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Figure 1: Left: we connect 3D models to webpages with physical attributes. Our approach transfers real-world dimensions
by cross-modal linking through text or images (purple and orange links correspondingly). Right: we transfer real-world
dimensions to a 3D model dataset and rectify physically implausible model scales.

Abstract

We present an algorithm for transferring physical at-
tributes between webpages and 3D shapes. We crawl prod-
uct catalogues and other webpages with structured meta-
data containing physical attributes such as dimensions and
weights. Then we transfer physical attributes between
shapes and real-world objects using a joint embedding of
images and 3D shapes and a view-based weighting and as-
pect ratio filtering scheme for instance-level linking of 3D
models and real-world counterpart objects. We evaluate
our approach on a large-scale dataset of unscaled 3D mod-
els, and show that we outperform prior work on rescaling
3D models that considers only category-level size priors.

1. Introduction

3D model repositories such as TurboSquid1 and the
Trimble 3D Warehouse2 have led to a proliferation of 3D
data. Recent efforts in constructing large-scale annotated
3D model datasets have also significantly expanded the
amount of 3D data available for research [2]. At the same

1https://www.turbosquid.com
2https://3dwarehouse.sketchup.com/

time, the 3D model data in existing repositories is lacking
many critical semantic attributes. Meaningful part segmen-
tations, material annotations, real-world sizes, volumes and
weights are some physically grounded attributes that are
critical for reasoning in many computational tasks, but are
absent or unreliable in existing 3D model datasets.

In contrast, physically grounded attributes such as the
sizes, materials and weights of objects are some of the
most important properties in commercial product informa-
tion and websites. A promising link between semantic
knowledge in the web, and 3D data is through 2D images,
which are ubiquitous in websites.

We leverage recent advances in joint embedding of 3D
shapes and images, to connect 3D object models with prod-
uct info and images from websites creating a network of
shapes and product info entries. Our contribution lies in
using this network to tackle the problem of cross-modal at-
tribute transfer between 3D models and other modalities.
We demonstrate how a propagation algorithm can be used
to enrich large-scale 3D shape collections with physical ob-
ject attributes extracted from the web. Though our approach
is applicable for transferring physical attributes in general,
we focus on physical dimensions. We make our data and
code public for the benefit of the community.
Contributions. We propose an algorithm for transferring

1

https://www.turbosquid.com
https://3dwarehouse.sketchup.com/


semantic attributes from product webpages describing real
objects to 3D models of those objects. Our algorithm lever-
ages a view-based loss scheme to robustly match 2D im-
ages and 3D shapes within local neighborhoods of a jointly
embedded space. We collect a dataset of product informa-
tion from the web and link it to 3D models at the instance
level. We evaluate our method on this dataset by compari-
son to baselines for predicting the real world dimensions of
3D models. We demonstrate applications in object size and
weight prediction from 2D images, 3D shape retrieval, and
3D scene design.

2. Related work
The use of 3D computer graphics models for computer

vision tasks has become widespread. In particular, render-
ing of such models for training data has been shown to be
useful in a variety of contexts including optical flow [6],
object pose prediction [17, 7], and semantic segmenta-
tion [8, 18]. However, very few 3D CAD models in re-
search datasets have physically accurate dimensions, mak-
ing it hard to compose them into 3D scenes with plausible
relative sizes. Our goal is to enrich such 3D models by con-
necting them to corresponding product info webpages.

A related line of recent work addresses amodal size pre-
diction or amodal segmentation in RGB or RGB-D [10, 12,
5, 19]. These methods note the challenge of the amodal
size prediction due to the difficulty of obtaining training
data, since cropped or occluded objects in images need to
be manually annotated. By providing dimensions for 3D
models, we aim to make training data generation for these
approaches easier.

Though there is much work in 3D shape analysis, it typ-
ically addresses 3D object models in isolation, with few at-
tempts at connecting 3D models to other modalities such
as text. An example is 3D Wikipedia [14] which connects
references to parts of real-world environments in Wikipedia
articles to reconstructed geometry of those real-world envi-
ronments. We similarly establish a correspondence between
geometry, and text or images but we do so for 3D models
representing products to transfer physical attributes to the
3D models.

