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Abstract

Comparing two images from different views has been
a long-standing challenging problem in computer vision,
as visual features are not stable under large view point
changes. In this paper, given a single input image of an
object, we synthesize its features for other views, leveraging
an existing modestly-sized 3D model collection of related
but not identical objects.To accomplish this, we study the
relationship of image patches between different views of
the same object, seeking what we call surrogate patches
— patches in one view whose feature content predicts well
the features of a patch in another view. Based upon these
surrogate relationships, we can create feature sets for all
views of the latent object on a per patch basis, providing
us an augmented multi-view representation of the object.
We provide theoretical and empirical analysis of the feature
synthesis process, and evaluate the augmented features
in fine-grained image retrieval/recognition and instance
retrieval tasks. Experimental results show that our syn-
thesized features do enable view-independent comparison
between images and perform significantly better than other
traditional approaches in this respect.

1. Introduction
Comparing images of objects from different views is a

classic and cornerstone task in computer vision. It is the
core for many applications such as object instance recogni-
tion, image matching and retrieval, and object classification.
In most scenarios, although the input is 2D images, the
comparison between images is actually aimed at comparing
the underlying 3D objects, regardless the different camera
viewpoints from which they were captured. When the
viewpoint difference is small, existing pipelines built upon
robust local features [15, 7, 14] can perform the comparison
well. However, these pipelines usually fail when the view-
point difference is very large, since the content and relative
locations of local features fail to persist.

Humans can do cross-view image comparisons very
well, even if the viewpoint difference is large. Given a
single image of an object, one can easily imagine the under-
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Figure 1: Visualization of synthesized HoG features on 8
canonical views Given the input image in the center, its HoG
feature is shown in the red bounding box, and the synthesized
features are visualized for the other view points.

lying 3D object, and infer the appearance in different views.
This, however, is highly challenging for computers, due to
two challenges: 1) estimating the 3D structure from a single
image is physically under-determined: depth is missing for
the observed parts, and all information is missing for the
unseen parts; 2) synthesizing realistic details in novel views
needs sophisticated geometric reasoning.

In this paper, we address the cross-view image compari-
son problem by synthesizing features of different views for
an imaged object (Fig. 1), using a modestly-sized 3D model
collection as a non-parametric prior. 3D models can provide
strong prior information to help an algorithm “imagine”
what the underlying 3D object should look like from novel
views. Recently, more and more high-quality 3D models
are available online, organized with category and geometric
annotations such as alignment [2], making our proposed
approach possible and effective. Moreover, we directly
synthesize image features instead of synthesizing raw pixel
values of novel view images. The motivation for doing so is
that most computer vision techniques rely on image features
as input. Furthermore, since features are more abstract
forms of image appearance, they can be easier to transfer
across views. Finally, by synthesizing features at a set of
canonical viewpoints, we augment the original feature set
and obtain a true multi-view representation of the object,
effectively lifting the 2D image to 2-1/2D space [23, 5].

Our method is based upon two key observations. First,
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features of an object from different views are correlated.
This is because these images observe the same underlying
3D object, whose parts can be further correlated by 3D
symmetries, repetitions, and other regularities. The nature
of these intra-object correlations is typically consistent for
objects in the same class. In fact, a remarkable feature of
our approach is that it can exploit 3D symmetries of objects
without any 3D analysis — by just learning these symme-
tries from patch observations in different views. Second,
for similar objects, their features from the same view are
correlated. In particular, the inter-object correlations are
strong for features at the same spatial location. Therefore,
we can approximate the features of an unknown 3D object
via an existing collection of 3D models of similar objects.

Contribution We propose a method for synthesizing ob-
ject image features from unobserved views by exploiting
inter-shape and intra-shape correlations. Given the synthe-
sized image features for novel views, we are then able to
compare two images of the same or different objects by
comparing their augmented multi-view features. The result-
ing distance is view-invariant and achieves much better per-
formance on fine-grained image retrieval and classification
tasks when compared with previous methods.

