3D-Assisted Image Feature Synthesis for Novel Views of an Object

Hao Su* Fan Wang* Li Yi Leonidas Guibas

* Equal contribution

Stanford University

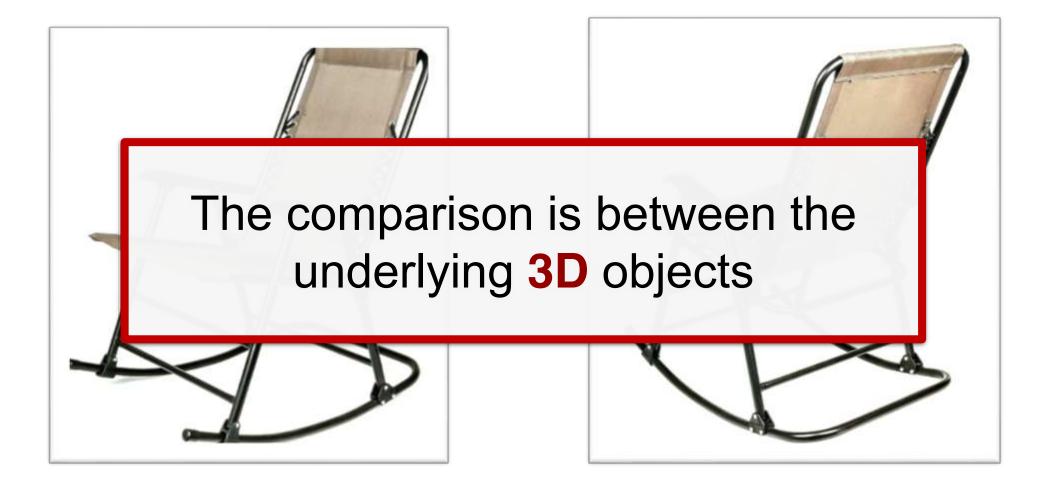
View-agnostic Image Retrieval

Retrieval using AlexNet features

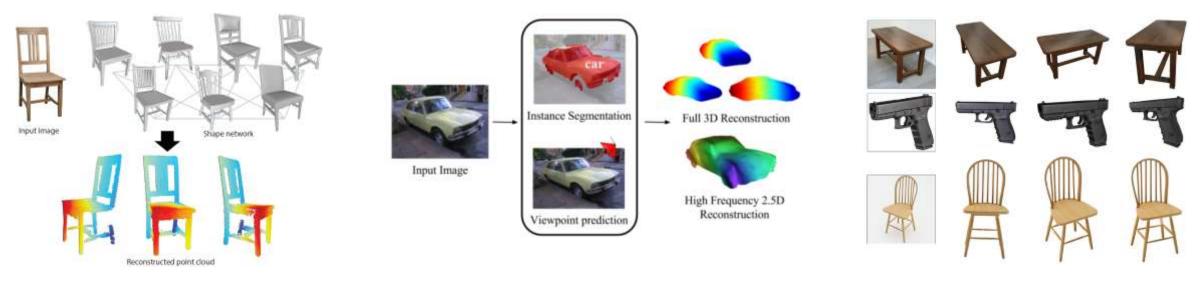
Query

Cross-view Image Comparison

Cross-view Image Comparison



Reconstruct 3D and then compare?

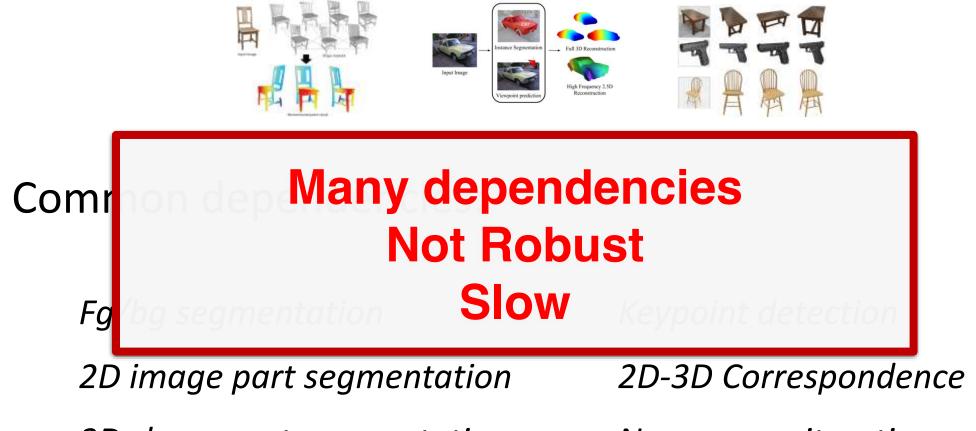


Su et al, SIGGRAPH'14

Kar et al, CVPR'15

Huang et al, SIGGRAPH'15

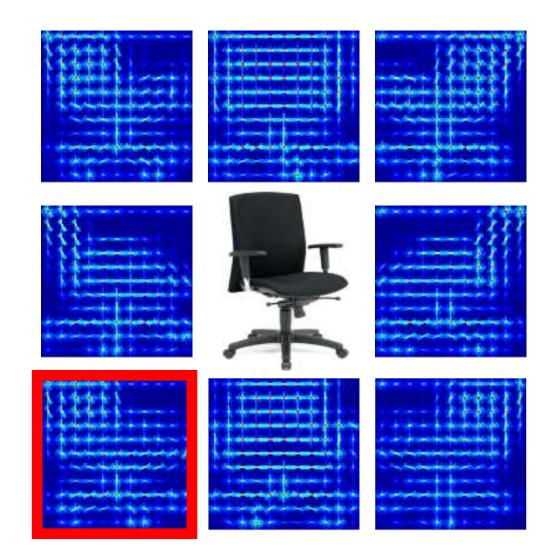
Single-image based 3D Reconstruction is hard