Recent advances in deep learning have enabled joint em-
bedding of 3D shapes and images [13, 9], and joint em-
bedding of object images and scene images [1]. Earlier
work in natural language processing has extracted numer-
ical attributes such as size and weight from web text [4].
However, connecting information from web text to trans-
fer physical attributes between representations of objects in
different modalities remains largely unexplored.

The closest prior work utilizes observations of 3D mod-
els in 3D scenes to propagate category-level size priors and
plausibly rescale model collections [16]. However, their
method mainly performs category-level size prediction and
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Figure 2: Product webpages linked to 3D models through
text or images. Left: Toyota Prius XW30 Wikipedia page
with dimension information matched to 3D model through
name label. Right: chair product webpage matched to chair
model through image.

can only do instance-level prediction for models observed
in 3D scenes. We present an instance-level attribute trans-
fer algorithm for 3D shapes of real-world products. Further-
more, we show that attributes can be transferred in both di-
rections, enriching both the product images and correspond-
ing 3D models.

3. Approach
Our goal is to connect physical attributes from websites

describing real-world objects to 3D models of those partic-
ular objects. To do this we leverage two kinds of links: text
and image links. The former relies on matching of text in
a website describing the object with the text in the website
from which a 3D model was retrieved to directly enrich the
3D model (see Figure 2 left). The latter relies on visual sim-
ilarity of images found on product websites and rendered
images of a 3D model (see Figure 2 middle). We describe
the rationale for each type of link based on the properties
of the 3D model and webpage data that we collect (see Sec-
tion 4).

To enable transferring of physical attributes between
product info websites and 3D models, we leverage recent
work in joint embedding of shapes and images [13]. We
adapt AlexNet (left) and modify the last fully connected
layer (fc8) to predict the embedding features. We create
a embedding space using a shape similarity metric and train
CNNs to project real-world images and rendered 3D model
images representing an object so that they are near each
other (see Section 5.1).

After obtaining the embedding space we need an algo-
rithm to transfer attributes between instances in the space.
We build a network of local neighborhood around each
instance to propagate attributes through nearest neighbor
edges. Physical attributes that are associated with any in-
stance in the network can be propagated to neighboring
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Figure 3: Several categories of 3D models in ShapeNetCore
that exhibit unrealistically broad distributions of height val-
ues. The horizontal axis plots reported virtual unit height
in log scale indicating that instances in each category span
several orders of magnitude.

points using this transfer algorithm (see Section 5). The
transfer process uses an aspect ratio filter to reduce the num-
ber of spurious matches (see Section 5.2) and handles vari-
ation in viewpoints by assigning higher weights to transfer
pairs that have better matching viewpoints (see Section 5.3).

4. Data
To demonstrate our cross-modal attribute transfer algo-

rithm we need both 3D shape data and webpage data de-
scribing the same real-world objects. There are far fewer
3D shapes than webpages describing objects so the choice
of dataset domain is dictated largely by the available shape
data. We leverage ShapeNet [2], a recently released large-
scale repository which provides many 3D model instances
of common object categories.
3D model data. We use the ShapeNetCore subset of
ShapeNet which covers 55 object categories and contains
about 51,000 models with consistent rigid alignments. One
of our motivations is the observation that 3D models in this
corpus—much like in other public repositories—are mod-
eled in unknown or unreliable virtual unit scales (see Fig-
ure 3). In preliminary analysis we found that the categories
in ShapeNet vary significantly in terms of the proportion of
3D model instances that correspond to real-world objects.
For example, most car models have real-world counterparts
and are named with the brand and make of car. In con-
trast, 3D models of tables are rarely obviously connected
to real-world counterparts, and are therefore rarely named
with brand and model information.