2. Related Work
View-invariant Image Comparison Many papers in lit-
erature attempt to achieve view-invariance by designing ro-
bust features [16, 3, 22]. In general, they quantize gradients
into small number of bins to tolerate viewpoint change. This
strategy, however, is widely known to fail in handling large
viewpoint motions.

Spatial pooling is usually employed to allow the move-
ment of local feature points as the viewpoint changes. Bag-
of-visual words [6], Pictorial structure [8], spatial pyra-
mid [13], and HoG [7] representations are the most popular
ones. How a feature point would move w.r.t viewpoint
change is not explicitly modeled in these methods, while we
explicitly relate local regions of different views, enabling
precise localized comparison.

Recently, there have also been evidence that generic
descriptors learned by CNNs [12] are robust to certain
viewpoint variation, demonstrated in image correspondence
task [14] and retrieval task [18, 4]. As experiments (Sec 5.3)
demonstrate, our feature augmentation scheme can further
boost the performance of CNN features. [31] learns to
predict novel views of faces using a fully connected neural
network. It is unclear about its ability for generic object
classes, which are more complicated in structure.

Novel-view Synthesis There are recent works to synthe-
sis novel views of objects from a single image. Su et al. [25]
achieves the goal by first reconstructing the 3D geometry.

Rematas et al. [19] synthesize novel views of objects by
directly copying RGB pixel values from the original view.
These approaches work well when the variation of 3D ob-
ject structure is limited. However, they still lack the ability
to recover detailed information when the object structure is
complicated, and tend to suffer in unseen area.

In a different direction, by running a CNN classifier
backwards, [1] is able to synthesize views of novel objects
by using a manually specified input vector encoding the
object and view, or to interpolate between multiple views
of a given 3D model.

3D Model Collections Recently, we witness the emer-
gence of several large-scale online 3D shape repositories,
including the Trimble 3D warehouse (over 2.5M models in
total), Turbosquid (300K models) and Yobi3D (1M mod-
els). By manual or geometry processing approaches, these
publicly available 3D models can be organized by category
and geometric annotations. ModelNet [30] organized over
130K 3D models from 600 categories, 10 categories of
which are manually orientated. We believe that the rich
information in these 3D models are helpful to understand
the 3D nature of objects in images.

3. Problem Formulation and Method Overview
Problem Input Our input contains two parts:
1) an image of an object O with bounding box and known
class label. With recent advances in image detection and
classification [21], obtaining object label and bounding box
has become much easier. All following steps are performed
on a cropped image which only contains the object.
2) a collection of 3D shapes (CAD models) from the same
class. All 3D shapes are orientation-aligned in the world
coordinate system during a preprocessing step. Each shape
is stored as a group of rendered images from the predefined
list of viewpoints. Each rendered image is also cropped
around the object. The view for object O in the input image
is estimated to be one of the predefined viewpoints (§5.1).
Local features such as HoG are extracted for each patch.

Problem Output The output is an augmented version
of the original feature of the input image, consisting of
one descriptor per view. Without loss of generality, the
subproblem is: given the object observed from viewpoint
v0, estimate its features from another viewpoint v1.

Method Overview The proposed framework is shown in
Fig. 2. For a specific patch in the novel view (the query
patch), we seek to find those patches on the observed view
which can best predict it (see Surrogate Region Discovery in
Fig. 2), and then learn how the features in those “surrogate”
patches at the observed view can be best synthesized from
the 3D model views (see Estimation of Synthesis Parame-
ters in the figure). We finally transfer the same synthesis



Figure 2: Method overview. Given a single object image, we synthesize image features for novel views of the latent underlying object.
The synthesis is done patch-by-patch. To predict the feature in the blue patch of a new view, we first look for regions in the observed view
which are most correlated with it — they are called the surrogate regions (purple patches). In a first stage, the surrogate regions are found
by scanning the shape collection for such correlations that are robust across multiple shapes (Surrogate Region Discovery, §4.2). In a
second stage, at the observed view, we learn how to reconstruct each surrogate region by a linear combination of the same region in the
same view from all shapes in the shape collection (Estimation of Synthesis Parameter, §4.3). Finally, in the last stage, we transfer the
linear combination coefficients back to the novel view to reconstruct the features in the blue patch, by linearly combining the features at
the same patch on the novel view from all shapes in our collection (Feature Synthesis, §4.4).

method to the desired query patch (see Feature Synthesis in
the figure) to generate the desired patch features. Please see
the supplemental video for demonstration.