3D shape part segmentation

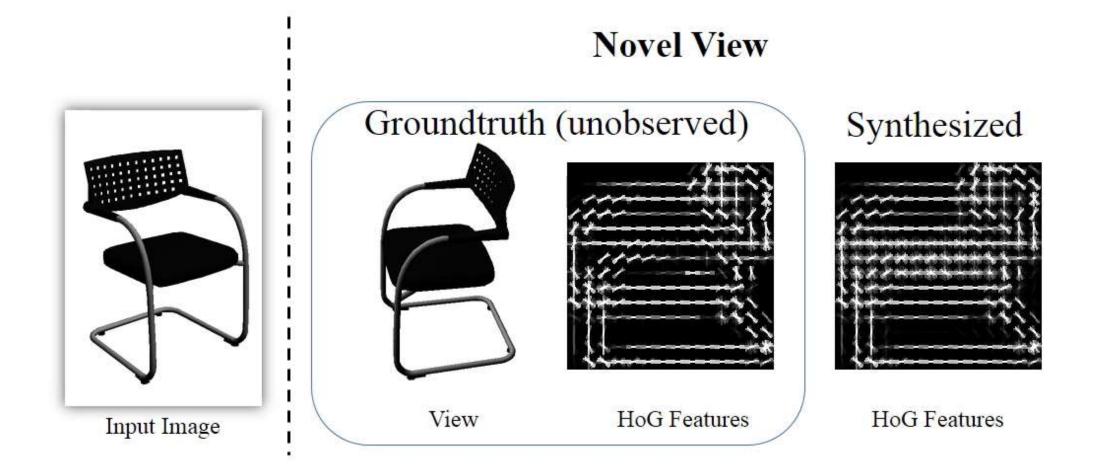
Non-convex iterative optimization

Our Formulation: Novel View Feature Synthesis



Observed view

Our Novel View Feature Synthesis Results



Motivation

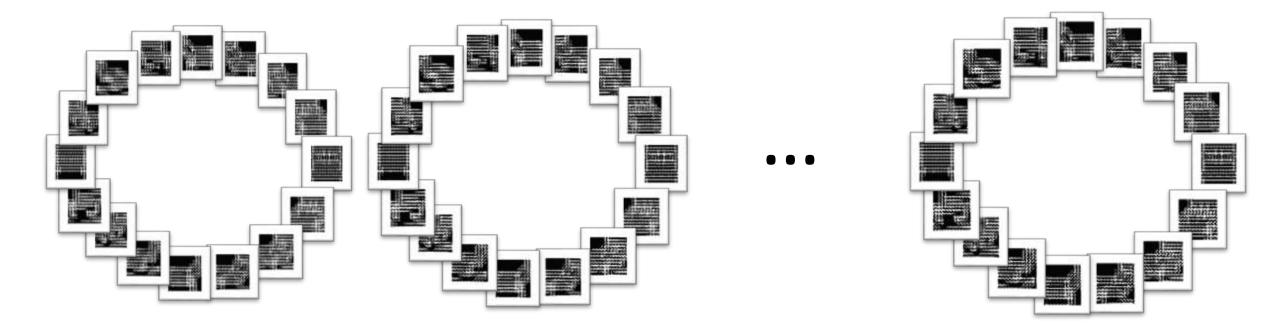
Approach

Applications

Method Diagnosis

Conclusion

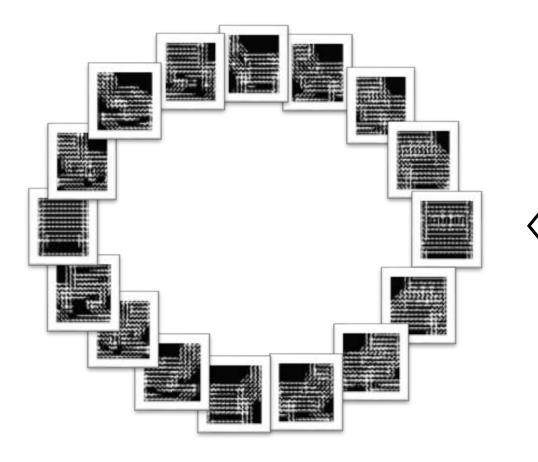
Learn from a dataset of many objects with multi-view features



Key idea

Learn from a dataset of multi-view features

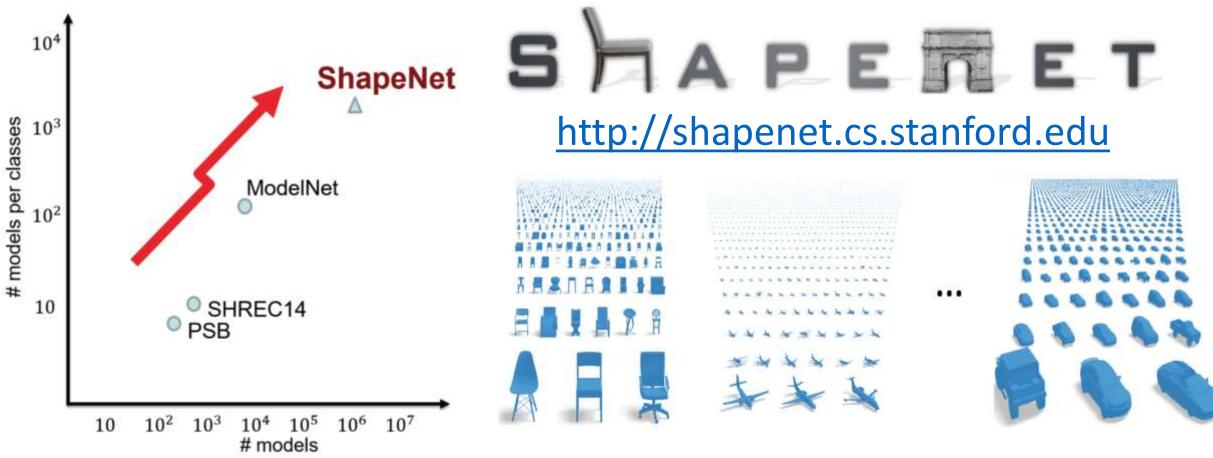
The dataset is generated by rendering **3D models**