Due to this disparity in instance-level matching of 3D
models to products we collected physical attributes from
webpages with two pipelines: one directly retrieving web-
pages for matching 3D model instances (Table 1 left), and
one crawling product catalogues for entire categories of ob-
jects (Table 1 right). In both cases, we sought webpages
with structured physical attribute data for objects.
Webpage data. For the 3D model categories with many
real-world instances, we run Google search queries given
the name label provided for each ShapeNetCore model. If

instance-level link category-level link
category models pages category models pages

car 7497 1274 table 8443 5083
airplane 4045 1933 chair 6778 554
loudspeaker 1618 243 sofa 3173 1269
bus 939 94 cabinet 2336 4546

total 14099 3544 total 20730 11452

Table 1: Summary of 3D model and webpage data for our
experiments. Our full data collection covered more cate-
gories (see supplemental material).

a Wikipedia entry or Google infobox entry is returned for
the query, we extract any available dimension and weight
values. About 80% of the searches were directly linked to
Wikipedia entries in this manner, the remainder were manu-
ally linked to Google infobox values or values in other web-
pages. At the end of this process we have a set of seed
3D shapes matched to real-world counterpart objects with
dimension attributes. For the categories with few recog-
nizable instances, we crawl several furniture product cata-
logue websites to collect the webpage contents and prod-
uct images3. These furniture websites contain product im-
ages along with product dimensions, weights and material
descriptions. Since these webpages list the product infor-
mation in semi-structured tables, we used patterns to iden-
tify and extract the dimensions and weights, taking care to
normalize to consistent units (i.e. meters and kilograms),
and to ensure consistent interpretation of width, length, and
height. The total webpages for different categories are re-
ported in Table 1. Note that the “cabinet” category refers
to a category containing cabinets, cupboards, file cabinets
and bookcases. With this data, our algorithm will then re-
cover instance-level linking by matching product images to
specific 3D models. Figure 2 illustrates the instance-level
linking of 3D shapes to product webpages either directly
through text (purple) as in the first pipeline, or through
image-to-shape matching (orange).

5. Algorithm
Here we describe the steps of our attribute transfer algo-

rithm. As input, we take a set of shapes (3D models) S for
which we want to estimate physical attributes. In addition,
we have a set of items I collected from the web that con-
tain the physical attributes we would like to transfer to the
shapes. We start by identifying instance-level links between
the models and the items to obtain a set of seed models S+,
for which we can directly propagate the instance-level at-
tributes. Next, we establish a joint embedding space using
the shapes S and project images associated with the items
into this space (see Section 5.1). Using this embedding, we

3We crawled www.ashleyfurniture.com, www.furniture.
com, www.ikea.com, and www.wayfair.com.

www.ashleyfurniture.com
www.furniture.com
www.furniture.com
www.ikea.com
www.wayfair.com


establish a local neighborhood for each shape Si and find
the closest k annotated items or shapes as candidate sources
for attribute transfer. Since the embedding space was not
optimized for matching the attribute, we introduce a filter-
ing step to refine match candidates. For the purposes of
size transfer, we use an aspect ratio filter (Section 5.2). In
addition, we introduce a re-ranking step to allow for more
robust linking—in the image-to-shape transfer case this is a
view-based weighting to account for viewpoint variation.

The flow of our cross-modal attribute transfer algorithm
is summarized in Algorithm 1.

Algorithm 1: Cross-modal attribute transfer algorithm
input : Items I = {Ia} with annotated attributes
input : Initial set of shapes S = {Si}
// Embedding construction

1 Identify seed set S+ with known attributes by linking
Ia to Si

2 Establish embedding space D− based on shapes {Si}
3 Project 2D images of {Ia} to embedding space D−

// Attribute prediction
4 foreach shape Si in S do
5 Compute location P−

i of Si in D−

6 Find k closest annotated items {Ia(i,j)}kj=1

7 Apply attribute match filter (AR filter)
8 Re-rank items and select best matching I∗i
9 Transfer attribute from I∗i to shape Si

output
:

Shapes {Si} with annotated attributes

Our algorithm implements a single hop transfer process.
While diffusion processes or other iterative methods are in-
teresting to consider for future work, it is not trivial to cor-
relate rates of scalar diffusion with a similarity or distance
metric in the embedded space. Furthermore, iterative pro-
cesses can be prone to noise, drift, or regression to the mean.
The single hop method we implement also has the advan-
tage of being more attribute-agnostic.

