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Abstract

This paper describes the design and implementation of a multi-robot task allo-
cation system. The system is built upon the MOVER system (see [JKW98]) and
allows the user a high-level interface for posing tasks to a group of autonomous
heterogeneous robots. Rather than assigning a task to an individual or group
of individuals, the user simply poses the task to the system as a whole (with no
knowledge of individual machines). Along with a description of the task itself, the
user must supply a list of “capabilities” required for each component of the task.
Given the list of capabilities, a publish /subscribe messaging system is used to dis-
cover qualified and available machines. A negotiation step ensues which results in
the actual doling out of the components of the task. Tasks can range from simple

one-robot jobs to multi-robot, multi-step, fully-synchronized endeavors.
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Chapter 1

Introduction

1.1 Motivation

What do we want robots to do? Russell and NorviglRN95] name the

following as three of the most common robot task categories:

e Manufacturing and materials handling
e Gofer robots
e Hazardous environments
The jobs in these areas were certainly once (and in many cases still are) accom-

plished by humans without the aid of robots. So, for robots to make a real

contribution, they must outperform! their human counterparts in these tasks.

T take “performance” here to be a measure which weighs the productivity of the participant
against the risk posed to the participant by the environment.
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How can we achieve this superior performance? Omne obvious answer is
cooperation. Robots who effectively cooperate with each other on tasks will
assuredly be more capable than their non-cooperative brethren who must toil
individually at their chores. Two striking examples of the potential for the use
of cooperative robots are the pusher/steerer manipulation protocol presented in
[Bro95] and the distributed map making strategy described in [JKWT97]. In both
cases, the robots cooperate in order to accomplish useful tasks that would have
been more difficult or even impossible with the use of only one robot. However,
this cooperation is only achieved at the explicit direction of the human user. The
user must decide which robots to use, ensure that they are available, and then
give each robot its portion of the task. If we could delegate these decisions to the
robots themselves, the robots would be considerably more useful, with a lesser

need for human intervention in their activities.

1.2 The Problem

Consider the example task of moving a large? box through a specified
path across a room; if we give this task to a robot, that robot should be able to
determine whether help is required and then assemble a team of robots who will
cooperate to accomplish the task. This process is by no means simple. First of all,
the robot must be able to perform some kind of task analysis; this analysis will

necessarily involve the decomposition of tasks into their component parts. From

2T mean ‘large’ in the way that it is used in [Bro95]: that the mass and size of the object are
of roughly the same order of magnitude as those of the robot involved.



3

this decomposition, the robot must determine how much help, if any, he® needs

for the task at hand®*.

In addition, he must be capable of discovering who is available to help. An
important question: When is a robot awvailable? How can robot A determine if
robot B is available for task 7?7 In fact, how can robot B determine if robot B
is available for task 77 Awailability is clearly a function of at least the task and
the state of the robot: while robot B may be not available to help on physical
manipulation task M, he may indeed be able to assist with pure computation task
C. However, the state of the robots is dynamic: 5 minutes from now, robot B
might be available for task M. So, even if we start with a team of identical robots,
they might not look so identical as their capabilities change through time. In fact,
they might look like a team of heterogeneous robots; we must therefore develop a
task allocation method that can deal with such a team. This system would have
the added bonus of allowing for the overseeing of groups of truly heterogeneous
robots. These ‘robots’ could range from sensor-packed mobile manipulators to
simple desktop workstations; each machine has different abilities which should be

fully exploited in order to meet given goals.

Once the robots’ state can be clearly represented, there must be a method
for communicating this information to potential team members. The metaphor
used to describe this communication is inspired by object-oriented (OO) program-
ming: each robot is modeled as a network ‘object’ on which various methods may
be invoked. These methods, or services, allow a uniform interface for the remote

querying of information such as current position and orientation, processor load,

3In this paper, “he” should probably be read as, “he, she, or it.”
4Although originally part of this project, the problem of task decomposition and analysis
has been removed as it is a field unto itself. It is assumed that the user performs this step.
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and peripheral device status. To support the autonomy of the robots, these queries
must be made anonymously; a user program executing on one robot should not be
aware of or be affected by queries made against that robot by others. In addition,
a querying robot must be able to make broadcast requests and then simply wait
for one or more robots to respond. The messages will be addressed by content
rather than by destination; the sending robot need not know who is receiving his
message and each receiving robot, will only process those inbound messages which
are currently relevant. If possible, network-level features such as IP broadcast-
ing and IP multicasting should be exploited for greater communication efficiency

[Tan96].

In this paper, I present the design and implementation of an object-oriented

robot control architecture which addresses all of these task automation issues.



Chapter 2

Related Work

2.1 Task Analysis

Much work has been in area of task analysis; here, we are mainly concerned
with task decomposition into primitives. In [ST96], Sousa describes a mobile
robot control architecture based on motion primitives which allow continuous
path following and path following as defined by the serial application of motion

primitives.

In [MK97], Morrow and Khosla present a methodology for combining prim-
itive robot movements into more complex robot skills. They categorize primitives
based on the degrees of freedom present during the primitives’ execution. The
various classes of primitives can then be concisely described by a ‘grammar’ which
Morrow and Khosla introduce. While their experiments were limited to the use
of a Puma 560 robot, their taxonomy for primitive classification is rather general,
in fact, one of their example primitives, ALIGN, is immediately applicable to the

development of manipulation strategies for mobile robots.
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Given a set of task primitives like those described in [MK97], one could
apply the ideas in [MM97] to develop a procedure by which those primitives and
their various compositions might be tested. In this work, Mulligan and Mackworth
present a part-orienting device and a planner for that device which must vary a
number of predetermined physical parameters in succession in order to achieve
the assigned orientation. In order to reduce to a manageable size the number of
trials that they had to run in testing their choice of parameters, Mulligan and
Mackworth identified certain redundancies in the set of possible observations and
derived a fractional factorial design. Their use of this specialized analysis allowed
for more than an order of magnitude reduction in test runs while maintaining the

requisite statistical significance of the experiments.

2.2 Information Hiding: Object-Oriented Robot

Interfaces

Jeon et al. present a device-level OO interface in [JT96]. Their goal is to
avoid device-specific programming environments and instead provide a standard
interface to a set of sensors and actuators. They implemented their system as
a C++ class hierarchy with various objects representing: data processing units
(DPUs), to which actual hardware devices are connected; Task Modules (TMod-
ules), which contain some number of DPUs, and a Behavior-Based Controller,
which is composed of TModules. This system is not distributed; rather, it is
meant to control the collection of peripheral devices available on a single mobile

robot. In addition, the choice to build a behavior-based controller allowed for
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simple collision-avoidance/path-following exercises, but it seems that the system

cannot be easily extended to deal with more complex tasks.

Another device-level OO-interface is presented in [BF96]. Based on the
GISC-Kit! and CORBA?, this system provides a distributed C++ interface to the
control of a variety of standard devices. These devices are divided into Motion
Device classes (tables, presses, mills) and Robot Device classes (multi-joint arms).
One set, of methods is available for Motion Devices while another set is available
for Robot Devices. A Motion Controller class encapsulates the methods common
to both. In true OO-style, the integration of a new device simply requires the
writing of a new Driver class in which the hardware specific functions are mapped

to the appropriate generic methods.

2.3 Information Sharing: Robot Communication

Explicit inter-robot communication is not necessary for all cooperative
robot systems. For example, the quite effective pusher/steerer manipulation pro-
tocol in [Bro95] is accomplished with the robots’ only communication being sen-
sory feedback from the object between them. A similar system for more robots
is shown in [AE97]. Also, the robots used in behavior-based approaches such
as [KZ96] require no explicit communication; instead, they gather all pertinent

information from their own sensors.

! Generic Intelligent System Communications; developed by Sandia National Laboratories as
a device-independent interface to robot subsystems.