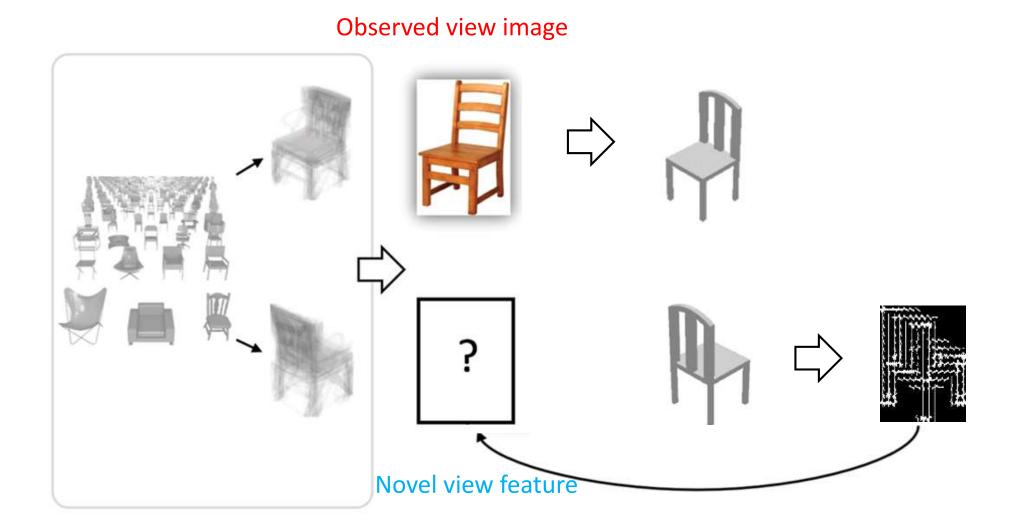
Key idea

Learn from a dataset of multi-view features

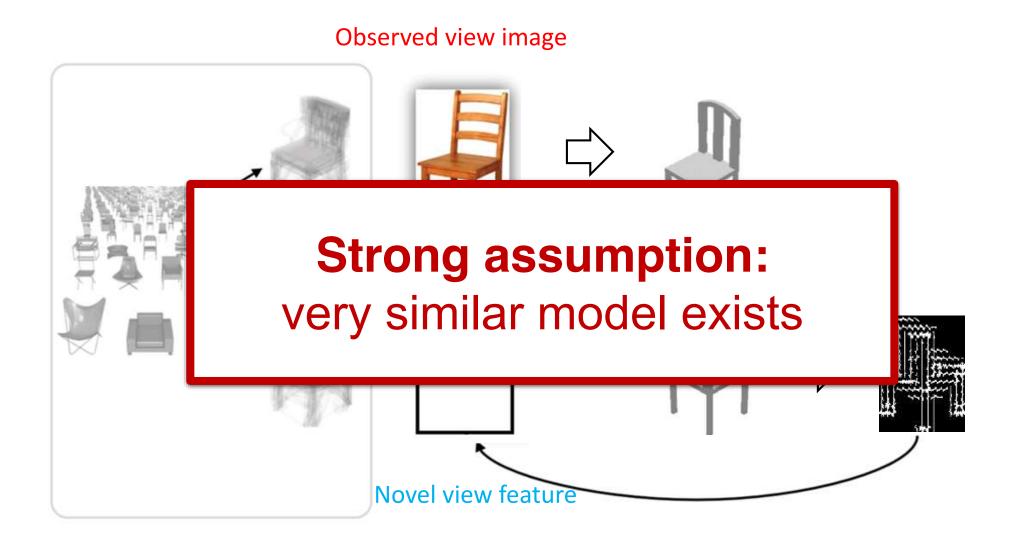
The dataset is generated by rendering large-scale 3D models



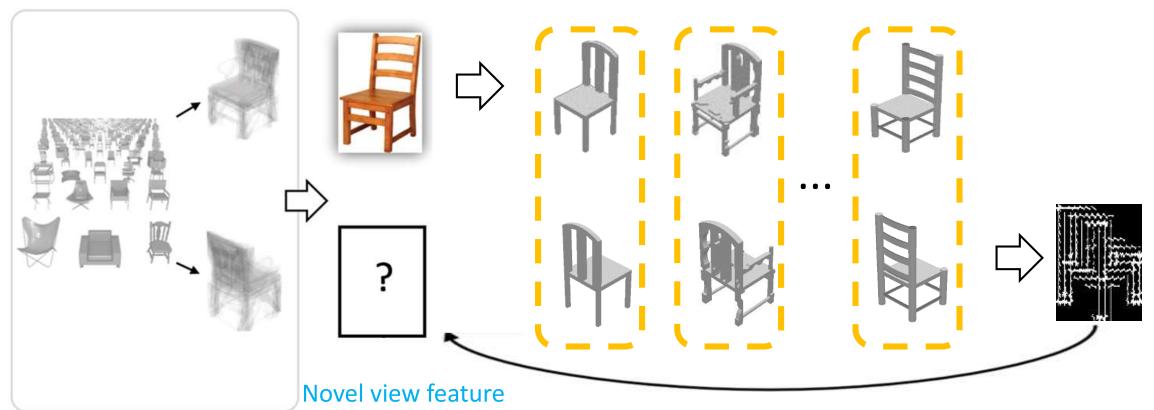
3D-assisted Feature Synthesis: Nearest Neighbour