In the following sections, we first describe the construc-
tion of the joint embedding space based on prior work (Sec-
tion 5.1). Then we describe attribute transfer when cor-
responded seed shapes are available in which case shape-
to-shape matching can be used for transfer (Section 5.2).
Finally, we discuss the more challenging cross-modal at-
tribute transfer when we have to establish links between im-
ages and shapes (Section 5.3).

5.1. Joint embedding of 3D models and images

We apply the method of Li et al. [13] to put shapes and
images each object category into a joint embedding space.

5.1.1 Constructing the embedding space

Let S = {Si}ni=1 be the 3D model set. All our 3D mod-
els are assumed to be rigidly aligned with consistent up and
front orientations. Every model Si is rescaled and centered
to fit tightly into a unit cube and is then rendered from m
viewpoints to produce rendered images Ii = {Ii,v}mv=1. In
our experimentsm is set to be 20 and viewpoints are evenly
sampled around the up vector. We compute viewpoint fea-
ture vectors Hi,v using Histogram of Gradients (HoG) [3].
These feature vectors consist of a three-level pyramid of
HoG on images of resolution 120×120, 60×60 and 30×30
totaling 10,188 dimensions per viewpoint. These features
are a baseline representation of shapes which can certainly
be replaced by learned features. For every shape Si, the full
feature vector Fi is created by concatenating all m view-
point feature vectors Hi,v into Fi = (Hi,1, Hi,2, ...,Hi,m).
The distance matrix D of S is generated by taking the L2

distance between different shape feature vectors Fi.
The embedding space is based on non-linear multidi-

mensional scaling (MDS) [11] with Sammon mapping [15]
by minimizing the Sammon error during MDS:

E =
1∑

i<j D(i, j)
∑
i<j

(D(i, j)−D−(i, j))2

D(i, j)
(1)

where D−(i, j) is the distance matrix in the resulting em-
bedding space. The result of this optimization is an embed-
ding space of reduced dimensionality R128.

5.1.2 Embedding images

In order to project images into this space, we train a CNN
to takes the images {Ii} into corresponding points {P−

i }
in the embedding space. To train the CNN, every shape Si

is rendered into a set of images {Ri,k}. These rendered
images are associated with point P−

Si
of the shape in the

embedding space. The rendered images vary in lighting and
viewpoint as described by Li et al. [13].

The CNN encodes a function f which projects the im-
ages {Ri,k} to P−

Si
. The parameters θ of the CNN are opti-

mized under the loss L(θ) =
∑

i,k ‖f(Ri,k; θ)−P−
Si
‖. This

CNN then embeds images into the space D−.

5.1.3 Embedding shapes

To project new shapes into the joint embedding space we
use an approach based on that of Li et al. [13] with the fol-
lowing modifications. Let S∗ be a new shape model. A
shape feature vector F ∗ is generated and the distance of
S∗ to every shape model Si in the shape set {S} dS∗,Si =
‖F ∗ − Fi‖2 is computed. We want to find a correspond-
ing point P−

∗ in the embedding space. Let d−S∗,Si
=



‖P−
∗ − P−

i ‖ be the corresponding distance in the embed-
ding space. dmin is the minimum distance of dS∗,Si among
all other shapes in S. P−

∗ is solved by L-BFGS minimiza-
tion of the following objective function:

P−
S∗ = argmin

P−

n∑
i

(dS∗,Si
− d−S∗,Si

)2

dS∗,Si
− dmin/2

(2)

Here n is set to be 400 in our experiments instead of the
number of shapes in S. We only take into account the clos-
est 400 models as they are the most similar and distances to
dissimilar models are less important. Since the target points
are in R128 taking 400 neighbors as constraints is a rea-
sonable compromise. The subtraction of the minimum dis-
tance in the denominator makes the range of the summation
broader thus better bringing out contrasts between points.
These modifications to the objective make the optimization
more efficient and result in better projections based on our
experiments.