4. Novel View Image Feature Synthesis
4.1. Notation

The set of preselected viewpoints is indexed by V =
{1, . . . , V }. Each rendered image or the input real image
is covered by G overlapping patches, indexed by G =
{1, . . . , G}. A patch-based feature set f = [xT

1 ; . . . ;xT
G] ∈

RG×D is extracted for the image, where each xg ∈ RD

is a feature vector for patch g. So the multi-view shape
descriptor is represented by a tensor S = [f1; . . . ; fV ] ∈
RV×G×D, in which each fv is a feature of a rendered image
at view v. Finally, the 3D shape collection is denoted
by S = {S1, . . . ,SN}, where Sn denotes the multi-view
descriptor of a shape n. For convenience, we further let
Sn,v,g ∈ RD denote the features of the g-th patch in the
v-th view of the n-th shape.

4.2. Surrogate Region Discovery

To synthesize features from a novel view, we need to
transfer information from the observed view, therefore, it
is essential to understand and characterize the correlation
of features at different locations of different views. Such
correlations naturally exist because images from different
views observe the same underlying 3D shape, whose parts
may be further correlated by 3D symmetries, repetitions,
and other factors. Fig. 3 shows some intuitive examples
about patch relationships. Some patches in one view can
well predict a certain patch in a novel view, because of the

Observed View

Novel View

Figure 3: Patch surrogate relationship (§4.2). The sur-
rogate relationship measures the predictability of patches across
views (v0 and v1). In this example, g0 is a good surrogate of g1,
because g0 well predicts the appearance of g1. The red patch and
green patch in v0 can also well predict g1 because of symmetry
and part membership (chair legs), respectively. On the other hand,
the yellow patch at v0 will not be very helpful in determining g1.

identity of underlying location in 3D, symmetry and part
memberships. We call such patches as surrogate patches;
the region they form is called a surrogate regionR.

This relationship between patches across views can pos-
sibly be inferred by analyzing shape geometry, but this is
non-trivial and requires reliable object part segmentation,
symmetry detection, etc. Therefore, we use a probabilis-
tic framework to quantitatively measure such correlations,
aiming to estimate the “surrogate suitability” of one image
patch in one view to predict another patch in another view.
We first introduce the concept of perfect patch surrogate:

Definition 1. Patch g0 at view v0 is a perfect patch
surrogate for patch g1 at view v1 if Si,v0,g0 = Sj,v0,g0

implies Si,v1,g1 = Sj,v1,g1 for any shape pair Si and Sj .

Intuitively, this definition means that, for a pair of 3D
shapes, the similarity of patch g0 at view v0 implies the



similarity of patch g1 at view v1. Usually patches cannot
be perfect surrogates for each other, so we seek for a
probabilistic version of Definition 1:

Definition 2. For a given patch g1 at v1, the surrogate
suitability of patch g0 at view v0 is defined as

γ(g0; g1) = logP (Si,v1,g1 = Sj,v1,g1 |Si,v0,g0 = Sj,v0,g0),

where P can be a probability for the discrete case and a
density for the continuous case.

The quantity γ(g0; g1) is a measure of how suitable patch
g0 is as a surrogate for patch g1. Intuitively, larger γ(g0; g1)
indicates a stronger correlation (Fig. 4). Therefore, the sur-
rogate regionR(g1) can either consist of the top kp patches
with highest γ(g0; g1), or R(g1) = {g0 : γ(g0; g1) > τ},
where kp or τ is determined empirically.