2Common Object Request Broker Architecture; developed by the Object Management Group
(OMG) to be a vendor-neutral standard for distributed OO applications.
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The overhead involved in developing a useful inter-robot communication
system is definitely non-trivial. Some roboticists build their own, such as Jennings
et al. in [JWEOT]; some others simply assume the existence of such a system. In
[CT96], Cai et al. describe their distributed autonomous robotic system (DARS)
as a collection of homogeneous robots who share some sensor information with
the hope that the fusion of all the robots’ sensor data will allow for optimal path
planning; this system clearly requires, yet does not provide, or even describe, a

communication method by which this data exchange will occur.

When a suitable communication system is available, the user is free to
engage in a wider range of experiments than is otherwise possible. To effectively
execute such experiments, roboticists often develop sophisticated protocols which
define the various kinds of messages that can be sent and, possibly, when and
to whom they can be sent. Lin and Hsu have developed two such messaging
protocols. The first, called help-based cooperation protocol (HCP) is presented in
[LjH95]. It is based on individual request/reply interactions between the robots.
The use of HCP is illustrated in Lin and Hsu’s Object-Sorting Task (OST): the
robots perform a parallel search for the objects to be sorted; when a robot finds
an object, he makes individual point-to-point help requests to other robots; using
their responses, the original robot selects his partners and beckons them to his

position so that the cooperative manipulation step (i.e. the sorting) can begin.

Lin and Hsu describe the second incarnation of their OST in [LjH96].
Instead of HCP, they use a slightly different protocol, which they term coordination-
based cooperation protocol (CCP). Using CCP, as with HCP, the OST begins with
a parallel search of the work area. However, when a robot finds an object, rather

than immediately making numerous help requests, he simply broadcasts to all
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robots what he has discovered. So, without the use of any a priori knowledge
about which other robots are currently searching, each individual robot has fairly
complete information about who has discovered what objects and where those
objects are. Given this anonymously-obtained global object information, each
agent makes his own schedule for sorting all the objects in an optimal manner. A

negotiation ensues and a global sorting schedule is derived.

This idea of broadcast (as opposed to point-to-point) messaging is exem-
plified in TIB ® /Rendezvous™, a multi-platform commercial middleware?® product
created by TIBCO Software, Inc. [TIB97]. This piece of middleware is meant to
facilitate the development of distributed applications (i.e. applications that run
simultaneously on multiple computers) by providing messaging services that are
platform- and network-independent. The TIB/Rendezvous software has two com-
ponents: the TIB/Rendezvous API and the TIB/Rendezvous daemon. The API,
which is available in a number of languages, including C, Java, and Perl, is the
programmer’s interface to the system; it provides all the functions for building,
sending, receiving, and processing messages. The daemon is simply an executable
program that runs on each machine involved in a distributed system and handles

the dispatching of messages to the applications involved.

The real ingenuity of TIB/Rendezvous lies in the implementation of two
concepts: subject-based addressing and publish/subscribe messaging (see Section4.1
for details). In the TIB/Rendezvous system, information is put on a “bus” and
anyone who wants it can have it*. The result is a loosely-coupled distributed

system in which the data producers have no knowledge of the data consumers

3 Middleware is the software which separates the distributed application programmer from
the details of the network (e.g. sockets, ports, etc.).

T am ignoring TIB/Rendezvous’s more standard features such as point-to-point messaging
and message security. For a complete treatment of these topics, consult [TIB97].
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and vice versa. These ideas can be easily applied to a distributed robot control
architecture by, for example, realizing that devices such as infrared sensors are
data producers and that applications such as path planners are data consumers.
More generally, each robot could be both a producer and a consumer: he would
publish current state information and also subscribe to the state information of

others.
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Chapter 3

The Robots

3.1 Introduction

Founded by Dr. James S. Jennings in the fall of 1995, the Tulane Mobile
Robotics Laboratory! has quickly developed into a productive research center.
Current research topics include: distributed navigation and map-making; a par-
allel “search and rescue” task solution; distributed manipulation of large objects;
fault-tolerant programming techniques for robot teams; combining reactive and
procedural programming; and distributed error detection and recovery. To sup-

port this work, we have the following hardware at our disposal:
e 2 Sun SparcStations running SunOS
e 2 PCs running Linux

e 3 RWI B14 Mobile Robots (see Section 3.2)

e Numerous empty boxes

Lor, informally, the Cooperative Mobile Robotics Laboratory of Tulane (CaMeLoT).
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Figure 3.1: Two of our mobile robots, Ernst and Moseley, near a large box.

The desktop workstations are mainly used for code development and system main-
tenance (and zkobo). However, since they are easily incorporated into robot teams
alongside their mobile counterparts (see Section 3.3), the workstations can also

be used in robot experiments.

To control the robots, we use the programming system known as MOVER
(see Section 3.3) which in turn interfaces to the robots through the Tulane Robot

Interface Process (trip) (see Section 3.3.1).

3.2 Meet Ernst, Moseley, and Elvis

Ernst, Moseley, and Elvis are our three robots; they are B14 mobile robots
built by Real World Interfaces, Inc. (RWI). Each robot is a cylindrical case which
sits on a three-wheel base that can perform rotations in place (see Figure 3.1).
Surrounding that base is a circular, rigid, six-segment skirt which offers coarse
tactile sensory information by indicating which segments are depressed. More
precise tactile information is provided by an array of 12 cylinderical bumpers at

the front of each robot. These bumpers are used mainly for collision detection and
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contact mode determination and are indispensible in manipulation tasks. Above
the bumpers is a ring of sixteen infrared transmitter/receiver pairs which are used
for short-range distance measurements. Closer to the top of each robot is a ring of
sixteen sonar transmitter/receiver pairs. We use these sonar sensors extensively
for collision avoidance, target following, and map making. On top, there are four
pushbuttons which allow for a user to give input the robot while away from the
keyboard (arbitrary actions can be bound to the buttons). In addition, there are
four LEDs through which the robot can communicate information back to the
user during the execution of a program. A more flexible feedback mechanism is

provided by way of a speech synthesiser and speaker for each robot.

On the inside, each robot houses a standard Intel-based PC complete with
disk drives and expansion cards. They run the Linux operating system and are
connected to our network via Lucent Technologies WaveLAN wireless ethernet.
Normally, all robot access is performed remotely through the network, but video
and keyboard ports are available so that the console may be used for maintenance
or system debugging. The robots are powered by batteries which are charged

through detachable tethers.

3.3 MOVER

Herein is described MOVER, the main programming interface to our robots.

First, however, the reader should be familiar with ¢rip and Kali-Scheme.
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3.3.1 trip

The Tulane Robot Interface Process (trip) is a socket-based client-server
architecture for providing access to robot hardware. On each robot, there is a
multi-threaded server (written in C) running which listens for socket connections
from clients on a certain TCP port. Once a connection is established, this server,
or daemon, controls the local hardware devices in response to client requests,
which are generally either: open a device (such as the wheelbase), or send a
command to a device (such as “fire sonars”). Different clients may open different
devices on the same robot; however no two clients may open the same device on
the same robot (mutual exclusion for each device is provided by lock files). The
client and server interact by passing simple ASCII messages back and forth on the
socket between them. These messages adhere to a well-defined protocol, which

includes framing and character stuffing.

Since the server and client are connected only by standard Internet sock-
ets, a robot client can be implemented in any programming environment that
provides socket facilities. To date, clients have been developed in Scheme (see

Section 3.3.3), C, C++, Java, Tcl/Tk, Perl, Smalltalk, and Emacs.

3.3.2 Kali-Scheme

In order to facilitate complex multi-robot experiments, we make extensive
use of Kali-Scheme, a dialect of the lexically-scoped LISP-like language Scheme
(for a complete discussion of the system and the origin of its name, see [CJK95]).
Kali-Scheme is a distributed implementation of Scheme which consists of a col-

lection of address spaces. An address space is confined to a single node on the
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network, but more than one address space may exist on each node at any time.
In general however, a single address space is created on each physical machine on
the network. Within each address space, potentially many concurrent, lightweight,
preemptible threads may execute. A Kali-Scheme program consists of a collection
of such threads, each of which could reside in different address spaces. In the tra-
dition of Scheme, the important components of this system are all implemented
as ordinary Scheme data structures?. These components include address spaces,

threads, procedures, and continuations.

