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The world around us is comprised of 3D geometry
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Broad applications of 3D data
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Robotics



Broad applications of 3D data
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Robotics Augmented  Reality



Autonomous driving

Broad applications of 3D data

7

Robotics Augmented  Reality



Autonomous driving

Broad applications of 3D data
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Robotics Augmented  Reality

Medical Image Processing



Autonomous driving

Broad applications of 3D data
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Robotics Augmented  Reality

Medical Image Processing

Historically, most 3D visual computing techniques 
focus on single models, lacking robustness



Lacking 3D data has been the major bottleneck
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Stanford bunny

Utah teapot

Princeton shape benchmark 
[Shilane et al. 04]

1800 models in 90 categories 

Status as of 2010:



Recent rise of Internet 3D models
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Nowadays millions of 3D models in online repositories
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Growing market of crowd-sourcing for 3D modeling

Nowadays millions of 3D models in online repositories
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Recent rise of Internet 3D models
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Growing market of crowd-sourcing for 3D modeling

An opportunity of Data-driven 
3D Visual Computing

Nowadays millions of 3D models in online repositories



Learning for 3D data
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Learning for 3D data
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Build 3D knowledge base

Category

…

Functionality

Parts

Mass

Size

Material

…



Learning for 3D data

16

Category

…

Functionality

Parts

Mass

Size

Material

…

Build 3D knowledge base Design deep learning methods



> 30,000,000 units



The surge of 3D deep learning
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CVCG

ML

• Arguably started from 2015 along with of big 3D datasets (ShapeNet & ModelNet)
• Very active due to huge industry interests!

• Robotics
• Autonomous driving
• Virtual/augmented reality
• Smart manufacturing
• …



3D deep learning tasks
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3D geometry analysis

3D synthesis

3D-assisted  image analysis



3D deep learning tasks
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3D geometry analysis

Classification Parsing
(object/scene)

Correspondence



3D deep learning tasks
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3D synthesis

Monocular 
3D reconstruction Shape completion Shape modeling



3D deep learning tasks
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3D-assisted  image analysis

Query

Results

Cross-view image retrieval Intrinsic decomposition



All about Data and Network 
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3D geometry analysis

3D synthesis

3D-assisted image analysis



All about Data and Network 
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3D geometry analysis

3D synthesis



Outline
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3D Representation issue
Deep learning on different 3D representations



The representation issue of 3D deep learning
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Images: Unique representation with regular data structure



The representation issue of 3D deep learning
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3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models



The representation issue of 3D deep learning
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Novel view image synthesis

3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models
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3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models



The representation issue of 3D deep learning
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Rasterized form 
(regular grids) 

Geometric form
(irregular)

3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models



3D deep learning algorithms (by representations)
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[Su et al. 2015]
[Kalogerakis et al. 2016]
…

VolumetricMulti-view

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…



3D deep learning algorithms (by representations)
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[Defferard et al. 2016]
[Henaff et al. 2015]
[Yi et al. 2017] (SyncSpecCNN)
…

VolumetricMulti-view

[Qi et al. 2017] (PointNet)
[Fan et al. 2017] (PointSetGen)

Point cloud Mesh (Graph CNN) Part assembly

[Tulsiani et al. 2017]
[Li et al. 2017] (GRASS)

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…



Cartesian product space of “task” and “representation”
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3D geometry analysis

3D synthesis



Fundamental challenges of 3D deep learning
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Can we directly apply CNN on 3D data?



Fundamental challenges of 3D deep learning
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Can we directly apply CNN on 3D data?

Convolution needs an underlying structure



Fundamental challenges of 3D deep learning
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3D has many representations:

multi-view RGB(D) images

volumetric

• Can directly apply CNN
• But has other challenges

Rasterized form 
(regular grids) 



Fundamental challenges of 3D deep learning

40

3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models

Geometric form
(irregular)

Cannot directly apply CNN

Rasterized form 
(regular grids) 



Deep learning on Multi-
view representation 



Multi-view representation as 3D input
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▪ Leverage the huge CNN literature in image analysis



Multi-view representation as 3D input
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▪ Classification

…

…

…

…

CNN1

. . 
.