5.2. Shape-to-shape attribute transfer

We use shape-to-shape transfer when we have a
nonempty seed shape set S+ with known physical at-
tributes. We then transfer these attributes to nearby models
using the algorithm as described with no special re-ranking
(i.e., the L2 distance in embedding space directly deter-
mines the ranking of neighbors).
Aspect Ratio Filter. For every item and shape with length
l, width w, and height h we compute the normalized aspect
ratio values denoted by (l/d, w/d, h/d) where d is the di-
agonal length. This aspect ratio filter is a simple threshold
on the dot product of two normalized aspect ratio vectors.
A shape and item are only allowed to match if they pass this
aspect ratio filter threshold. This threshold is a user-defined
parameter that balances transfer accuracy and transfer cov-
erage. Higher values improve accuracy but reduce cover-
age. We set this threshold to values between 0.95 and 0.996
with higher values for shape categories with less geometry
variation (e.g., cabinets and sofas), and lower values for cat-
egories with more variation (e.g., chairs).

5.3. Image-to-shape attribute transfer

Transferring attributes between images and shapes is a
challenging task. When there is no clear match through text
associated with the shape and the webpage we have to es-
tablish visual appearance links. This is where we leverage
the common space provided by the joint embedding. A key
difference compared to the case of shape-to-shape transfer
is that images capture only one 2D view whereas shapes
are 3D representations. Here, we discuss refinements to the
general transfer algorithm in order to better handle view-
point variation. These refinements allow for re-ranking the
neighborhood of a shape in the embedding space to better
match images with particular viewpoints.

Algorithm 2: Image-to-shape attribute transfer algo-
rithm

input : Images I = {Ia} with annotated attributes
input : Initial set of shapes S = {Si}
// Embedding construction

1 Establish joint embedding space D− based on shapes
{Si}

2 Project 2D images {Ia} to joint embedding space and
calculate HoG feature vectors {Ha}.
// View loss weights

3 Render every model Si to images under l different
viewpoints and calculate HoG feature vectors
{Hr(i,s)}ls=1

4 Calculate view loss scores {ws}ls=1

// Attribute prediction
5 foreach shape Si in S do
6 Compute location P−

i of Si in D−

7 Find top k nearest items {Ia(i,j)}kj=1

8 Apply Aspect Ratio (AR) filter
9 Select image I∗i where

I∗i = argmin
j=1:k

{argmin
s=1:l

ws‖Ha(i,j) −Hr(i,s)‖1}

10 Transfer the diagonal length of item I∗i to shape Si

output
:

Shapes {Si} with annotated attributes

We first normalize every model Si to a unit cube and
render it into images {Ir(i,s)}ls=1 from evenly spaced view-
points at 10◦ around the up vector at elevations of 5◦,
10◦, 15◦ and 20◦. Then we compute feature vectors of
the rendered images {Ir(i,s)}ls=1 and the webpage images
{Ia(i,j)}kj=1 as described in Section 5.1.1. We denote these
feature vectors by {Hr(i,s)}ls=1 and {Ha(i,j)}kj=1 respec-
tively. We then compute the pairwise L1 distances of the
image feature vectors {Hr(i,s)}ls=1 and {Ha(i,j)}kj=1. Fi-
nally, we select the most similar image I∗i through:

I∗i = argmin
j=1:k

{argmin
s=1:l

ws‖Ha(i,j) −Hr(i,s)‖1} (3)

Here, {ws}ls=1 represent weights associated with each
viewpoint which we refer to as the view-based loss. These
weights capture the intuition that images from different
viewpoints should be weighted differently when matching
the same object. A summary of the refined transfer algo-
rithm is given in Algorithm 2.
Handling viewpoint variation. In formulating the view-
based loss we seek to assign higher weights to more infor-
mative viewpoints. More informative viewpoints are ones
that better reflect shape geometry and thus capture the sim-
ilarity ranking between shapes. Conditioning this notion
of informativeness on particular attributes to be transported
would better capture correlations between view and promi-



Figure 4: View-based loss scores for chairs. The horizontal
axis plots camera azimuth angle starting in front and mov-
ing clockwise around—the view is visualized below in ren-
dered images. The vertical axis plots the loss score. Colors
represent camera elevations.

nence of an attribute (e.g., width vs height). We take a sim-
ple attribute-agnostic approach.