Threads executing within a single address space communicate via shared
memory while threads in different address spaces use an explicit message-passing
system. For interaddress space communication, messages are passed using a lazy
frame-by-frame copy mechanism that results in the efficient transmission of both
simple and complex data structures. A significant advantage of Kali-Scheme’s
message-passing system is that messages can have executable content; that is, a
message can contain an arbitrary procedure to be evaluated in the target address
space. Omne consequence of this feature is that user-level thread migration is
quite simple: a thread’s state can be packaged into a continuation (which is
modeled as a procedure) and then shipped off to a different address space where
the continuation will be evaluated and the thread will pick up where it left off. In
addition, the ability to send executable messages in Kali-Scheme eliminates the

need for the predefined message protocols of other message-passing systems.

The programmer interfaces with Kali-Scheme’s message-passing system
through two primitives: remote-run! and remote-apply. The first procedure,

remote-run! is used for asynchronous “fire-and-forget” messages; it takes as

2Data structures in Scheme are first-class objects and, as such, may be dynamically created,
destroyed, bound to variables, passed as arguments to procedures, etc.
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arguments the following: a target address space, a procedure to be evaluated, and
arguments to that procedure. In the target address space, a message dispatcher
returns to the sender a simple acknowldgement and then spawns a new thread in
which the given procedure is applied to its arguments. Since the results of the pro-
cedure application are discarded, remote-run! is generally used in situations in
which the evaluation of the procedure has some side-effect on the target machine.
When the results of the procedure application need to be returned to the sender in
a synchronous request/reply manner, the programmer uses remote-apply, which
takes the same arguments as its asynchronous counterpart. The difference between
the two is that remote-apply blocks while the procedure is applied in the target

address space and then returns to the caller the result of that application.

3.3.3 MOVER

While there are various robot clients from which to choose, most work in
the lab (and all of the work for this project) is accomplished using the Scheme
client, known as MOVER (for a complete discussion of the system, see [JWE97] and
[JKWO8]). MOVER is implemented in Kali-Scheme (see Section 3.3.2) and operates
on robot hardware through ¢rip (see Section 3.3.1). In addition to providing a
thorough interface to robot hardware, MOVER exposes the distributed features
of Kali-Scheme in such a way that the robot programmer is given a rich set of
primitives which he can use to operate on dynamic teams. Dynamic teams are
explained thoroughly in [JKW98]; for this discussion, it suffices to define them as
“temporary logical associations of robots” and list the related operations which

the programmer can perform:

e Gather a set a robots into a team.
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e Distribute the components of a task to team members.

e Synchronize the actions of team members (e.g. before going to step 2, wait

for all to complete step 1).
e Add members to a team (and give each one a new task).
e Remove members from a team (and abandon their current tasks, if any).

e Substitute a new robot for a current team member, migrating the remainder

of the current member’s task to the new robot.

Thus, the programmer has the freedom to create, modify, and destroy
teams of robots at will. While there are some hooks in MOVER to provide for
automatic selection of team members and automatic allocation of tasks, the cur-
rent implementation provides nothing more sophisticated than “select all available
robots” and “allocate this task to a randomly selected team member.” Tt is the
development of a more intelligent team selection and task allocation mechanism

with which this project is concerned.
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Chapter 4

Murdoch

The result of this project is a body of software which is collectively known
as the Murdoch system. The various components of Murdoch are described below.

For a discussion of the user-level interface, pose-task, see Section 4.2.

4.1 Publish/Subscribe Messaging in Action

At the heart of Murdoch is an implementation of publish/subscribe mes-

saging, which in turn depends on subject-based addressing.

Definition 4.1.1 Subject-based addressing is an addressing scheme in which

individual messages are addressed by content rather than destination.

Definition 4.1.2 Publish/subscribe messaging is a messaging paradigm that uses
subject-based addressing to divide a network into a loosely-coupled association of

anonymous data producers and consumers. A data producer simply tags a message



19

with a subject and “publishes” it onto the network; any data consumers who have

“subscribed” to that subject will automatically receive the message.

The goal of a publish/subscribe messaging is to enable a loosely-coupled
distributed system in which the data producers have no knowledge of the data
consumers and vice versa. If designed well, a publish/subscribe system can provide
a great deal of anonymity an independence for the individual machines involved

in a large distributed application.

All of Murdoch , including its internal messaging system, is implemented
in the distributed dialect of Scheme known as Kali-Scheme (see Section 3.3.2) and
relies entirely on the Kali-Scheme primitives remote-run! and remote-apply for
low-level message-passing. Due to limitations in Kali-Scheme’s messaging system,
Murdoch uses a kind of simulated broadcast to publish messages. Each message is
actually sent individually to each machine on the network; each receiving machine
checks the subject of the incoming message against its own subscription list (see
Section 4.1.1) and decides whether or not to evaluate it'. This simulated broadcast
method as it is used in Murdoch is certainly somewhat inefficient, but it should
be noted that there exist viable commercial implementations of publish /subscribe
messaging (most notably TIB/Rendezvous, as described in [TIB97]) that are quite

efficient and are used in a variety of mission critical environments.

Below are a discussion of the subject namespace and descriptions of the five
primitives which comprise the interface to Murdoch ’s publish-subscribe messaging

system: subscribe, unsubscribe, publish, request, and request-exclusive.

LAll messages in the Murdoch system have executable content and so a machine accepts a
message by simply evaluating its body.
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4.1.1 Subject Namespace

In this system, the idea of subject-based addressing has been slightly
skewed in that messages are not addressed to a single subject, but rather to
an an unordered list of subjects. A potential receiver will evaluate any message
addressed to a set of subjects which form a proper subset of those subjects to
which he is subscribed. Each robot subscribes to a set of subjects which represent
his “capabilities”. For example, our mobile robot elvis normally subscribes to the
subjects ir, sonar, speech, buttons, lights, and mobile because he is physi-
cally connected to infra-red and sonar sensors, a speech synthesiser, some buttons,
some lights, and a motorized wheelbase. As another example, our desktop work-
station troy normally subscribes to the subject camera because he has control
of a digital camera and frame-grabber. These subscriptions can and do change
over time. When the system load on a machine drops below some threshold, he
will subscribe to an additional subject idle because he now has some unused
computing power to export. When a mobile robot’s battery-charging cable is dis-
connected, he will subscribe to the subject untethered because he is now free to
move about the world. So, to reach all robots who have sonar sensors and are
not busy, one can publish a message to the subject (sonar idle); only those
machines with the specified capabilities will actually evaluate the body of the

message.

In addition to those subjects which represent robot capabilities (e.g. ir,
camera, idle), each machine subscribes to two “special” subjects. One of these
subjects is all; it is used to address messages which should be evaluated by
everyone. The second “special” subject is a unique identifier that is different for

each robot; this subject is used to address point-to-point messages.
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Y
subscribed to both
RECEIVER | foo and bar, so

A evaluate message...

Subject: (foo bar) -
SENDER | Acknowledgement

RECEIVER | donothing...

B
-

Sup,
i g bay)
Y

subscribed to both

RECEIVER | fooandbar, o
C evaluate message...

~— @

Figure 4.1: An example publish transaction. SENDER sends a publish message to
the subject (foo bar) and a list of acknowldgements is immediately returned. Since
RECEIVER B is not subscribed to (foo bar), he does nothing. On the other hand,
RECEIVER A and RECEIVER C are both subscribed, so they evaluate the body of the
message.

