to further examine the relationship between compensation cost
and noise. First, we consider the possibility of confounding variables such as
protein abundance or flux affecting the relationship between compensation
cost and noise. The correlation coefficients and p-values between the different
variables are summarized in table 2.

We first account for possible confounding variables in the relationship be-
tween compensation cost and reaction noise. First, since fluxes are naturally
related to enzyme abundance in the cell [Berg et al., 2001], it is possible
that this relationship is a factor in the relationship between compensation
cost, which is based on flux, and reaction noise, which is based on enzyme
variation.

First, we examine the relationship between flux and enzyme abundance

28



−30 −20 −10 0 10 20 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flux

C
om

pe
ns

at
io

n 
C

os
t

Figure 10: Compensation cost vs. flux for measured reactions.

for the measured subset of reactions in figure 9(a). The relationship has a
strong positive correlation with r = 0.5093 and p = 0.0259. However, if we
remove the single outlier in the upper right of the plot, the p-value increases
to p = 0.1131, and if we remove the other two outliers in the upper right, the
correlation disappears. A similar relationship exists for the set of minimized
fluxes and enzyme abundance, as shown in figure 9(b). Thus, there is a
strong relationship between flux and enzyme abundance, but much of it may
be explained by a few reactions with large flux and high abundance.

We then check if compensation cost may be related to flux for the mea-
sured subset of reactions (since these fluxes are less biased). As explained
in section 3.2.1, we divide the compensation distances by the original flux of
the target reaction in order to normalize the compensation costs. Thus, we
do not expect to see a relationship between flux and compensation cost. This
is reflected in the plot of compensation cost vs. flux in figure 10, where we
see that the correlation between compensation cost and flux is not significant
(r = 0.2695 and p = 0.1927).

Finally, we want to verify that the reaction-level noise measurement, the
distance to the median (DM) is not related to enzyme abundance. We com-
puted the DM as a “relative” noise measure, relative to the median noise
in proteins of similar abundance levels [Newman et al., 2006]. Again, we do
not expect to see a significant correlation between DM and protein abun-
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(a) Noise vs. abundance in measured reac-
tions.
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(b) Noise vs. abundance in all estimated
fluxes.

Figure 11: Reaction-level noise vs. reaction-level enzyme abundance.

dance. However, when we plot DM vs. abundance (figure 11), we notice a
moderately negative relationship where r = −0.1213 and p = 0.0565 for all
reactions, and a slightly weaker relationship for the measured subset where
r = −0.3708 and p = 0.118.

Between the compensation cost, flux, abundance, and reaction noise, we
see that there are weak relationships between compensation cost and flux, as
well as between flux and abundance. However, it is unlikely that these rela-
tionship fully explain the correlation between compensation cost and reaction
noise.

3.6 Enzyme Production as a Gamma Distribution

Recently, a study by Cai et al. measured protein (enzyme) expression levels
at the single molecule level in live cells [Cai et al., 2006]. They demonstrated
that in Escherichia coli cells, stochastic protein production processes can be
modeled using a gamma distribution where the key parameters of the distri-
bution correspond to the factors controlling protein expression. The two key
parameters in protein expression consist of: the average frequency of expres-
sion bursts per cell cycle, a; and the average number of protein molecules per
burst, b. These factors combine to determine the level of steady-state protein
abundance in the cell. Xie et al. showed that the distribution of steady-state
protein abundance levels in a cell can be fitted to a gamma distribution. The
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parameters a and b in the gamma distribution correspond to the average
frequency and burst size, respectively. Thus, the probability distribution of
enzyme abundance p(x) can be modeled as:

p(x) =
xa−1e−x/b

baΓ(a)
(12)

We can apply this model to protein abundances in yeast in order to gain
insight into the mechanisms behind noise control. In our experiments, we
have a set of steady-state protein abundance measurements in S. cerevisiae
where we know the mean and variance of the abundance distribution. Using
the result from Xie et al., we can assume that these protein abundances can
also be modeled as a gamma distribution. Thus, we can use the mean µ and
variance σ2 to compute the parameters a and b of the gamma distribution
representing protein production. We can compute the parameters as follows:

a =
µ2

σ2
and b =

σ2

µ
(13)

We can use equation 13 to obtain the burst frequency and burst size of
the enzyme production process in yeast. Thus, we can ask the question: is
one or both of the parameters of protein production a factor behind enzyme
noise? We can compare the parameters a and b against the relative enzyme
noise DM (equation 10). We note that our noise measure DM is not the
variance of the enzyme abundance distribution; rather it is a measure of the
relative variation in enzyme levels normalized by the mean abundance (see
section 3.3.1). We plot the two parameters against DM in figure 12.