We use the rendered images {Ir(i,s)}ls=1 to create fea-
ture vectors {H(i,s)}ls=1 for each 3D shape S = {Si}. We
define the shape descriptor FSi

to be a concatenation of the
image feature vectors (H(i,1), H(i,2), ...,H(i,l)) as in Sec-
tion 5.1.1. We construct a distance matrix using the L1

distance ds(Si, Sj) = ‖F(i) − F(j)‖1 on these descriptors.
Based on the distance matrix, we compute a ranking matrix
Rs where Rs(i, k) is the index of the k-th nearest shape to
shape Si.

For a given viewpoint v, we compute the distance matrix
Dv(Si, Sj) = ‖H(i,v) −H(j,v)‖1. This distance dv(Si, Sj)
represents differences between shape Si and shape Sj in
rendered images under viewpoint v. A ranking matrix Rv

associated with viewpoint v is also computed based on dv .
Rv(i, k) is the index of the k-th nearest shape to shape Si

based on the distance matrix Dv . Rv(i, j) returns the rank-
ing number of shape Sj to shape Si.

The loss score for viewpoint v is computed based on the
difference between Rs and Rv . For every shape Si we find
the top m nearest shapes based on Rs. Then we find these
top m nearest shapes’ ranking numbers inRv . These rank-
ing numbers are compared divided by the distances between
these top m nearest shapes and shape Si:

LossScore(v) =
∑
Si

m∑
k=1

|k −Rv(i, Rs(i, k))|
ds(Si, SRs(i,k))

(4)

In our experiments, we set m = 50. The computed view
loss scores are then divided by the maximum loss score
among all viewpoints to obtain a normalized [0, 1] value.
High loss values indicate more 3D geometry information is
lost from a given view.

Figure 4 plots the view loss scores for chairs. Chairs ex-
hibit bilateral symmetry and that the most informative cam-
era angle in the front-right viewpoints is 50◦ azimuth and
10− 15◦ elevation.

Figure 5: Heights predicted using our approach in log scale
for several categories of 3D models (cf. Figure 3). The
height distributions are now narrower and more realistic.
Some outliers such as the short stove top surface, and the
tall microwave embedded in a cabinet are reasonably sized.
The short printer is an example of an error case due to a
particularly long diagonal length.

6. Evaluation

Figures 1 and 5 show qualitatively the impact of our size
predictions (note the failure case in the printer category, and
see supplemental for more results). Before rescaling we see
that many objects in a category have drastically different
dimensions. For example, chairs can be much shorter or
much taller than a person.

To quantitatively evaluate our algorithm we run a series
of experiments measuring the accuracy of predicted dimen-
sions against known ground truth dimensions. Each exper-
iment addresses particular attribute transfer source and tar-
get models. Experiment A evaluates shape-to-shape trans-
fer when attributed 3D models are available as sources for
dimension propagation. Experiment B evaluates image-to-
shape transfer which we use to establish links in categories
with few 3D models of known dimensions—in this case
product images are the sources of dimension information
and shapes in the embedding space are the targets. Exper-
iment C evaluates image-to-shape transfer to a set of new
3D models that first have to be projected into the embed-
ding space. In all three experiments, we compare against the
category-based estimates used by prior work [16], and also
isolate the effect of the aspect ratio filter and view-based
loss components of our algorithm.
Experimental setup. We first create a set of 3D models
with known ground truth dimensions by manually verifying
correct instance-level matching to product webpages in our
corpus. Some of these ground truth models are part of the
ShapeNetCore dataset used for constructing the embedding



Method airplane car loudspeaker bus All
Prior 62.6 8.5 55.3 22.6 43.5
AR 67.8 13.6 70.0 33.8 48.0
JE 6.9 8.5 37.5 10.0 12.9
JE+AR 7.0 8.5 36.1 10.0 11.8

# models 364 229 43 17 653

Table 2: Mean relative diagonal length error for Experiment
A (shape-to-shape transfer).

space, while others are external models that were previously
unobserved and have to be projected into the space. For the
latter set we collected 638 models of chairs, tables, sofas
and cabinets from the 3D Warehouse4.