4.1.2 subscribe & unsubscribe

Each robot maintains its own subscription list; a user program modifies this
data structure through the use of subscribe and unsubscribe. The procedure
subscribe takes as its sole argument a subject and, if that subject is not already
present in the subscription list, adds it. If the subject is already present in the
subscription list, subscribe does nothing. Equivalenty, unsubscribe takes a
subject as its argument and, if the subject is present in the subscription list,
removes it. If the subject is not present in the subscription list, unsubscribe

does nothing.
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4.1.3 publish & request

The publish procedure is used to publish asynchronous messages. Its
arguments are the following: a subject list, a procedure to be evaluated, and
arguments to that procedure. The immediate return value is a list containing a
simple acknowldgement from each machine on the network. There is no indication
of which robots, if any, actually evaluated the body of the message, and any results
from those evaluations are discarded. An example publish transaction is shown
in Figure 4.1. Primarily added for completeness and interactive convenience,

publish is not used internally by Murdoch .

On the other hand, Murdoch internally makes extensive use of request,
which provides a general synchronous messaging facility. request has the same
syntax as publish but, instead of returning immediately, request waits for results
from those machines, if any, which evaluated the message. The return value from
request is a (possibly empty) list containing each result and a unique subject
to be used in consequent point-to-point communication with the machine from
which that result came. In this way, a programmer can use request to anony-
mously determine a list of machines who are subscribed to a specific subject (and
thus have a certain set of capabilities) and then engage in private, point-to-point
communication (via publish, request, or request-exclusive) with one of those

machines. An example request transaction is shown in Figure 4.2.

4.1.4 request-exclusive

Since Murdoch exists in a multi-threaded environment, it is possible for a

machine to be concurrently evaluating multiple messages, each of which might
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involve access to devices. When dealing with a device such as a wheelbase,
which has important physical state (position and orientation) associated with
it, there is a need for mutual exclusion (it would in general be bad for a wheelbase
to receive interleaving commands from two different messages). For situations
such as these, the third messaging primitive, request-exclusive, is required.
request-exclusive has the same syntax as request and behaves similarly in
that it waits for responses and then returns a (possibly empty) list of the responses
from those machines, if any, which accepted the message. However, the responses
are not the results of the evaluation the message body but rather promises to do

that evaluation later.

When a receiving machine evaluates a request-exclusive message, it first
unsubscribes from those subjects included in the address of the message. Thus
the receiver will no longer accept messages which are addressed to any of those
subjects. The receiver then constructs a procedure of one Boolean argument and
returns it to the sender. This new procedure, hereafter known as a promise, is
meant to be sent back to the receiver later for evaluation. The understanding
is that the sender has exclusively reserved some of the receiver’s resources for a
certain job which the receiver may or may not actually need to accomplish. If
the sender decides to indeed have the receiver accomplish the job, he applies the

promise to the value TRUE, causing the receiver to:

1. evaluate the body of the original message
2. resubscribe to the previously unsubscribed subjects

3. return the results of the evaluation to the sender
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On the other hand, if the sender decides not to have the receiver accomplish the
job, he applies the promise to the value FALSE, causing the receiver to execute

only the resubscription step.

In general, given a job and its resource requirements, request-exclusive
is used in the following two-step transaction (consult the example shown in Fig-

ure 4.3(a) and Figure 4.3(b)):

1. The sender calls request-exclusive in order to determine who is capa-
ble. Each machine who responds has now set aside the necessary resources.
The sender then examines the responses and decides which machine should

actually accomplish the job.

2. The sender applies to the value FALSE the promise of each machine who
responded but was not chosen for the job; they each “unreserve” the pre-
viously reserved resources. The sender then applies to the value TRUE the
promise of the machine who was chosen for the job; that machine accom-

plishes the job and then “unreserves” the previously reserved resources.

The importance of the request-exclusive primitive in this transaction is that
it provides enough mutual exclusion of resource use so as to allow the sender to
sit back and intelligently decide who is best suited for a job. Since the neces-
sary resources are exclusively reserved up front, the sender need not worry about

another job grabbing them while he is thinking.
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4.2 pose-task

While of general interest, the messaging primitives described in Section 4.1
are not usually called directly by user programs, but rather by the high-level pro-
cedure pose-task. This procedure is the standard interface to Murdoch and allows
the user to pose a task in what is hopefully a natural manner. Since Murdoch is
only a task allocation system and not a task analysis system, the user is expected
to divide the task into its components. In this context, the components of a task
are the individual executable pieces which must be concurrently evaluated on dif-
ferent robots. For example, [Bro95] presents a two-robot pusher-steerer protocol
for the manipulation of a large box. This task clearly has two components: one
component is the procedure to be run by the pushing robot and the other is the
procedure to be run by the steering robot. After performing this task analysis
step, the user is ready to supply the arguments required by pose-task: number of
robots required (i.e. number of task components), list of capabilities required for
each task component (see Section 4.2.1), list of metrics (see Section 4.2.2), and list
of procedures (the actual executable task components). Given this information,

pose-task enters into the negotiation protocol described in Section 4.2.3.

4.2.1 Capability Lists

For each task component in a given task, the user must specify the com-
ponent’s resource requirements in a capability list, which is used by pose-task to
query for capable robots. A task component can have both exclusive and non-

exclusive resource requirements. Thus the syntax for specifying a capability list
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allows for the user to indicate which resources are needed exclusively and which

are not.

4.2.2 Metrics

When more than one robot is qualified for a task component, pose-task
must choose one of them; so that pose-task can make this choice intelligently,
the user is allowed to supply a metric for each task component. A metric is a
procedure to be used in comparing two candidate robots. Its arguments are the
two unique subjects that can be used for point-to-point communication with the
candidates. The return value for a metric should be TRUE or FALSE to indicate
whether or not the first candidate is “better” than the second. In this way, given
the set of robots who are eligible for a task component, pose-task can choose
the one best-suited to that component. Since pose-task hands the user-supplied
metric a direct communication path to each candidate, the user can query them
for any information needed in the decision-making process. If the user supplies

no metric, pose-task uses a default metric which chooses randomly.

As an example, given a computationally intense job, it might be best to
choose the machine with the lowest system load. Figure 4.4 shows the code for
load-metric, a simple metric which fits this purpose. A slightly more complex
metric that is useful when dealing with motion-oriented tasks is location-metric,

which chooses the candidate closest to some target position.
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4.2.3 Negotiation & Allocation

Once the user has supplied the necessary information about the task at
hand, pose-task initiates a simple negotiation protocol in order to decide which
machine will play which role (for a flow chart of this process, see Figure 4.5). The
first step is to iterate through each task component and query the network for
capable machines. If a task component requires exclusive use of any resources,
request-exclusive is used so that those resources are set aside now. Only those
robots who are capable will respond to the query for a given task component;
thus, from the responses, pose-task can determine a list of candidates for each
component. FEach of these lists is sorted by the user-supplied metric so as to
rank the candidates for each job with respect to their relative suitability. At this
point, pose-task must assign each component to a specific machine. Although
the ideal situtation would be to just pick the first robot from each candidate list,
the system must ensure that no single robot is assigned more than one job. In
order to resolve any conflicts, the collection of sorted candidate lists is traversed in
order of descending priority? and pose—task chooses from each the first candidate
who has not previously been chosen. If the conflict resolution is successful, then
the task can be completed and each task component has now been assigned to
a specific machine. Of course, the conflict resolution could fail if not enough of
the right kinds of robots volunteer their services. If this is the case, then the task
cannot be completed and the user will be informed of the situation. However,
before informing the user, pose-task needs to release any resources which were

reserved for this task by the preliminary queries. This release is accomplished

2In the current implementation, priority is determined by the order in which the task com-
ponents are given to pose-task (first component has highest priority and last component has
lowest priority).
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by simply applying to the value FALSE any promises that were received. Even
if the task can indeed be completed, pose-task might still have to release some
resources. Any robot who returned a promise for a task component but was not
chosen for that component still has resources set aside for the job. Therefore,
pose-task iterates through the task components requiring exclusive resource use
and applies to the value FALSE the promise of each “runner-up”. Now, pose-task
actually accomplishes the task by using the MOVER construct with-team to form
a dynamic team (consult [JKWO98]| for details) of the selected machines and give
each one his own component to evaluate. The return value of pose-task is just
the return value of the underlying with-team expression: a list containing the

results from each robot in the team.