View 
pooling

CNN2:       a second ConvNet 
producing shape descriptors 

…

CNN2

softmax

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Multi-view representation as 3D output
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox,
“Multi-view 3D Models from Single Images with a Convolutional Network”,
ECCV2016

▪ Novel-view RGB(D) image synthesis (direct prediction)



Multi-view representation as 3D output
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Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros 
“View Synthesis by Appearance Flow”
ECCV2016

▪ Novel-view RGB(D) image synthesis (flow prediction)



Key challenges for multi-view representation

46

• Each view only contains partial information

• However, not trivial to aggregate information across viewpoints

• Cannot see through the surface

• Regular structures in 3D cannot be well captured
• e.g., symmetry, straightness, planeness



Key challenges for multi-view representation
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• Each view only contains partial information

• Not trivial to predict across viewpoints

• Cannot see through the surface

• Regular structures in 3D cannot be well captured
• e.g., symmetry, straightness, planeness

[Tatarchenko et al.]
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• Each view only contains partial information

• However, not trivial to aggregate information across viewpoints

• Cannot see through the surface

• Regular structures in 3D cannot be well captured
• e.g., symmetry, straightness, roundish

Key challenges for multi-view representation
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3D classification



• Each view only contains partial information

• Not trivial to aggregate information across viewpoints

• Cannot see through the surface

• Regular structures in 3D cannot be well captured
• e.g., symmetry, straightness, roundish

Key challenges for multi-view representation
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A true 3D representation is 
more natural for 3D learning



Deep learning on 
volumetric representation 



3D CNN on volumetric data
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[Credit: Su et al.]

3D convolution uses 4D kernels



Computational complexity issue
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[Credit: Su et al.]

3D convolution uses 4D kernels

High space/time complexity          O(N 3)



Computational complexity issue
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AlexNet, 2012 3DShapeNets, 2015

Input resolution: 224x224 Input resolution: 30x30x30

224x224=50176 224x224=27000



Computational complexity issue
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Occupancy Grid
30x30x30

Polygon Mesh

Information loss in voxelization



The sparsity characteristic of 3D data
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Resolution: 32 64 128
Occupancy:

Yangyan Li, Sören Pirk, Hao Su, Charles R. Qi, Leonidas J. Guibas
FPNN: Field Probing Neural Networks for 3D Data
NIPS2016



Store only the occupied grids
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Octree: recursively partition the space  
Each internal node has exactly eight children



Skip the computation of empty cells
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Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger
“OctNet: Learning Deep 3D Representations at High Resolutions”
CVPR2017

Pengshuai Wwang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong
“O-CNN: Octree-based Convolutional Neural Network for Understanding 3D Shapes”
SIGGRAPH2017



Volumetric representation as input
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Define convolution and pooling along the octree

Challenge: how to implement efficiently — build a hash table to index the neighborhood
Restrict the convolution stride to be 2



Volumetric representation as output
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Christopher B. Choy, Danfei Xu*, JunYoung Gwak*, Kevin Chen, Silvio Savarese,
3D-R^2N^2: A unified approach for single and multi-view 3D object reconstruction
ECCV2016



Towards higher spatial resolution
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
arxiv (March, 2017)



Progressive voxel refinement
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• Computational complexity (seems to have been resolved)

• Regular structures in 3D cannot be well captured in reconstruction
• e.g., symmetry, straightness, roundish

Key challenges for volumetric representation
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Typical artifacts of volumetric reconstruction
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Missing thin structures 
due to 

improper shape space structure

hard for the network to rotate / deform / interpolate



How to design neural networks for geometric forms?
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3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based CAD models

Geometric form
(irregular)

Cannot directly apply CNN

Rasterized form 
(regular grids) 



Deep learning on 
polygonal mesh

!! math heavy, you can take a break if you do not like math that 
much. Be normal soon.