Figure 4: Visualization of patch surrogate suitability.
Two examples of the surrogate suitability from g1 in v1 to patches
in view v0. Red means large γ. For example, in the left figure, g1
corresponds to the tip of right-front leg at v1 (front view). At the
front view itself, the left-front and right-front leg tips have higher
surrogate suitability for g1 because of symmetry; at the 225◦

view, the left-back, right-back and right-front leg tips have higher
surrogate suitability because of symmetry and part membership.

4.2.1 Estimation of Patch Surrogate Suitability

With the large-scale shape collection at hand, we adopt
a learning based approach to estimate the (probabilistic)
patch surrogate suitability in a data-driven manner.

Estimating γ(g0; g1) is a non-parametric density esti-
mation problem. As image features are high-dimensional
continuous variables, theoretical results indicate that the
sample complexity for reliable estimation is very high and
infeasible in practice. To overcome the difficulty, we
quantize features into a vocabulary D containing D visual
words. For notation convenience, we denote the codeword
of features Si,v0,g0 by Ai

g0 and Si,v1,g1 by Ai
g1 , then

γ(g0; g1) = logP (Ai
g1 = Aj

g1 |A
i
g0 = Aj

g0) (1)

where P is the probability measure.
Estimating (1) by an empirical conditional distribution

still requires a large number of samples. However, we show

that (1) can be cast as a Rényi entropy estimation problem.
We can prove that the optimal sample complexity needed
for estimating (1) is Θ(D) (Theorem 2 in supplementary
material). Roughly speaking, with N = Θ(D) shapes, we
can accurately estimate (1) with high probability. The proof
also suggests an algorithm to estimate Eq (1) as below:

γ̂(g0; g1) = log
∑

(Ag0
,Ag1

)∈D×D

P̂ 2(Ag0 , Ag1)− log
∑

Ag1∈D
P̂ 2(Ag1) .

Here, probabilities P 2(x) should be estimated by P̂ 2(x) =
Nx(Nx−1)

N2 , where Nx is the total number of times value x
appears in samples and N =

∑
xNx.

4.3. Estimation of Synthesis Parameters

The global shape space for multi-view representation is
non-linear and high-dimensional. Our assumption, how-
ever, is that shapes in a local neighborhood can be well
approximated by a locally linear and low-dimensional sub-
space [27]. This allows us to synthesize novel shapes
through linear interpolation, so as to approximate the latent
image object. Since the multi-view representation is actual-
ly a concatenation of features from all patches of all views,
this local linearity not only holds for the whole shape, but
also for each view of the shape, for each patch of the view,
or even for a subset of patches of the view. In other words,
features for the patches from the same location(s) on the
same view of all shapes also lie in a locally linear subspace.
The key point for capturing this relationship is to estimate
appropriate coefficients for the interpolation, and we use
an approach derived from locally linear embedding (LLE)
methods [20].

For any patch g in view v, its feature is denoted as xv,g ∈
RD. We use S:,v,g ∈ RD×N to denote the feature matrix
collecting patch g of view v of all 3D shapes, then local
linearity tells us that

xv,g ≈ S:,v,gwv,g , (2)

where wv,g ∈ RN is the reconstruction coefficient.
Given a surrogate region R on the observed view, its

features should be a linear combination of the same region
across different 3D shapes. So wv0,R can be estimated by
solving an Locally Linear Embedding (LLE) problem:

minimize
wv0,R

∑
g0∈R

‖xv0,g0 − SN ,v0,g0wv0,R‖2 ,

subject to wv0,R ≥ 0; wT
v0,R1 = 1 ,

(3)

where N denotes the k-nearest shapes by comparing
the rendered images on v0 with the input image, thus
SN ,v0,g0 ∈ RD×k and wv0,R ∈ Rk.

Note that our reconstruction coefficient wv0,R is specific
to the choice of view v0 and patch(es) R, unlike previous
locally linear reconstruction methods assuming uniform w
for the whole image descriptor [28].



4.4. Feature Synthesis

Now that we have the synthesis coefficients estimated for
R on view v0, we have to decide how to transfer it back to
v1, so that we can synthesize xv1,g1 by apply the coefficients
on features of g1 on v1 from all shapes.

