Task Allocation for Heterogeneous Robots

Brian P. Gerkey

April 21, 1998

Abstract

This paper describes the design and implemen-
tation of a multi-robot task allocation system.
The system is built upon the Mover system
(see [2]) and allows the user a high-level inter-
face for posing tasks to a group of autonomous
heterogenous robots. Rather than assigning
a task to an individual or group of individu-
als, the user simply poses the task to the sys-
tem as a whole (with no knowledge of indi-
vidual machines). Along with a description
of the task itself, the user must supply a list
of “capabilities” required for each component
of the task. Given the list of capabilities, a
publish/subscribe messaging system is used to
discover qualified and available machines. A
negotiation step ensues which results in the ac-
tual doling out of the components of the task.
Tasks can range from simple one-robot jobs
to multi-robot, multi-step, fully-synchronized
endeavors.

1 Introduction

A long-time goal of roboticists has been to
coerce robots into cooperating. Multi-robot
cooperation offers obvious advantages; robots
who effectively cooperate with each other on
tasks will assuredly be more capable than their
non-cooperative brethren who must toil indi-
vidually at their chores.

In order to achieve cooperation, a multi-

robot control system must be developed. In
order that it be useful to robot programmers,
that system should accomplish as much as pos-
sible for the user. Mover, described in [2], is
a an example of such a system. The Mover
system provides the programmer with a flex-
ible interface for posing complex, multi-step,
multi-robot tasks; the system takes care of de-
tails such as the shipping of task components
to their assigned robots, the synchronization
of successive steps within multi-step tasks, and
distributed error recovery. However, the user
must specify by name which robots will ac-
complish which task components. It is the
automation of this task allocation step with
which this project is concerned.

Consider the example task of moving a
large! box through a specified path across a
room. Rather than instructing Robot A to
push the box and Robot B to steer, it would
be nice to simply indicate how many robots
are needed (two) and what capabilities those
robots should have (maybe both the pusher
and steerer need mobile wheelbases and tac-
tile bumpers while the steerer additionally re-
quires sonar sensors). If we pose this task (in
enough detail) to a group of robots the system
should be capable of discovering which robots
are available to accomplish the task, negoti-
ating for use of resources, and actually doling

1 mean ‘large’ in the way that it is used in [1]: that
the mass and size of the object are of roughly the same
order of magnitude as those of the robot involved.

out the components of the task. These ‘robots’
could range from sensor-packed mobile manip-
ulators to simple desktop workstations; each
machine has different abilities which should be
fully exploited in order to meet given goals.

2 Publish/Subscribe Mes-
saging

In order to effectively work together as a team,
the robots must somehow export relevant state
information so that others may make intel-
ligent decisions concerning the allocation of
a task. The metaphor used to describe this
communication is inspired by object-oriented
(O0) programming: each robot is modeled as
a network ‘object’ on which various methods
may be invoked. These methods, or services,
allow a uniform interface for the remote query-
ing of information such as current position and
orientation, processor load, and peripheral de-
vice status. To support the autonomy of the
robots, these queries must be made anony-
mously; a user program executing on one robot
should not be aware of or be affected by queries
made against that robot by others. In addi-
tion, a querying robot should be able to make
broadcast requests and then simply wait for
one or more robots to respond.

In order to enable this anonymous broad-
cast communication, the actual implementa-
tion of the messaging system is based on
two concepts: subject-based addressing and
publish/subscribe messaging (see [3] for de-
tails). Subject-based addressing is a scheme
in which messages are addressed to a subject
rather than a specific node or process. Pub-
lish/subscribe messaging is a messaging model
which makes extensive use of subject-based
addressing. In a publish/subscribe system, the
data producers make their data available by
simply “publishing” it in messages to certain

subjects. The data consumers can then access
that data by “subscribing” to the appropriate
subjects; they will receive the data messages
as they are published. In short, information is
put on a “bus” and anyone who wants it can
have it. The result is a loosely-coupled dis-
tributed system in which the data producers
have no knowledge of the data consumers and
vice versa.

3 Subjects

In this system, the idea of a subject has been
slightly skewed in that it can be an unordered
set of subjects rather than just one. A po-
tential receiver will evaluate any message ad-
dressed to a set of subjects which form a
proper subset of those subjects to which he
is listening. Each robot listens to a set of sub-
jects which represent his “capabilities”. For
example, our mobile robot elvis normally sub-
scribes to the following subjects: ir, sonar,
speech, buttons, lights, mobile, elvis, and all.
These subscriptions can and do change over
time. When the system load drops below some
threshold, he will subscribe to an additional
subject “idle”. When his battery-charging ca-
ble is disconnected, elvis will begin listening
to the subject “untethered” because he is now
free to move about the world. So, to reach
all robots who have sonar sensors and are not
busy, one can send a message to the sub-
ject (sonar idle); only those machines with
the specified capabilities will actually evalu-
ate the body of the message (which, thanks to
Scheme’s treatment of procedures as first-class
objects, can be an arbitrary procedure).

4 Primitives

At the lowest level of the task allocation sys-
tem are three messaging primitives: publish,

request, and request-exclusive. All three pro-
cedures address messages by subject and then
broadcast them to all machines on the network
for possible evaluation?.