4.2.4 An Example: The Dual-Sonar Task

As a comprehensive example of the use of pose-task, I offer what has
been dubbed “The Dual-Sonar Task” (see Figure 4.6 for the actual specification).
This task has three components. The first job is to travel to a target location and
return a sonar reading of the area. For this component of the task, the resources
sonar and mobile are required, with the latter required exclusively. The metric
to be used is location-metric (see Section 4.2.2), which will cause the robot who
is physically closest to the target to be selected. The second task component is
the same as the first, but with a different target location. The third component is
a compute-only job: generate, sort, and return a list of 100 random numbers. The

only required resource is idle and the metric is load-metric (see Section 4.2.2

and Figure 4.4).
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The test environment for this task consisted of two mobile robots with
sonar (moseley and ernst) and two desktop machines (¢roy and praline). moseley
was placed closest to the first target and ernst was placed closest to the second
target. By chance, praline had the lowest system load. The result of posing this
task to the system was the following: moseley was sent to take a sonar reading
at TARGET 1, ernst was sent to take a sonar reading at TARGET 2, and praline
was given the random number component of the task. The two mobile robots did
indeed move as instructed and, when everyone was finished, pose-task returned

a list containing the two sonar readings and the sorted random number list.

The correct behavior of pose-task in accomplishing “The Dual-Sonar
Task” demonstrates the functionality of the Murdoch system. Murdoch was also
tested with various other tasks and it performed each one correctly (i.e. it allo-

cated the task components to the best of its ability).
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Figure 4.2: An example request transaction. SENDER sends a request message to
the subject (foo bar) and waits for responses. Since RECEIVER B is not subscribed
to (foo bar), he does nothing. On the other hand, RECEIVER A and RECEIVER C are
both subscribed, so they evaluate the body of the message and return their results to
SENDER.
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(a) An example request-exclusive transaction

Figure 4.3: SENDER sends a request-exclusive message to the subject (foo bar).
Since RECEIVER B is not subscribed to that subject, he does nothing. On the other
hand, RECEIVER A and RECEIVER C are both subscribed, so they each reserve foo and
bar and then each build a promise which is returned to SENDER.
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SENDER thinks....
SENDER decides to use RECEIVER A

/S

Got the go-ahead, so

RECEIVER |evaluatethe origina
A message...

RECEIVER
B
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)

Did not get the go-ahed,
RECEIVER | so unreserve foo and bar.
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SENDER blocks....
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RECEIVER unreserve foo

A and bar.
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)
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(b) An example request-exclusive transaction (cont’d)

Figure 4.3: SENDER now has all the promises and he decides that RECEIVER A should
actually do the job. Consequently, SENDER applies RECEIVER C’s promise to the value
FALSE, causing RECEIVER C to unreserve foo and bar. SENDER applies RECEIVER A’s
promise to the value TRUE, causing RECEIVER A to evaluate the body of the original
message. SENDER blocks until RECEIVER A returns the results of that evaluation.
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(define (load-metric)
(lambda (subjectl subject?2)
(let ((loadl (cadar (request subjectl get-system-load)))
(load2 (cadar (request subject2 get-system-load))))

(< loadl load2))))

Figure 4.4: Code for load-metric. Given the unique subjects for two candidate
robots, this simple metric queries the system load of each candidate and returns
TRUE or FALSE to indicate whether or not the first candidate has the lower load.
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(define (dual-sonar-task)
(let ((targetl ’(300 200 0))
(target2 ’(-1000 200 90))
(num 100))
(list ’dual-sonar-task
3
(list
(list (list ’mobile) (list ’sonar))
(list (1list ’mobile) (list ’somnar))
(1ist > () (list ’idle)))
(list
(location-metric-maker targetl)
(location-metric-maker target?2)
load-metric)
(list
(sonar-task-proc-maker targetl)
(sonar-task-proc-maker target2)
(random-number-task-proc-maker num)))))

Figure 4.6: Code for dual-sonar-task.
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Chapter 5

Conclusions

Although somewhat unpolished, the system described in this paper should
be considered a success. Murdoch is an intelligent task allocation system that can
effectively handle groups of truly heterogeneous robots without the use of a central
controller or a priori knowledge about the robots. This automated system offers
some clear advantages over the standard manual distrution method. Perhaps most
important is the anonymity that is provided for the machines involved. The user
has no explicit knowledge of the existence of any of the robots and the robots
themselves have no explicit knowledge of each other. Since tasks can be posed to
the system by any of the robots, all the machines involved are peers. In fact, since
all communication is conducted anonymously, no assumptions are made about the
state of the network and so individuals can come and go as they please without
deleteriously effecting the operation of the whole system. Further, rather than
relying on some centralized capability repository, each robot privately keeps track
of its capabilities, changing them as necessary. Thus task allocation decisions are
based entirely on information that is guarenteed to be correct (or as correct as

physically possible).
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Murdoch is certainly a novel approach to the problem of task allocation.
The underlying ideas, subject-based addressing and publish /subscribe messaging,
have been borrowed directly from the industrial distributed control arena and yet
seem to be applicable to the study of heterogeneous robot control. The fact that
the implementation of a complete publish/subscribe messaging system required
only the small amount of code that it did is a testament to the elegance of the
publish/subscribe idea itself and the power and flexibility of Kali-Scheme and the

MOVER system.

The result of this project is a working environment in which, from the
user’s point of view, a task is posed to an unknown set of hopefully qualified
robots who will volunteer their available resources (e.g. sonar, wheelbase, CPU)
in order to accomplish the task. The way in which that task must be phrased is of
course paramount in determining the utility of the system. Experimentation in the
lab with real tasks indicates that the current task framework is quite reasonable;
regardless, that portion of Murdoch can be easily modified without altering the
important concepts of the system. In the end, the true utility of Murdoch will be

determined by future robot programmers who use and modify it.
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Chapter 6

Future Work

There are many avenues for further work on this project. Within the mes-
saging system itself, one useful extension would be a new primitive which would
reserve resources in such a way that they are available for general use but cannot
be exclusively reserved by any task. This primitive, request-non-exclusive,
would be used by tasks which require the use of a resource for a non-mutative
"reading” operation and do not mind if other tasks simultaneously use it in
the same way; other tasks which need to "write” to that resource would be
blocked. For completeness, there should probably also be asynchronous primi-
tives publish-exclusive and publish-non-exclusive; however, the real appli-
cability of these constructs remains to be seen. The subject namespace could be
extended so as to offer a wider range of information to the user. One possibility
is a heirarchical system in which, for example, a mobile robot whose wheelbase
is now being used by a task would no longer subscribe to mobile, but rather to
mobile.in use. As demonstrated in TIB/Rendezvous ([TIB97]), a heirarchical
subject namespace in conjunction with wildcard support allows the programmer

a more powerful interface for developing distributed control applications.
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An immediate consequence of a more informative subject namespace is the
fact that a user could determine not only that a certain resource is not currently
available, but why it is unavailable. Given this kind of information, when a user
discovers that his task cannot be completed, he could decide to retain control of
those resources which are available and wait for the others. With the addition
of an optimal scheduling policy that would handle issues such as a deadlock,

Murdoch would become a fully-automated task scheduling and allocation system.