3D-assisted Feature Synthesis: Nearest Neighbour



3D-assisted Feature Synthesis: Multiple Shapes

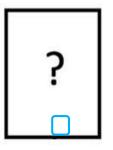


Observed view image

3D-assisted Feature Synthesis: Multiple Shapes

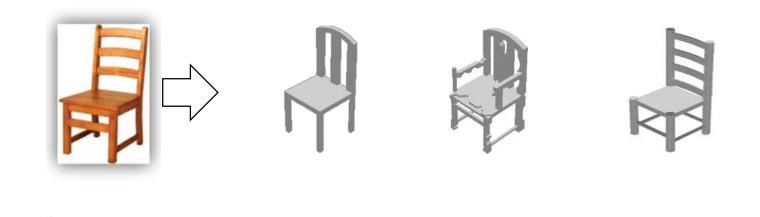
Attention: Brain games start!

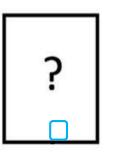
Observed view image



Novel view feature

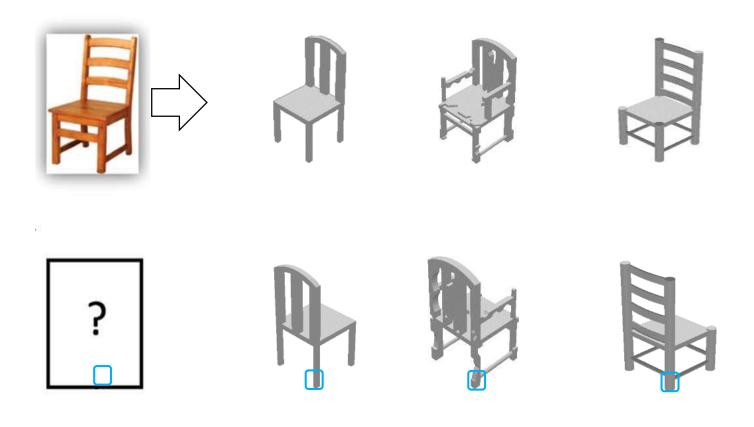
Observed view image





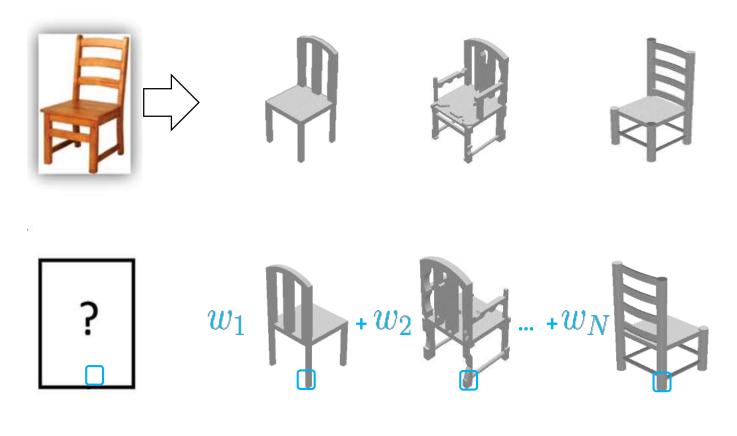
Novel view feature

Observed view image

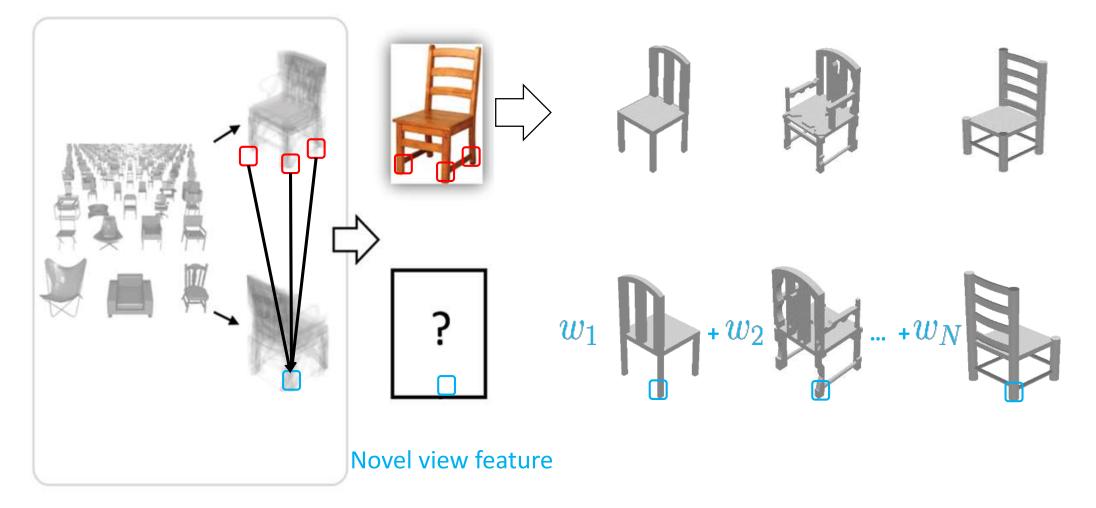


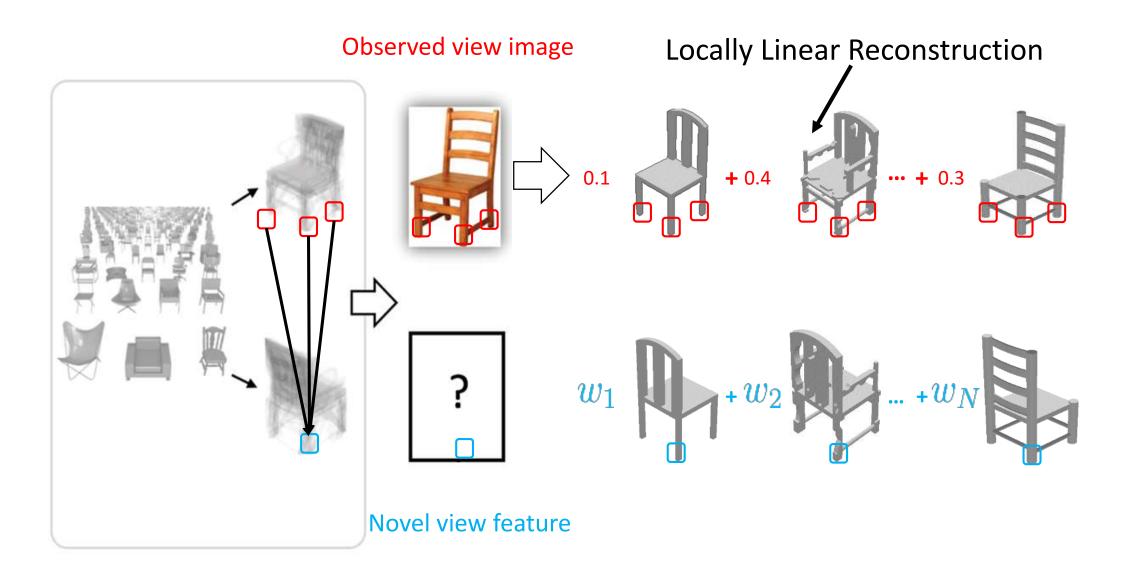