Directly conduct convolution on graphs

Conduct convolution on 2D parameterization of 3D surfaces

Two different strategies for deep learning on graphs
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Directly conduct convolution on graphs

Conduct convolution on 2D parameterization of 3D surfaces

Two different strategies for deep learning on meshes
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Spatial construction (Geodesic CNN)
Spectral construction (Spectral CNN)



Meshes can be represented as graphs

69

3D shape graph social network molecules



Geometry aware convolution can be important
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convolutional along 
spatial coordinates

convolutional considering underlying 
geometry

image credit: D. Boscaini, et al.image credit: D. Boscaini, et al.



How to define convolution kernel on graphs? 
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from Shuman et al. 2013

• Desired properties:
• locally supported (w.r.t graph metric)
• allowing weight sharing across different coordinates



How to allow multi-scale analysis? 
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from Michaël Defferrard et al. 2016

grid structure

graph structure



How to allow multi-scale analysis? 
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from Michaël Defferrard et al. 2016

grid structure

graph structure hierarchical graph coarsening?



• Constructing convolution kernels:

• Local system of geodesic polar coordinate

• Extract a small patch at each point x 

Spatial construction: Geodesic CNN

74
Jonathan Masci et al 2015



Issues of Geodesic CNN
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• The local charting method relies on a fast marching-like procedure 
requiring a triangular mesh.

• The radius of the geodesic patches must be sufficiently small to 
acquire a topological disk.

• No effective pooling, purely relying on convolutions to increase 
receptive field.



Spectral construction: Spectral CNN
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Fourier analysis

Convert convolution to multiplication in spectral domain



Convolution Theorem in non-Euclidean domain
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modified from Jonathan Masci et al



Bases on meshes: eigenfunction of Laplacian-Bertrami operator
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Synchronization of functional space across meshes
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Functional map

Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas
“SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation”
CVPR2017 (spotlight)



Directly conduct convolution on graphs

Conduct convolution on 2D parameterization of 3D surfaces

Two different strategies for deep learning on meshes

80



Surface parameterization
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• Map curved 3D surfaces to 2D Euclidean plane

Ayan Sinha, Jing Bai, Karthik Ramani
“Deep Learning 3D Shape Surfaces Using Geometry Images”
ECCV2016

Maron et al.
“Convolutional Neural Networks on Surfaces via Seamless Toric Covers”
SIGGRAPH2017



Deep learning on surface parameterization
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Use CNN to predict the parameterization, then convert to 3D mesh

Step 1 Step 2
Ayan Sinha, Asim Unmesh, Qixing Huang, Karthik Ramani
“SurfNet: Generating 3D shape surfaces using deep residual networks”
CVPR2017



Key challenges for mesh representation
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• Good progress seems to have been made for meshes as input

• Mesh as output is very challenging: 
• Need consistent surface parameterization
• Not clear how to generate shapes with topology variation



Deep learning on 
point cloud



PointNet: Directly process point cloud data
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PointNet

Hao Su, Charles Qi, Kaichun Mo, Leonidas Guibas
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
CVPR 2017 (oral)



PointNet: Directly process point cloud data
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PointNet

Object Classification

Part Segmentation

Scene Parsing

...



Properties of a desired neural network on point clouds
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Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

N

D



Properties of a desired neural network on point clouds
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Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

N

D

Permutation invariance

Transformation invariance



Properties of a desired neural network on point clouds
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Permutation invariance

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

N

D

N

D

represents the same set as 



Permutation invariance: Symmetric function
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Examples:

…

f (x1, x2,…, xn ) = max{x1, x2,…, xn}
f (x1, x2,…, xn ) = x1 + x2 +…+ xn

f (x1, x2,…, xn ) ≡ f (xπ1 , xπ2 ,…, xπn ) xi ∈!
D,



Construct symmetric function family
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Observe: f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg



Construct symmetric function family
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Observe:

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

h



Construct symmetric function family
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Observe:

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

simple symmetric function

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

h

g



Construct symmetric function family
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Observe:

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

simple symmetric function

PointNet (vanilla)

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

h

g γ



Q: What symmetric functions can be constructed by PointNet?
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PointNet (vanilla)

Symmetric functions



A: Universal approximation to continuous symmetric functions
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Theorem:

PointNet (vanilla)

A Hausdorff continuous symmetric function                    can be arbitrarily 
approximated by PointNet.

f :2X → !