In figure 12, we can see clearly that burst frequency has a strong inverse
relationship with noise (r = −0.7034 and p < 10−16), while burst size has
a weaker negative relationship with noise. Thus, we see that manipulating
burst frequency may be a significant factor behind controlling enzyme noise,
while burst size is also a potentially important, albeit weaker, factor. We
also note that the set of enzymes used in this portion of the study are not all
metabolic enzymes. Due to a lack of data, we were not able to draw compar-
isons between metabolic enzyme production parameters and compensation
costs. We summarize our comparisons in table 3. We note that we also
see a relationship between the mean µ and burst frequency with correlation
r = 0.35 and p = 8.7e − 10. However, the mean µ is not related to the
noise DM . Thus, the mean does not explain the relationship between burst
frequency and noise.
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Figure 12: Parameters (burst frequency and size) of a gamma model of en-
zyme expression plotted against enzyme noise (DM).

Variables Correlation Coeff (r) P-value
Burst frequency vs. enzyme noise -0.7034 < 10−16

Burst size vs. enzyme noise -0.2376 3.87 × 10−5

Burst frequency vs. burst size 0.102 0.0806
Mean abundance vs. enzyme noise -0.0491 0.4019
Burst size vs. mean abundance 0.3479 8.7 × 10−10

Table 3: Summary of correlations between parameters of enzyme production
and other variables.

4 Discussion

In this study, we examine the motivations behind the regulation of metabolic
network noise in S. cerevisiae . Recent research measuring variation in en-
zyme abundances shows that there is a distribution of noise in enzyme abun-
dances which may largely be a result of stochastic processes in metabolic
regulatory pathways [Newman et al., 2006]. It is generally thought that
organisms are influenced by evolutionary pressures to adopt biologically op-
timal states [Edwards et al., 2001]. They do so to achieve a diverse set of
objectives needed for survival, including but not limited to growth, mainte-
nance, and robustness to the environment [Fischer and Sauer, 2005]. Thus,
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we reason that the distribution of noise found in the metabolic network may
also be “optimized” by the cell according to its underlying objective func-
tion. To explore the motivations behind this optimization, we use a system-
wide optimization model inspired by Flux Balance Analysis (FBA) to model
metabolic behavior [Edwards et al., 2002, Varma and Palsson, 1994]. We
simplify the problem by assuming that the cell’s underlying objective func-
tion is to maximize growth. Then, we use the network in silico to experiment
with the robustness of the network’s optimal growth to noise.

Our main result was to characterize a property of each reaction which
can explain, to some degree, the differences in noise levels between reactions.
This compensation cost quantifies the effect of a target reaction’s (downward)
variability on the network by measuring the degree of compensation required
by the network to maintain near-optimal growth when the target reaction’s
flux is permuted downwards. One would expect that variability in reaction
fluxes can inhibit the achievement of the cell’s objective function [Papp and
Pál, 2004]. Thus, we see that reactions with higher compensation cost whose
variation has a larger effect on the network also tend to have lower noise.

We can interpret this relationship in several ways. First, the compensa-
tion cost can be seen as a measure of a reaction’s “importance” to maintaining
optimal growth. More important reactions have fewer accessible redundant
pathways, and therefore it is difficult (and in a living organism may be im-
possible) to compensate for a reduction in their fluxes. Thus, in important
reactions characterized by high compensation cost, it would benefit the cell
to maintain a low level of reaction noise. Also, a higher compensation cost
may require more energy to activate long alternative pathways. This would
cost the cell a greater energy price, and may also be infeasible in a living
organism. Thus, again it would be beneficial to the cell to maintain lower
noise in reactions with high compensation cost.

Finally, we explore possible mechanisms of noise control by modeling the
protein production process in S. cerevisiae as a gamma distribution with
the parameters of burst frequency (a) and burst size (b) [Cai et al., 2006].
We show that both burst frequency and size are inversely related to noise;
however, frequency has a much stronger negative relationship with noise.
This implies that protein burst frequency may be an important mechanism
for controlling enzyme noise levels. For instance, to catalyze a target reac-
tion r, a given amount of enzymes can be produced using either a higher
burst frequency and lower burst size, or vice versa. However, if r has a high
compensation cost, the cell may want to maintain lower variance in the cat-
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alyzed reaction’s flux. In this case, it could regulate the noise by “choosing”
to produce the enzymes by using higher burst frequency and lower burst size.
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