From an interface standpoint, several improvements can be made. The
current implementation assigns relative priorities to task components based on
the order in which they are given to pose-task. The user should be allowed to
arbitrarily specify these priorities himself; it seems possible that the metric inter-
face for ranking robot candidates could be used to implement a flexible priority
system for task components. The metric interface itself could also be greatly
improved; a better version would allow the user to ”compose” multiple metrics so
that robots (and task components) could be compared by one metric, and then,
if they are equal, compared by another (and another, and another...). However,
by far the most beneficial modification that could be made to Murdoch would
be to merge the entire task-posing interface with the existing team synchroniz-
tion interface (see [JKW98]) to produce a single, fully-integrated system which can
automate task allocation and ensure synchroniztion for arbitrarily complex, multi-
step, multi-robot tasks. With this last improvement, Murdoch would become a

truly useful tool for robot programmers working on other projects.
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Appendix A

Source code for Murdoch

A.1 aux.scm

;3 helpers
;; (move these somewhere else...or find them already written somewhere else)
(define (remove item 1s)

(filter (lambda (elt) (not (equal? elt item))) 1s))

)
; useful macro for doing remote variable references
(define-syntax var-ref
(syntax-rules ()
((var-ref uid var)
(remote-apply (uid->aspace uid) (lambda () var)))))

; useful macro for doing remote variable assignments
(define-syntax var-set!
(syntax-rules ()
((var-set! uid var value)
(remote-apply (uid->aspace uid) (lambda () (set! var value))))))
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; just remote-apply display somewhere else
(define (display-remote uid string)
(remote-run! (uid->aspace uid)
(lambda ()
(display string)
(newline))))

(define (robot? hostname)
(cond
((equal? hostname "ernst") #t)
((equal? hostname "moseley") #t)
((equal? hostname "elvis") #t)
(else #£)))

(define (me-robot?)
(robot? (getenv "HOSTNAME")))

(define (set-origin! topic)
(request topic
(lambda ()
(set-reckon-position! 0 0)
(set-reckon-heading! 0))))

(define (any-duplicates? ls)
(let loop ((main-1s 1s) (copy-1ls ’()))
(cond
((null? main-1s) #f£f)
((member (car main-1s) copy-1ls) #t)
(else (loop (cdr main-1s) (cons (car main-1s) copy-1s))))))

(define (map2 proc 1lsl 1s2)
(if (null? 1s1)
0]
(cons (proc (car 1lsl) (car 1s2)) (map2 proc (cdr 1sl) (cdr 1s2)))))

(define (map3 proc 1sl 1s2 1s3)
(if (null? 1s1)
"0
(cons (proc (car 1sl) (car 1s2) (car 1s3))
(map3 proc (cdr 1s1) (cdr 1s2) (cdr 1s3)))))
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A.2 initial.scm

; system initialization things

; a standard initialization procedure for everyone (build it into
; an image?)
(define (initialize)
(map
(lambda (uid)
(for-each display (list "initializing: " uid))
(remote-apply (uid->aspace uid) (make-subscription-initializer)))
*uids*)
(display "safe-im")
(request ’(all) safe-im)
(display "starting load-monitor")
(request ’(all) load-monitor)
(display "starting battery-monitor")
(request ’(mobile) battery-monitor)
#t)

; set up initial subscriptions
(define (make-subscription-initializer)
(lambda ()
(let ((uid (local-aspace-uid)))
(set! *subscriptions-lock* (make-lock))
(set! *subscriptions* ’((all ())))
(map subscribe (1list uid ’idle))
(cond
((me-robot?)
(map subscribe (list ’sonar ’speech ’lights ’bumpers ’ir ’mobile)))
(else

7(0)))))



A.3 1loader.scm

(user ’(open
aspaces
getenv
processes
handle
extended-ports))

43
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A.4 main.scm

; (gather ....)

; ,open aspaces

; ,open getenv

; ,open handle (for ignore-errors)
; sopen processes (for run-process)
; ,open extended-ports

;3 NOTES:

; Ok, at some point, a machine’s capabilities MUST be hardcoded, right?
; For example, praline can’t be expected to determine at run—time if

; he is physically connected to sonar devices. So, for now, I’ll write
; a cheesy safe-im which, based on hostname, set some flags in a table
; to indicate what devices are locally available.

; subjects

; ’all: everybody

; ’<hostname>: to address a machine directly
5 available:

; ’tethered:

; ’idle:

; TODO:
;  (make-publisher): to do things like spawn a thread to publish sonar values

(map load

?("/home/gerkey/thesis/initial.scm"
"/home/gerkey/thesis/aux.scm"
"/home/gerkey/thesis/safe.scm"
"/home/gerkey/thesis/message.scm"
"/home/gerkey/thesis/monitor.scm"
"/home/gerkey/thesis/publish.scm"
"/home/gerkey/thesis/goto-tanis.scm"
"/home/gerkey/thesis/new-task.scm"
"/home/gerkey/thesis/vector.scm"
"/opt/geometry/common/separate-string.scm"))



A.5 message.scm

b
.
3

3

useful messages

(define *battery-charging* 130)
(define xbattery-low* 100)

(define (battery-charging? uid)

(> (cadar (request uid safe-battery-voltage)) *battery-chargingx))

(define (battery-low? uid)

I

.
3

(< (cadar (request uid safe-battery-voltage)) *battery-lowx))

a thunk to be sent out in a request

should return position and sonar readings.....

Hmm...is there a way to determine whether or not the sonar units
are currently pinging? Ideally, we want to leave the sonar units
how they were (possibly having to start and then stop them again
in order to a get reading).

(define (context)

(1list
(safe-reckon)
(sonar-read)))

(define (t)

#t)

(define ut ’untethered)
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A.6 monitor.scm

;3 —%— Mode: Scheme; —*-
;3 battery-monitor

;; James S. Jennings
;3 Dept. of Computer Science
;3 Tulane University

;; modified by Brian Gerkey
(define xbattery-monitor-thread* #f)

(define (battery-monitor)
(if (thread? *battery-monitor-thread*)
(begin
(warn "Terminating running battery monitor thread")
(kill-thread! *battery-monitor-threadx)))
(set! *battery-monitor-threadsx
(spawn-on-root
(lambda ()
(safe-apply
battery-monitor-procedure ’()))
’battery-monitor))
#t)

(define battery-monitor-procedure
(lambda ()
(let loop ((bv (safe-battery-voltage)))
(if (< bv *battery-chargingx)
(begin
(subscribe ’untethered))
(begin
(unsubscribe ’untethered)))
(sleep (* 60 1000)) ; check every minute or so
(loop (safe-battery-voltage)))))

(define *load-monitor-thread* #f)

(define (load-monitor)
(if (thread? *load-monitor-thread*)
(begin
(warn "Terminating running load monitor thread")

46
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(kill-thread! *load-monitor-thread*)))
(set! *load-monitor-threadx
(spawn-on-root
(lambda ()
(safe-apply
load-monitor-procedure ’()))
’load-monitor))
#t)

threshold load, above which a system is no longer ’idle
it’s a string so that it can be safely sent among differently byte-orderd
machines

(define *load-threshold* ".75")

(define load-monitor-procedure

)
b
3

I

(lambda ()
(let loop ((system-load (get-system-load)))
(if (< (string->number system-load) (string->number *load-threshold*))
(subscribe ’idle)
(unsubscribe ’idle))
(sleep (* 60 1000)) ; check every minute or so
(loop (get-system-load)))))

NOTE: returns the string representation of the load (so that I can
send it among the differently byte-ordered machines)

(define (get-system-load)

(let* ((w-string (separate-string (run-process "/bin/sh" "-c" "w")))
(load-string (caddr (member "average:" w-string))))
(substring load-string O (- (string-length load-string) 1))))
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A.7 new-task.scm

; task framework stuff

; @ simple metric-maker. it returns a procedure which will
; compare two uids and pick the one who is closest to the given
; target. intended for use with sort-response.

; target should look like what reckon returns: ’(x y theta 0)

(define (location-metric-maker target)
(lambda (uid-infol uid-info2)
(let* ((uidl (car uid-infol))
(uid2 (car uid-info2))
(reckonl (cadar (request uidl safe-reckon)))
(reckon2 (cadar (request uid2 safe-reckon)))
(d1 (reckon-distance-between target reckonl))
(d2 (reckon-distance-between target reckon2)))
(if (< d1 d2)
#t
#1£))))

(define (load-metric-maker)
(lambda (uid-infol uid-info2)
(let* ((uidl (car uid-infol))
(uid2 (car uid-info2))
(loadl (cadar (request uidl get-system-load)))
(load2 (cadar (request uid2 get-system-load))))
(if (< (string->number loadl) (string->number load2))
#t
#£))))
; sort the responses according to metric
(define (sort-response response metric)
(sort-list
response
metric))

3
; MODS:
; — need to move resubscribtion to at end (postamble) of request-exclusive



.
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- 2-step transaction
- return (#t uid (proc #t or #f)
- return (#f uid)

pub/sub useful for lots of things

awkward when good coord needed.

demo some awkard examples

propose extensions to pub/sub (exclusive/ 2-step)

might want one vanilla god knows what will happen request and one
bullet-proof all-exclusive request

talk about ’non-exclusive locking’ (like for sonar, etc)

in vanilla, you could try it. if it fails, the just loop with
other candidates.