S ⊆ !d ,



Robustness to data corruption
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Robustness to data corruption
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Segmentation from partial scans



Non-uniform Sampling Density
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Density variation is a common issue of 3D point cloud
- perspective effect, radial density variation, motion etc.



PointNet++: Robust learning under varying sampling density
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Original

MRG
MSG

Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
arxiv



Point cloud as output
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Input Reconstructed 3D point cloud
Hao Su, Haoqiang Fan, Leonidas Guibas
“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
CVPR2017 (oral)



Volumetric upconvolution?
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Cons: Low resolution Error in structure

Input image

▪ Geometric transformation is hard for upconv
Reason:



Another representation possibility: Point clouds

103
CVPR ’17, Point Set Generation

Transformation friendly for networks

Usable as network output?

No prior works in deep learning community!



Recent work on 3D prediction by point clouds

Input Reconstructed 3D point cloud
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The first work to generate a set in deep learning  [CVPR’2017(oral)]



Comparison to direct 3D volumetric upconvolution
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CVPR ’17, Point Set Generation

Input Ours 
(post-processed to volumetric)

Volumetric upconv
(ECCV 2016, 3D-R2N2)

Groundtruth



Network

Pipeline
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Loss
on

sets

CVPR ’17, Point Set Generation

Prediction

Groundtruth point set

(L)

…

…

Nx3

Nx3



Loss function: Earth Mover’s Distance (EMD)
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CVPR ’17, Point Set Generation

• Given two sets of points, measure their discrepancy:

Differentiable Admit fast computation



Quantitative evaluation
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CVPR ’17, Point Set Generation

[Choy et. al, ECCV16]

3D volumetric
deconv

point cloud

63% Error reduction!



Quantitative evaluation
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CVPR ’17, Point Set Generation

[Choy et. al, ECCV16]

3D volumetric
deconv

point cloud

Representation choice matters!



Real-world results
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input observed view   input observed view  

CVPR ’17, Point Set Generation



Generalization to unseen categories
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input observed view   input observed view  

CVPR ’17, Point Set Generation

Out of training categories



Key challenges for point cloud representation
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• Point cloud as output is still very challenging: 
• The global structure is reasonable but details are missing

• Combined with volumetric representation seems to give better results. 
Need more study on optimal combination strategy.



Deep learning on 
primitives



Primitive-based assembly
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Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei A. Efros, Jitendra Malik
Learning Shape Abstractions by Assembling Volumetric Primitives
CVPR 2017



Approach
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We predict primitive parameters: size, rotation, translation of M cuboids. 

Variable number of parts? We predict “primitive existence probability”



GRASS
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Jun Li,  Kai Xu,  Siddhartha Chaudhuri, Ersin Yumer,  Hao Zhang, Leonidas Guibas
“GRASS: Generative Recursive Autoencoders for Shape Structures”
SIGGRAPH 2017



Open problems
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How to introduce other primitives types? 

Towards image based modeling, how to add more operations to edit 
those primitives?  

• e.g., Deform? Extrude? Loop cut? 

How to use it for design purposes? For example, with certain structural 
and functional constraints. 

Ultimately, we expect to automate the modeling process from images, 
as artists do.
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The surge of 3D deep learning
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CVCG

ML

• A field with very short history — arguably started from 2015
• But very active due to huge industry interests!

• Robotics
• Autonomous driving
• Virtual/augmented reality
• Smart manufacturing
• …



Based upon a new course at Stanford
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http://graphics.stanford.edu/courses/cs468-17-spring/schedule.html

Course (Machine Learning on 3D data) website:

Tutorial on 3D deep learning at CVPR, see you at Hawaii!

 

http://3ddl.stanford.edu/

Workshop on Learning to see 3D data at ICCV’17, Venice, Italy

http://graphics.stanford.edu/courses/cs468-17-spring/schedule.html
http://
http://3ddl.stanford.edu/


Opening for PhD/Postdoc/Visiting Scholar positions

121

Deep learning for computer vision, computer graphics, and 
robotics

More information on my personal homepage



Thank you!