Novel view feature

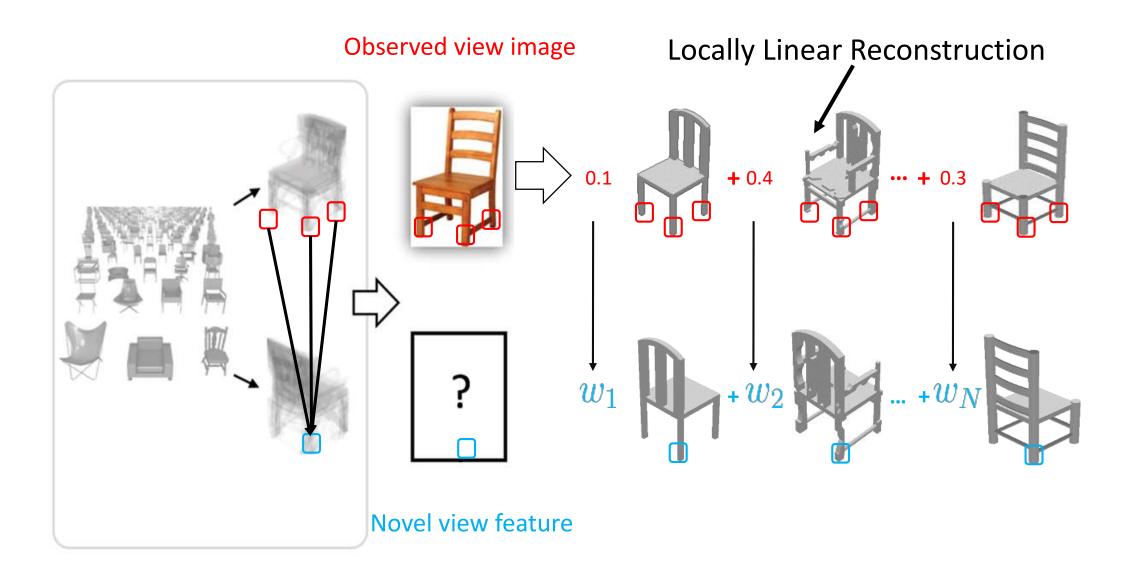
Observed view image

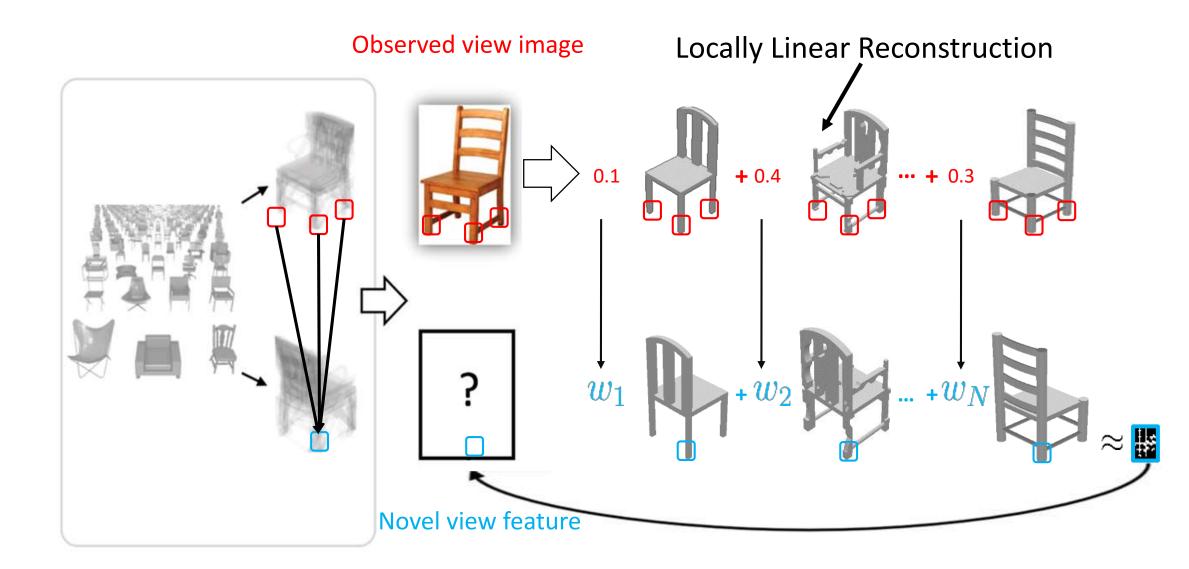


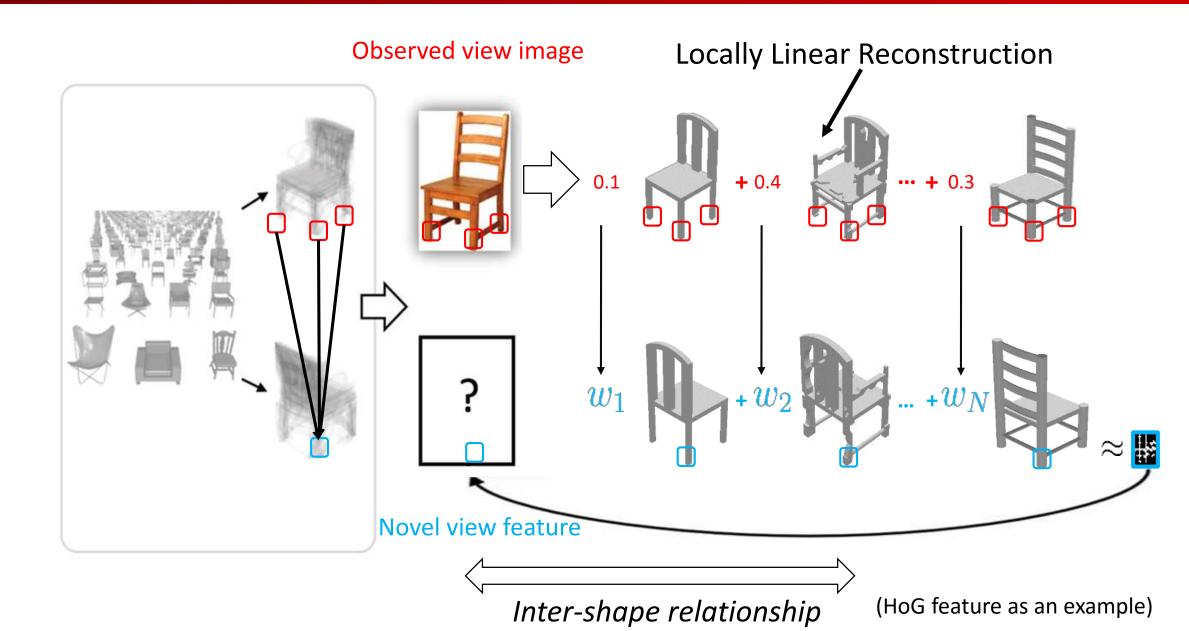
Novel view feature



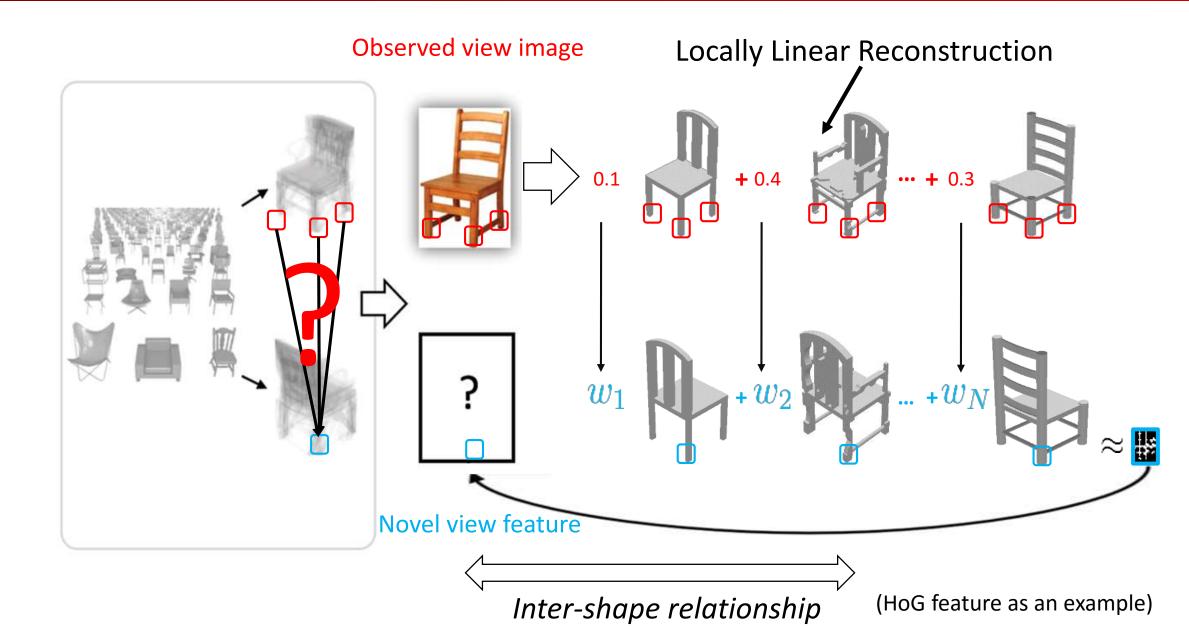




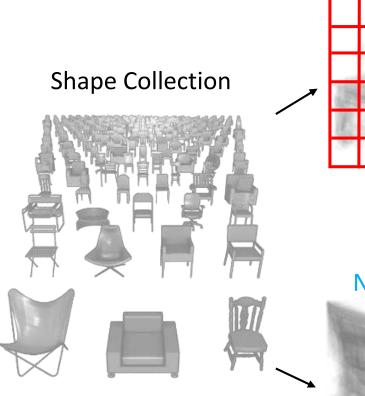




Surrogate Relationship Discovery

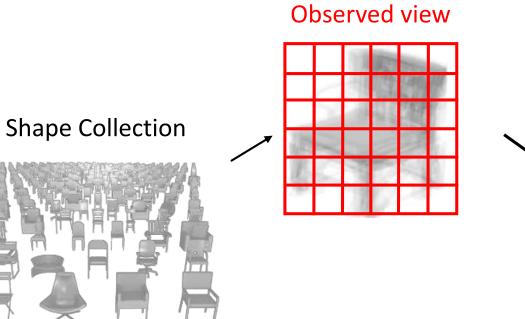


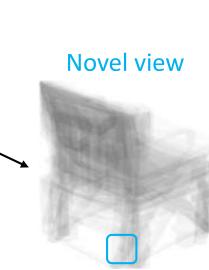
Surrogate Relationship Discovery

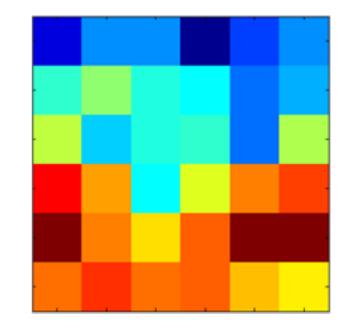


Novel view

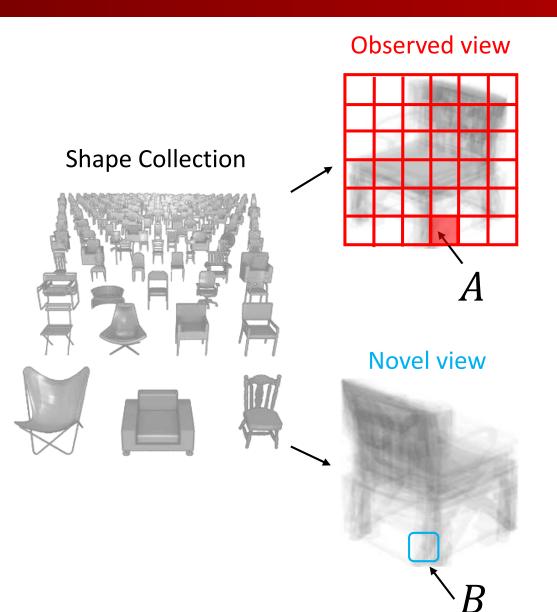
Surrogate Relationship Discovery