(define (pose-task task-name num-robots capability-list metrics procs)

(let*
; type-list indicates for each task component whether it
; needs exclusive resources or not
((type-list
(map
(lambda (topiclist)
(cond
((and (not (null? topiclist))
(1ist? topiclist)
(1ist? (car topiclist)))
’exclusive)
(else
’non-exclusive)))
capability-list))
; filled-capability-list is the original capability-list but possibly
; with null lists added in order to make it exactly conform to
; the ((exclusive resources) (non-exclusive resources)) layout
(filled-capability-list
(let ((foo
(map
(lambda (topic-list)
(cond
((not (1list? topic-list)) (1list ’() (1list topic-list)))
((not (1ist? (car topic-list))) (list ’() topic-list))
(else topic-list)))
capability-list)))
(display-remote O foo)
(display-remote O type-list)
f00))
; responses is what we got back from the initial request, which
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; was either:
H - an exclusive request to reserve resources, in which
s case, we get back an encapped proc
; - a non-exclusive request for the simple thunk t
(responses
(map3
(lambda (topic-list type proc)
(if (eq? type ’exclusive)
(request-exclusive topic-list task-name proc)
(request (cadr topic-list) t)))
filled-capability-list type-list procs)))
(cond
((member #t (map null? responses))
; right...we didn’t get everybody. so, we’d better go through
; and evaulate the procedures of anyone who was grabbed
; exclusively
(display-remote O responses)
(map2
(lambda (response-list type)
(if (eq? type ’exclusive)
(map
(lambda (response)
((cadr response) #f))
response-list)))
responses type-list)
’not-enough-takers)
(else
(let* ((sorted-lists (pose-task-helper responses metrics))
(final-task-uids (resolve-conflicts sorted-lists)))

; OK, we’ve sorted the resonses. Now we actually need to get things
; done. First, run through each of the backups in final-uids:

; i1f the task is exclusive then evaluate the encapped proc

; (third elt in response) with #f to effect an ABORT.

; Next, actually do the with-team with the winners.

(map2
(lambda (sorted-task-uids type)
(if (eq? type ’exclusive)
(map
(lambda (runner-up)
(if (not (member #t
(map (lambda (winner)
(eq? (car runner-up) (car winner)))
final-task-uids)))
((cadr runner-up) #£f)))
sorted-task-uids)))
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sorted-lists type-list)

(if (= num-robots 1)
(request (caar final-task-uids) (car procs))
(request (caar final-task-uids)
(with-team-proc-maker
final-task-uids type-list procs))))))))

(define (pose-task-helper responses metrics)

b

3

(cond
((null? responses) ’())
(else
(cons
(if (not (null? (car metrics)))
(sort-response (car responses) (car metrics))
(car responses))
(pose-task-helper (cdr responses) (cdr metrics))))))

this proc takes a list of lists. each list contains the (sorted) uids
available for a single task. assuming the first task is the most

important, resolve-conflicts picks exactly who should do what

and returns a list of the uids in that order (or #f if it couldn’t be done)

for the future:
- would be nice to offer the user some general method for specifying
the relative priority of a task.

(define (resolve-conflicts sorted-lists)

(let loopl ((task-uid-lists sorted-lists) (final-uids ’()))
(cond
((null? task-uid-lists) (reverse final-uids))
(else
(let ((this-task-uid
(let loop2 ((this-task-uid-list (car task-uid-lists)))
(cond
((null? this-task-uid-list) #f)
(else
(cond
((member (caar this-task-uid-list) (map car final-uids))
(loop2 (cdr this-task-uid-list)))
(else (car this-task-uid-list))))))))
(if (not this-task-uid)
#f
(loopl (cdr task-uid-lists) (cons this-task-uid final-uids))))))))
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(define (simple-sonar-task) (list 1
(list
(list
(1list ’mobile)
(list ’somnar)))
(1list
(location-metric-maker ’ (100 100 0)))
(list
(simple-sonar-task-thunk ’(100 100 0)))))

(define (dual-sonar-task)
(let ((targetl ’(300 200 0))
(target2 ’(-1000 200 90))
(num2 100))
(1ist ’dual-sonar-task 3

(1ist
(list (list ’mobile ’somar) ’())
(1ist (list ’mobile ’somar) ’())
’idle)
(1list
(location-metric-maker targetl)
(location-metric-maker target2)
(load-metric-maker))
(1ist
(dual-sonar-task-proc-maker-1 targetl)
(dual-sonar-task-proc-maker-1 target2)
(dual-sonar-task-proc-maker—-2 num?2)))))

(define (dual-sonar-task-proc-maker-1 coords) ;coords is ’(x y theta)
(lambda ()
(display-remote O *subscriptions*)
(sonar-start)
(goto-xy (list (car coords) (cadr coords)))
(rotate ’by (angle-to-heading (caddr coords)))
(sonar-stop)
(sonar-read)))

(define (dual-sonar-task-proc-maker-2 num) ;num is length of list to sort
(lambda ()
(sort-list
(let loop ((num-left num))
(if (zero? num-left)

0]
(cons ((make-maxrandom 100)) (loop (- num-left 1)))))

<))
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; a proc to build a proc which will run with-team
(define (with-team-proc-maker task-uids type-list procs)
(let ((proclist
(map3
(lambda (task-uid proc type)
(if (eq? type ’exclusive)

(lambda ()
((cadr task-uid) #t))
proc))

task-uids procs type-list))
(uids (map car task-uids)))
(lambda ()
(with-team uids
(on-list ((fixed uids)) proclist)))))

; NOTES:

; Well, except for the macro I need to pass a list of procs as individual

; args to on, the with-team stuff looks pretty good. Must make sure

; the same robot doesn’t get picked more than once. How to decide?

; It would be nice to determine some ’best fit’ over the whole set of

; tasks. Would be really nice for user to give some idea of weight to

; each task (i.e. relative to the other tasks, how important is it that this
; task get the best qualified machine?). For now, I’1l probably use the

; order in which the tasks are given as an implicitly declared (decreasing)
; priority list.

(define (simple-sonar-task-thunk coords) ;coords is ’(x y theta)
(lambda ()
(sonar-start)
(goto-xy (list (car coords) (cadr coords)))
(rotate ’by (angle-to-heading (caddr coords)))
(sonar-stop)
(sonar-read)))
; new version of ’on’. it takes as the last arg a list of procs
(define-syntax on-list
(letrec ((find (lambda (key default stuff)
(cond ((null? stuff) (list key default))



o4

((and (1ist? (car stuff))
(eq? key (caar stuff)))
(car stuff))
(else (find key default (cdr stuff)))))))
(lambda (exp rename compare)
(let* ((options (cadr exp))
(fixed (cadr (find ’fixed ’’() options)))
(time (cadr (find ’timeout O options)))
(collect (cadr (find ’collect ’and-collector options)))
(unlikely (rename ’unlikely))
(on-entire-team?
(not (equal? (list unlikely) (cdr (find ’all unlikely options)))))
(arb-clause (find ’arbitrary O optioms))
(arb-n (if on-entire-team?
-1 ; means "select the entire team"
(cadr arb-clause)))
(arb-from (if (or (not (= 4 (length arb-clause)))
(not (eq? ’from (caddr arb-clause))))
T#f
(1ist-ref arb-clause 3)))
(debug (cadr (find ’debug #f options)))
(error-handler (cadr (find ’on-error ’%%team-error options)))
(procs (caddr exp)) ; at least one proc!
(local-var (rename ’fixed-robot-list)))
‘(,(rename ’let) ((,local-var ,fixed))
(apply %%exec-on ,local-var
(%%select-arbitrary ,arb-n ,arb-from ,local-var)
,collect
,time
,debug
,error-handler

,procs))))))
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A.8 publish.scm

; publish/subscribe things

; Hmm...there must be a global var somewhere which
; holds all the aspaces (or uids), but for now, we’ll fake
; it.