We make the following assumption to connect the weight
across views: if a patch g0 can surrogate g1 very well (with
high γ(g0; g1)), then their reconstruction weights are the
same, i.e. wv0,g0 ≡ wv1,g1 . Intuitively, this assumption
implies that, if you interpolate (the multi-view representa-
tion of) a set of shapes by linear reconstruction, then the
interpolation coefficient estimated at one view is the same
as the one estimated from another view. It can be derived
from the surrogate relationship.

Figure 5: Evaluation of weight transferability. Smaller value
means better transferability between corresponding two views.
This matrix is asymmetric, since some views of an object may
be more informative than others. For example, it is easy to guess
the back view given a left-front view of a chair, since most chair
parts are visible. However, it is difficult to do the opposite. Please
read supplemental material for how to obtain this matrix.

Empirical verification of this assumption is shown in
Fig. 5. The (j, i)-th element in the matrix shows the
transferability from view vi to vj . It measures how close
the synthesized feature on view vj is to its ground truth
version when using coefficients estimated on vi. Each
entry could range from 1 to the size of shape collection
(5,057 in this experiment). The closer the value is to 1,
the better the transferability is between vi and vj . The
average value of the whole matrix is only 1.39, meaning
that the weights transferred across views can reconstruct
the features very well. Note that there are some entries
indicating bad transferability between specific views. For
example, view 5 and 9, which are the side view and back
view respectively, cannot be transferred to each other very
well because they share less common information.

Therefore, wv1,g1 can be replaced by wv0,R if R is
the appropriate surrogate region on v0 for g1. We can
reconstruct the feature by xv1,g1 = SN ,v1,g1wv0,R. Fig. 1
shows two examples of our synthesized image features.

4.5. Method Summary

To fully exploit the information from 3D shape collec-
tion, we explore two kinds of relationships — intra-shape
relationship that relates the novel view and the observed
view (§4.2), and inter-shape relationship that relates the
image and the shape collection (§4.3). To summarize, for
each patch in the novel view, the intra-shape relationships
allows us to find which patches in the observed view are
its best surrogates, and the inter-shape relationships teach
us how the feature of the new patch should be synthesized
from those of its surrogates. In this way we can populate
with features for all views of the latent object in our image,
effectively creating its representation in our shape space.

5. Experiments

5.1. Data Preparation

Large-scale 3D Shape Dataset We use 3D shapes from
ShapeNet [26], a large-scale shape collection of 3D mesh-
es. It contains 55 man-made object categories and 57,386
3D models in total. Models are categorized by WordNet
structure, and those from each category are jointly aligned
by orientation. The number of models per class varies from
20 (purse) to over 8000 (table).

Shape Collection Preprocessing Each shape is rendered
from 16 predefined view points along a circle unless spec-
ified otherwise. The patch configuration is as below: each
rendered image is resized to 112× 112 and partitioned into
patches of 32 × 32 which overlap with each other by 16
pixels, forming 6 × 6 patches in total; local features are
extracted for each patch. HoG is the default local features.

Image Preprocessing Object bounding box and class la-
bel are provided by R-CNN. A random forest classifier
trained by the rendered images of aligned 3D models is used
to estimate the view of the cropped object. Image features
are extracted similarly as the rendered images.

5.2. Applications

Part-based Image Retrieval Our approach can enable a
new application of part-based image retrieval. The user can
specify a region on the query image, and our approach can
synthesize the features of related patches on novel views.
The distance between images will only be evaluated on
these patches instead of the whole images. Fig. 6 shows
examples of part-based image retrieval. The rectangles on
query images are the input specified by users. Although
the algorithm can only see the provided patch on the view
of query image, it returns images with similar appearance
in the corresponding regions from other viewpoints. This



Figure 6: Part-based retrieval results
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Figure 7: Two examples of localized comparison of two
images. Heat map A visualizes the direct L2 distance of original
HoG feature at different locations of two images. B and C
visualize the localized difference by synthesizing HoG of I2 on
the view of I1 (B), and synthesizing HoG of I1 on the view of I2
(C). Red color means larger difference.

part-based search can be useful in product search by image,
allowing users to express preferences for product parts.