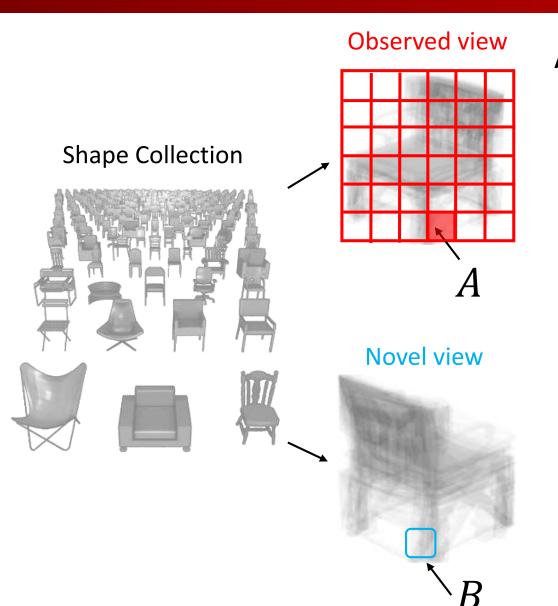


Surrogate suitability matrix



Assume

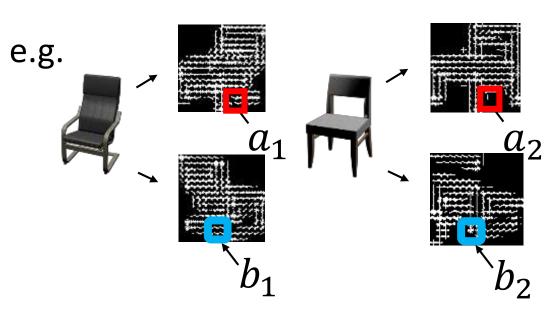
A, *B* are discrete random variables

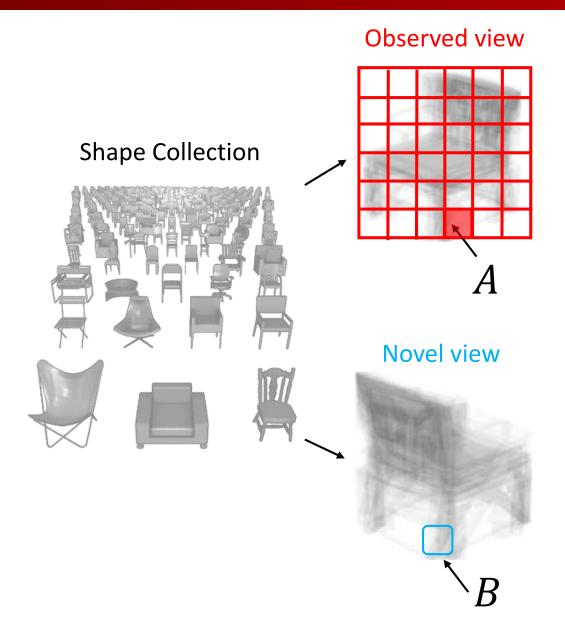


Assume

A, *B* are discrete random variables

 $(a_1, b_1), (a_2, b_2), \text{ are i.i.d samples of } (A, B)$

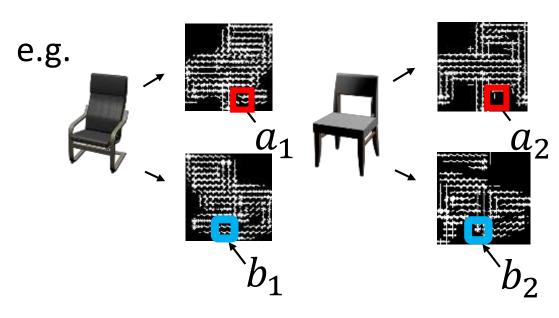




Assume

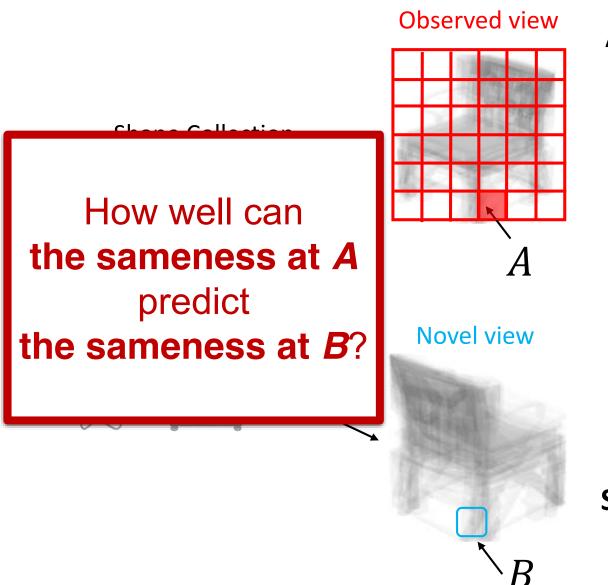
A, *B* are discrete random variables

 (a_1, b_1) , (a_2, b_2) , are i.i.d samples of (A, B)



Surrogate suitability:

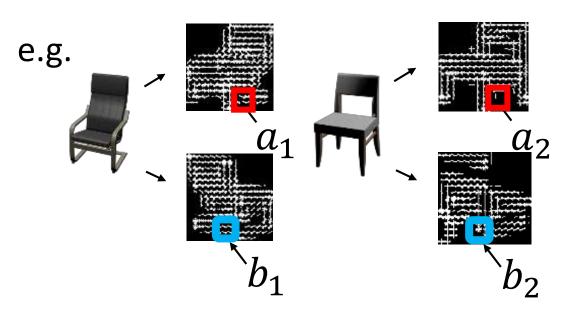
$$\gamma(A; B) = \log P(b_1 = b_2 | a_1 = a_2)$$