(define *uids* (list 0 1 2 3))

’
; global var to hold topics we’re currently listening to
5

(define *subscriptions* ’())

; must lock the subscription list so that things like the battery-monitor
; thread may safely modify it

(define *subscriptions-lock* ’())

I

; publish a message (asynchronous)

(define (publish topic proc . args)
(map
(lambda (uid)
(remote-run! (uid->aspace uid)
receive-publication topic (aspace-uid (local-aspace))
proc args))
*xuids*))

; publish and wait for replies (synchronous)
(define (request topic proc . args)
(map (lambda (elt)
(1list (cadr elt) (caddr elt)))
(filter (lambda (response) (car response))
(map
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(lambda (uid)
(remote-apply (uid->aspace uid)
receive-request topic
(aspace-uid (local-aspace)) proc args))
*uids*))))

; publish and wait for replies (synchronous)
; NOTE: this one is meant for getting exclusive hold on a resource,
; such as ’mobile.

; topic can be a list of atoms, in which case those atoms are
; interpreted as capabilities which are not needed exclusively.

; topic can also be a list of two lists, in which case:
; first sublist: those topics needed exclusively
; second sublist: those topics not needed exclusively
(define (request-exclusive topic task-name proc . args)
(let ((topiclist
(cond
((not (list? topic)) (1list ’() (list topic)))
((not (1list? (car topic))) (list () topic))
(else topic))))
(map (lambda (elt)
(1ist (cadr elt) (caddr elt)))
(filter (lambda (response) (car respomnse))
(map
(lambda (uid)
(remote-apply (uid->aspace uid)
receive-request-exclusive topiclist task-name
(aspace-uid (local-aspace)) proc args))
*uids*)))))
s
; start listening to a topic
(define (subscribe topic . already-have-lock)
(dynamic-wind
(lambda ()
(if (not already-have-lock)
(obtain-lock *subscriptions-lock*)))
(lambda ()
(if (not (member topic (if (null? *subscriptions*)
*subscriptionsx*
(map car *subscriptions*))))
(set! *subscriptions*
(cons (1list topic ’()) *subscriptions*))))
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(lambda ()
(if (not already-have-lock)
(release-lock *subscriptions-lock*)))))

; subscribe somebody else to a topic
(define (subscribe-remote uid topic . once-or-always)
(let ((topiclist
(if (list? topic)
topic
(list topic))))
(map
(lambda (topic)
(remote-apply (uid->aspace uid) subscribe topic once-or-always))
topiclist)))

; stop listening to a topic
(define (unsubscribe topic . already-have-lock)
(dynamic-wind
(lambda ()
(if (not already-have-lock)
(obtain-lock *subscriptions-lockx*)))

(lambda ()
(let ((new-subscription-list
(filter

(lambda (topic-record)
(not (eq? topic (car topic-record))))
*subscriptions*)))
(set! *subscriptions* new-subscription-list)))
(lambda ()
(if (not already-have-lock)
(release-lock *subscriptions-lock*)))))

(define (topic-status topic)
(let ((result
(filter (lambda (elt) elt)
(map
(lambda (topic-record)
(if (eq? topic (car topic-record))
(cadr topic-record)
#£))
*subscriptions*))))
(if (null? result)
#f



(car result))))

(define (set-topic-status! topic status)
(set! *subscriptions*
(map
(lambda (topic-record)
(if (eq? topic (car topic-record))
(begin
(list topic status))

topic-record))

*subscriptions*)))

; stop somebody else from listening to a topic
(define (unsubscribe-remote uid topic)
(remote-apply (uid->aspace uid) unsubscribe topic))

; these will be remote-run’d by message senders

; this one will handle requests (i.e. synchronous and needing a reply)

(define (receive-request topic uid proc args)
(if (not (member #f
(map
(lambda (elt)
(member elt
(if (null? *subscriptionsx*)
*subscriptions*
(map car *subscriptions*))))
(if (not (1list? topic))
(1ist topic)
topic))))
(1ist #t (aspace-uid (local-aspace))
(ignore-errors (lambda ()
(apply proc args))))
(1ist #f (aspace-uid (local-aspace)))))

; this one will handle exclusive requests

; (i.e. synchronous, needing a reply, and needing to grab a resource)

o8
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b

(define (receive-request-exclusive topiclist task-name uid proc args)

topiclist is a list of two lists.
first sublist: those topics needed exclusively
second sublist: those topics not needed exclusively

(let ((continue? #f)
(unsubscribed-topics ’()))
(dynamic-wind
(lambda () ;preamble; get the lock
(obtain-lock *subscriptions-lock*))
(lambda () ;body: edit *subscriptions*
(let ((status-list
(map
(lambda (elt)
(if (or (eq? task-name (topic-status elt))
(null? (topic-status elt)))
#t
#£))
(append (car topiclist) (cadr topiclist)))))
(if (not (member #f status-list))
(begin
(map
(lambda (elt)
(set-topic-status! elt task-name))
(car topiclist))
(set! unsubscribed-topics (car topiclist))
(set! continue? #t)))))
(lambda () ;postamble: release the lock
(release-lock *subscriptions-lock*)))
(if continue?
(1ist #t (aspace-uid (local-aspace))
(encap
(lambda (commit?)
(let ((result
(if commit?
(ignore-errors
(lambda ()
(apply proc args))))))
;resubscribe to subjects
(map
(lambda (elt)
(set-topic-status! elt *()))
unsubscribed-topics)
result))))
(1ist #f (aspace-uid (local-aspace))))))

29
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; this one will handle publications (i.e. asynchronous and needing no reply)
(define (receive-publication topic uid proc args)
(spawn (lambda ()
(if (not (member #f
(map
(lambda (elt)
(member elt
(if (null? *subscriptionsx*)
*subscriptions*
(map car *subscriptions*))))
(if (nmot (1list? topic))
(1list topic)
topic))))
(list #t (aspace-uid (local-aspace))
(ignore-errors (lambda ()
(apply proc args))))
(list #f (aspace-uid (local-aspace)))))))
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A.9 safe.scm

; safe versions of robot-related commands

; I want to be able to safely do things like evaluate (battery-voltage)
; on any machine. So, I’11 use these intermediary procedures

; which do simple checks against hostname to determine what should

; actually be done.

(define *tile-size* (* 12 25.4))

; these coordinates will be reported by workstations when (safe-reckon)
; 1s invoked (what are elements of reckon supposed to be?)
(define *plantain-position* (list (* -5.5 *tile-size*) (* 10 *tile-size*)

-90 0))
(define *praline-position* (list (* -8 *tile-size*) (* 10 *tile-sizex*) -90 0))
(define *choctaw-position* (list (* -10 *tile-sizex) (* -9 *tile-sizex*) 90 0))
(define *troy-position* (list (* -5 *tile-size*) (* -9 *tile-sizex) 90 0))

3
; a new version of im
(define (safe-im)
(if (robot? (getenv "HOSTNAME"))
(im)
#t))

; if we’re not a robot, the report a value high enough to indicate
; that charging? is true
(define (safe-battery-voltage)
(if (robot? (getenv "HOSTNAME"))
(battery-voltage)
140))

; ok...it seems like the workstations should be able to respond
; to reckon; they should simply report a static position



(define (safe-reckon)

(let ((hostname (getenv "HOSTNAME")))

(if (robot? hostname)
(reckon)
(cond
((equal? hostname
((equal? hostname
((equal? hostname
((equal? hostname

"plantain") *plantain-positionx)
"praline") *praline-position#)
"troy") *troy-positionx)
"choctaw") *choctaw-position#*)))))

62
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