As there is no existing dataset to benchmark, we built
a small-scale dataset of 100 chair images and conducted a
user study with 5 people. In each experiment, a user draws
an ROI on a query image and then marks the images with
matching parts among the top-10 returned images. Each
user performed 20 rounds of experiments. Our proposed
part-based augmented HoG feature has an average accuracy
of 67%, as opposed to 63% for global augmented HoG and
55% for vanilla HoG.

Localized Cross-View Image Comparison Traditional
localized comparison between images is usually done by
directly comparing image parts at the same location. This
does not make sense when two images are of an object in
different view points. Fig. 7 shows two examples of the
localized comparison of two images. When two objects are
similar but with different view points, directly comparing
their features at each location yields a meaningless results
as shown in heat map A of each example. If we synthesize
the feature of one image at the same view point as the other
image, the two objects are actually compared under the
same view point, thus the feature distance at each location
reflect the true difference of the two objects at each part.

Fine-grained Image Retrieval on 55 Classes We collect
images of 55 classes with bounding boxes from ImageNet
and verify their fine-grained labels within each class us-

ing AMT. Performance of fine-grained image retrieval is
evaluated on these sets. Each image is taken as query
once. All other images are ranked according to their
distance to the query, and images having at least one fine-
grained label overlapping with the query are regarded as
correct. Precision-recall curves are generated, and the area-
under-curve (AUC) is obtained to evaluate the retrieval
performance. On average, the baseline L2 distance of HoG
descriptor can achieve average AUC of 0.631, and our aug-
mented HoG feature can achieve an AUC of 0.695. Fig. 8
shows some examples of retrieval results for comparison.

Fine-Grained Object Categorization We also evaluate
our method on fine-grained object categorization. For this
experiment, we synthesize features at novel views for each
training image. The newly synthesized features at each
novel view are added to the training set separately. In
this way, we augment the training set with more viewpoint
diversity. We use the FGVC-aircraft dataset [17], which
contains 10,000 images with 100 different aircraft model
variants. The 3D airplane models are rendered at 200
viewpoints evenly distributed on the view sphere. We use
the non-linear SVM on a χ2 kernel and replicate the SPM
feature setting in [17] to build the original feature, i.e,
600 k-means bag-of-visual words dictionary, multi-scale
dense SIFT features, and 1 × 1, 2 × 2 spatial pyramid
features. Our augmented feature is a view-invariant version
of SPM feature. We also use bounding boxes predicted by
R-CNN [9] and random forest for pose estimation (§5.1)
on test data. Table 1 shows that our method significantly
outperforms the baseline. Note that the baseline method
in [17] does not use object bounding boxes in testing. To
be fair, we also provide the baseline performance with
bounding boxes provided.

Instance Retrieval on Stanford Car Our method can be
naturally applied for instance-level recognition or retrieval.
Since category-level class label for the object is required
as input, most of existing instance-level data sets do not
apply here because they mainly focused on instances of
different classes, thus we create a new data set based on
a fine-grained benchmark data set – Stanford Car [11]. S-
tanford Car contains car images classified into fine-grained
categories defined by the car make, model and year. We
randomly choose a subset of its categories, and the selected
images are verified manually by AMT to see if they visually
belong to the same instance. Besides the make, model and
year information, two car images are regarded as the same
instance if they also have the same color, texture, decoration
(i.e. door exterior trim), and accessories (i.e. top rack),
meaning that human cannot differentiate them without any
outside information. In total, the created instance-level car
data set contains 315 images in 20 instances.
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Figure 8: Fine-grained image retrieval examples. The first column is the query image and rest columns are retrieval results. Images
with red boxes are incorrect retrieval results, which is not from the same fine-grained class according to ImageNet.