In both cases we apply our algorithm to transfer dimen-
sions to each ground truth model from its local neighbor-
hood in the embedding. We then compare the transferred
sizes to the ground truth values. We calculate a relative di-
agonal size error |Ldia

gt −Ldia
pred|/Ldia

gt where Ldia
gt and Ldia

pred

are the diagonal lengths of the ground truth and predicted
dimensions correspondingly.

We compare our algorithm against two baseline meth-
ods. The Prior baseline simply assigns the mean diag-
onal length value of the object category to each instance
of the category. We compute the mean diagonal length of
all objects with size annotations within each category. This
method is equivalent to the category-based priors of previ-
ous work. The aspect ratio (AR) baseline embeds 3D model
and product instances in an R3 space constructed from the
three normalized aspect ratio values. This baseline isolates
the benefit of the joint embedding (JE) space over a simpler
alternative.
Experiment A: shape-to-shape transfer. This experiment
evaluates the scenario when a seed set of 3D shapes with
known dimensions is the transfer source and the targets are
the remaining shapes used during embedding space con-
struction. We first split the ShapeNetCore models with veri-
fied dimensions annotated into a 70% training set and a 30%
test set. We carry out the embedding stage of our algorithm
using the models in the training set. Then we carry out the
prediction step on the test set and compare the predicted di-
mensions with the known ground truth dimensions. Table 2
reports the percentage relative error averages.

As we expected, the JE and JE+AR methods signifi-
cantly outperform the Prior and AR baselines for most
categories. The car category exhibits less overall size
variance than the other categories, leading to the Prior
method performing particularly well in that case. The as-
pect ratio filter component in JE+AR does not significantly
improve results in this experiment. Comparing JE and
JE+AR, the AR filter does not significantly improve the

4https://3dwarehouse.sketchup.com

Method chair table sofa cabinet All
Prior 21.3 21.2 17.2 26.1 20.5
AR 16.0 17.2 11.3 18.1 14.7
JE 14.2 17.3 14.8 22.5 16.6
JE+VL 14.2 13.4 16.6 19.9 16.1
JE+AR 11.2 16.0 11.8 21.3 14.3
JE+AR+VL 11.0 12.2 11.7 17.8 12.8

# models 123 115 243 111 592

Table 3: Mean relative diagonal length error for Experiment
B (image-to-shape transfer).

Method chair table sofa cabinet All
Prior 29.2 21.3 12.6 24.7 24.2
AR 22.8 46.5 17.8 34.5 32.8
JE 14.4 16.5 14.9 21.6 15.3
JE+VL 14.7 13.6 14.8 39.8 21.9
JE+AR 11.4 14.6 12.4 21.6 15.4
JE+AR+VL 11.4 13.6 9.9 19.9 14.5

# models 209 186 51 192 638

Table 4: Mean relative diagonal length error for Experiment
C (new model projection and transfer).

transfer error. This is not particularly surprising as mod-
els are compared using LFD-HoG global features which al-
ready take global shape differences into consideration (see
Section 5.1.1).
Experiment B: image-to-shape transfer. In this exper-
iment we address the categories where there are no seed
shapes with known sizes. Webpage product images with
known dimensions are used as the transfer sources and the
targets are shapes already in the embedded space. For the
test set, we verify the dimensions of 592 chair, table, sofa
and cabinet models in ShapeNetCore by matching them to
crawled product webpages. Table 3 reports the mean rela-
tive diagonal error values for all methods.