The publish procedure is used to send asyn-
chronous messages. Its return value is simply
a list of acknowledgements from all the ma-
chines on the network. There is no indication
of whether or not the message was actually
evaluated on the receiver’s end. For general
synchronous messaging, the request procedure
is used; it has the same syntax as publish, but
waits for a response from each machine on the
network. The return value is a list of results
from those machines, if any, which evaluated
the message. There are some devices, such as a
wheelbase, of which a user program will prob-
ably want exclusive use (it would in general be
bad for two different tasks to both move the
robot around at the same time). For situa-
tions such as these, the third messaging primi-
tive, request-exclusive, is required. When a re-
ceiving machine evaluates a request-exclusive
message, it first unsubscribes from those ca-
pabilities included in the address of the mes-
sage. The message body is evaluated; when
the evaluation is complete, the subscriptions
are reinstated. In this way, resources can be
exclusively reserved so that only one task has
access to them.

5 Negotiation & Allocation

While of general interest, the messaging prim-
itives are not usually called directly by user
programs, but rather by the high-level proce-
dure pose-task. This procedure is the stan-
dard interface to the system and allows the

21t should be noted that there are a variety of com-
mercial implementations of publish/subscribe messag-
ing (most notably Rendezvous, described in [3]) that
accomplish this broadcast step extremely efficiently
through the use of, for example, IP multicasting.

user to pose a task in what is hopefully a nat-
ural manner. The arguments to pose-task are
the following: number of robots required (i.e.
number of task components), list of capabili-
ties required for each task component, list of
metrics®, and list of procedures (the actual ex-
ecutable task components). To allow for ex-
clusive reservation of resources, the syntax for
specifying capability lists allows the user to in-
dicate which resources are needed exclusively
and which are not.

Given this information about the task, the
pose-task procedure initiates a simple negotia-
tion protocol in order to decide which machine
will play which role. For each task compo-
nent, a list of eligible machines is determined
through various requests; if the component
has exclusive resource requirements, those re-
sources are reserved at this time. These can-
didate lists are sorted by the appropriate met-
rics and any conflicts are resolved (the sys-
tem must make sure that the same robot is
not assigned to more than one task compo-
nent). At this point, pose-task has (if possi-
ble) chosen a specific machine to execute each
task component and can determine whether or
not the task can actually be accomplished. If
the task cannot be accomplished, any reserved
resources are released and notification of the
failure is returned to the user. If the task
can be accomplished, the first step for pose-
task is to release unneeded resources; that is,
each machine which has reserved resources for
a task component to which it is not assigned
is told to release those resources. The chosen
machines are then given their respective task
components (via the team synchroniztion in-
terface described in [2]) for evaluation. Their

3When more than one robot is qualified for a task
component, the user-supplied metric procedure for
that task component is used to choose the best candi-
date. Example metrics include location-metric (choose
the robot closest to some target position) and load-
metric (choose the robot with the lowest system load).

collective response is returned to the user.

6 Conclusions

While somewhat unpolished, the system de-
scribed here is a novel approach to the prob-
lem of task allocation in that it applies in an
effective manner ideas borrowed from the in-
dustrial distributed control arena to the study
of heterogeneous robot control. The result is
an automated task distrution method that of-
fers some clear advantages over the standard
manual distrution method. Perhaps most im-
portant is the anonymity that is provided for
the machines involved. The user has no ex-
plicit knowledge of the existence of any of the
robots and the robots themselves have no ex-
plicit knowledge of each other. Further, rather
than relying on some centralized capability
repository, each robot privately keeps track
of its capabilities, changing them as neces-
sary. From the user’s point of view, a task
is posed to an unknown set of hopefully qual-
ified robots who will volunteer their available
resources (e.g. sonar, wheelbase, CPU) in or-
der to accomplish the task.

There are many avenues for further work
on this project. One useful extension would
be a new primitive to allow for “non-exclusive
reservations”, which would reserve resources in
such a way that they are available for general
use but may not be exclusively reserved by any
task. This primitive would be used by tasks
which absolutely require the use of certain re-
sources but do not mind if other tasks simulta-
neously use them. Also, for this system to be
truly useful to robot programmers, the entire
task-posing interface should be merged with
the existing team synchroniztion interface (see
[2]) to produce a single, fully-integrated sys-
tem which can automate task allocation and
ensure synchroniztion for arbitrarily complex,
multi-step, multi-robot tasks.

Acknowledgments

I would like to thank my project advisor, Dr.
James S. Jennings, for all the help and advice
that he given me in the past year. I would also
like to thank Nicole Terry for bringing a coffee
maker into the lab.

References

[1] Russell Gregory Brown. Localization,
Mapmaking, and Distributed Manipula-
tion with Flexible, Robust Mobile Robots.
Ph.D. Dissertation, Cornell University,
May 1995.

[2] James S. Jennings and Chris Kirkwood-
Watts. Distributed mobile robotics by the
method of dynamic teams. In 4% Intl.
Symp. on Distributed Autonomous Robotic
Systems, 1998. Karlsruhe, Germany.

[3] TIBCO
Software, Inc. TIB®/Rendezvous™ Con-
cepts, August 1997.

Biography

After four years of the virtual war zone that is
uptown New Orleans, Brian Gerkey will finally
graduate in May of 1998 with a B.S.E. in Com-
puter Engineering (secondary major in Mathe-
matics and minor in Robotics & Automation).
In the fall, he is off to glorious Los Angeles to
enter the Computer Science Ph.D. program at
the University of Southern California. Why a
Ph.D.? Because he is allergic to reality.