To incorporate both the geometric and visual appearance
feature, we augment the HoG feature and color histogram
feature of each image and concatenate them as one feature
vector for retrieval task. The baseline methods include o-
riginal HoG+Color feature, “Sivic 03” [24], and RANSAC.
For the RANSAC verification, the similarity between two
images is determined as the number of matched SIFT
keypoints points after spatial verification. All methods are
evaluated on the bounding boxes of car images, and pr-
curves for different methods are shown in Fig. 9.

5.3. Method Analysis
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Figure 9: Instance-level object retrieval results.

Applicability for Other Features Our approach is not
restricted to any specific kind of descriptors. Several d-
ifferent kinds of features, including HoG, Bag-of-Visual-
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Figure 10: Parameter sensitivity.

Words [6], Fisher Vector [22], LLC [29], and features
extracted by convolutional neural networks (CaffeNet [10])
from different layers are all augmented and tested here.
AUC scores for pr-curves of fine-grained image retrieval
tasks are reported in Table 2, and the image data sets used
here are several example classes from the 55 classes in
§5.2. It can be seen that for different choices of underlying
features, our method can always boost the performance.

Parameter Sensitivity Fig. 10a shows the AUC score
changing with different number of 3D models in fine-
grained retrieval on “Chair” class. Intuitively, a larger shape
collection is preferred since it can provide better coverage
of the shape space and further help better reconstruct the
descriptor on novel views. However, we also observe that
the performance with 200 3D models is only 2% lower
than the performance with the full collection of 5,057 3D
models. The reason is that our model has the ability to
“interpolate” in the shape space, which compensates for the
absence of large shape collection at query time.

Fig. 10b shows the AUC changing with the parameter k
for obtaining the local neighborhood in Eq (3). Specifically,
for k = 1, it is equivalent to using the most similar
shape to represent the query object, which is an intuitive
baseline method. It is beneficial to use an appropriate range
of neighborhood to reconstruct the query latent shape, as
shown in Fig. 10b. k = 200 is used for other experiments.

Robustness of Multi-View Feature Augmentation It is
intuitive to synthesize image features at a single predefined
view point, and perform image retrieval on this particular
view. Fig. 11 shows that, searching on one view point
definitely provide reasonable results (the first 3 rows), but
the resulted ranking is not stable. Additionally, the feature
synthesis works better on some view points because they are
more informative than the others. However, if we combine
features from all view points, the retrieval results look much

[17] (SPM) [17] with b.box Ours
Accuracy 0.487 0.561 0.603

Table 1: Accuracy comparison on FGVC-aircraft. Note
that our results is based on [17] with bounding boxes.

Feature Method Chair Car Bus Motorbike Train

HoG original 0.710 0.278 0.374 0.407 0.521
augmented 0.801 0.320 0.430 0.480 0.636

BoVW original 0.678 0.280 0.380 0.402 0.521
augmented 0.702 0.309 0.417 0.441 0.610

Fisher original 0.675 0.270 0.353 0.421 0.481
augmented 0.702 0.307 0.384 0.469 0.602

LLC original 0.717 0.283 0.354 0.406 0.559
augmented 0.749 0.348 0.449 0.457 0.602

Caffe Pool5 original 0.690 0.267 0.391 0.421 0.553
augmented 0.746 0.310 0.420 0.448 0.557

Caffe FC7 original 0.744 0.287 0.386 0.456 0.582
augmented 0.785 0.348 0.425 0.498 0.613

Table 2: Performance by different image features.

better because the augmented multi-view feature contains
information from all views and is more robust.

Figure 11: Image retrieval results by synthesized fea-
tures from different views

6. Conclusion and Future Work

In this paper, we have proposed a framework for syn-
thesizing features of an object in a single input image from
a novel view point, given a collection of 3D models from
the same object class. The synthesized features from a
predefined list of views serve as an augmentation of the
original feature, which is a view-independent description of
the object. We then achieve view-invariant image compar-
ison, only focusing on the intrinsic object properties. The
proposed feature synthesis framework is analyzed theoreti-
cally and empirically, and the augmented features have been
evaluated on various computer vision tasks.
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