Again, the results show that overall our embedding trans-
fer approach outperforms the simpler baselines. The sofa
category is particularly well suited to the AR baseline (and
JE+AR filtering) as it consists of a discrete set of clusters
with characteristic aspect ratios (one-and-a-half “loveseat”,
two seat, three seat, four seat etc.). In contrast, the per-
formance on the table and cabinet categories is much more
sensitive to the view loss component.
Experiment C: projecting new models. For this experi-
ment, we use an external test set of 638 models with known
dimensions that were not part of the embedding space con-
struction. We first project these models using the method
described in Section 5.1.3 and then proceed with the same
pipeline as before. This experiment demonstrates the prac-
tically useful scenario where a newly seen 3D model has

https://3dwarehouse.sketchup.com
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Figure 6: Distribution of relative diagonal length errors for
size predictions by each method averaged over all evalua-
tion categories. The category-based prior (Prior) and as-
pect ratio space (AR) methods have broad distributions indi-
cating predictions with high relative error. Our approach us-
ing joint embedding (JE) and its additional component have
increasingly narrower distributions indicating more accu-
rate predictions. The total area under 10% error (reflect-
ing expectation for under 10% error) for each method is as
follows. Prior: 21.0%, AR: 28.4%, JE: 31.7%, JE+AR:
37.5%, JE+VL: 33.8%, JE+AR+VL: 38.7%.

to be handled by a pre-trained embedding space. Table 4
reports mean errors for all methods.

The benefit of our approach is clear in this setting. Note
that the AR baseline in particular does not generalize well
for new models. In contrast, JE and its variants perform at
similar error levels as the previous experiment.

6.1. Overall results

The results of our evaluation indicate that our transfer al-
gorithm predicts real-world dimensions for 3D models more
accurately than prior work and simpler baseline approaches.
In particular, experiment C handling previously unobserved
3D models demonstrates that simple category-based priors
(Prior) and aspect ratio–based transfer (AR) do not gen-
eralize well and are unlikely to be robust in practical pre-
diction scenarios. This conclusion is reflected when visu-
alizing the distribution of relative diagonal errors for each
of the methods averaged over all evaluation categories (see
Figure 6).

The ablative comparison of the components of our algo-
rithm shows that aspect ratio filtering (JE+AR) improves
transfer accuracy in general but the effect is limited in
shape-to-shape transfer. This is likely due to the fact that the
LFD-HoG global shape descriptors we use for construct-
ing our embedding space already take global shape aspect
ratio into consideration. The view-based loss component

Figure 7: Left: Chair image from Amazon product cat-
alogue. Predicted dimensions are 0.660m × 0.610m ×
1.041m (length × width × height) and predicted weight
is 14.1 kg (cf. specified product dimensions of 0.685m ×
0.673m × 1.067m and 18.1 kg. Right: Table image from
Amazon. Predicted dimensions are 0.548m × 1.097m ×
0.680m and 17.7 kg. The product size and weight are
0.406m× 1.097m× 0.680m and 15.2 kg.

(JE+VL) also improves transfer accuracy in general though
it is sensitive to particular categories. The improvement is
complementary to JE+AR as demonstrated by the further
improvement when the two are combined in JE+AR+VL.
Predicting size and weight for images. We demonstrate
an application of our algorithm for size and weight predic-
tion from object images. Additional applications are pro-
vided in the supplemental material. Figure 7 shows product
images of a chair and a table retrieved from Amazon (not
in our training or testing data) and their predicted size and
weight values with our algorithm by matching to the near-
est neighbor 3D model in our embedding. The predicted
values closely match the actual values. As a quantitative
evaluation, we predicted sizes for 15 chair product images,
obtaining a mean diagonal error of 8.3% (compared to error
of 12.7% using the baseline category-level prior).

7. Conclusion
In this paper, we proposed an algorithm for transferring

physical attributes from product webpages describing real
objects to 3D models of those objects. We collected a large
dataset of product information from the web and linked it to
3D models at the instance level. We evaluated our algorithm
by comparison to several baselines for predicting real world
sizes of 3D models. We illustrated how our approach can
be used to predict sizes for objects given 2D image inputs.

We showed that cross-modal transfer of physical at-
tributes such as size and weight are possible through a joint
embedding scheme linking 3D shapes and webpage meta-
data through 2D images. Prediction of real-world size for
3D models is critical for enabling generation of realistic 3D
scene training data, and for simulation and interaction in
the emerging VR/AR application areas. Physical attributes
are also an important prerequisite for truly connecting the
visual world to richer semantics.
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