Assume

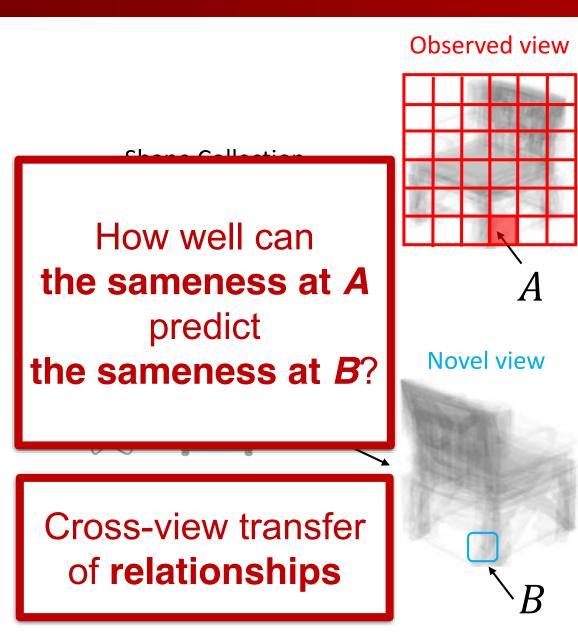
A, *B* are discrete random variables

 $(a_1, b_1), (a_2, b_2), \text{ are i.i.d samples of } (A, B)$



Surrogate suitability:

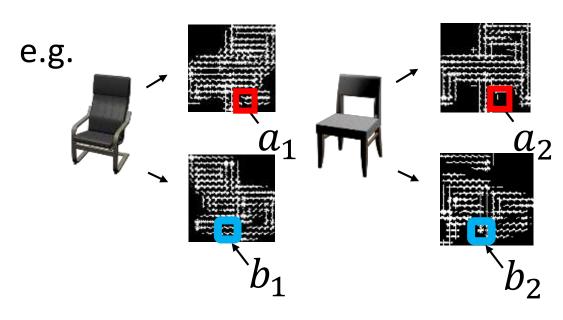
$$\gamma(A; B) = \log P(b_1 = b_2 | a_1 = a_2)$$



Assume

A, *B* are discrete random variables

 (a_1, b_1) , (a_2, b_2) , are i.i.d samples of (A, B)



Surrogate suitability:

$$\gamma(A; B) = \log P(b_1 = b_2 | a_1 = a_2)$$

Estimation of Surrogate Suitability

Derivation shows

$$\gamma(A; B) = \log \sum P^2(A, B) - \log \sum P^2(B)$$
$$= -H_R(A, B) + H_R(B)$$

H_R: *Renyi-entropy*

Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound $\Theta(V_A + V_B)$

Sample complexity: tight bound $\Theta(V_A + V_B)$

where V_A and V_B are vocabulary size of A and B

Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound $\Theta(V_A + V_B)$

Sample complexity: tight bound $\Theta(V_A + V_B)$

where V_A and V_B are vocabulary size of A and B

Theoretically optimal algorithm is proposed that reaches the bound

Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound
$$\Theta(V_A + V_B)$$

Sample complexity: tight bound $\Theta(V_A + V_B)$

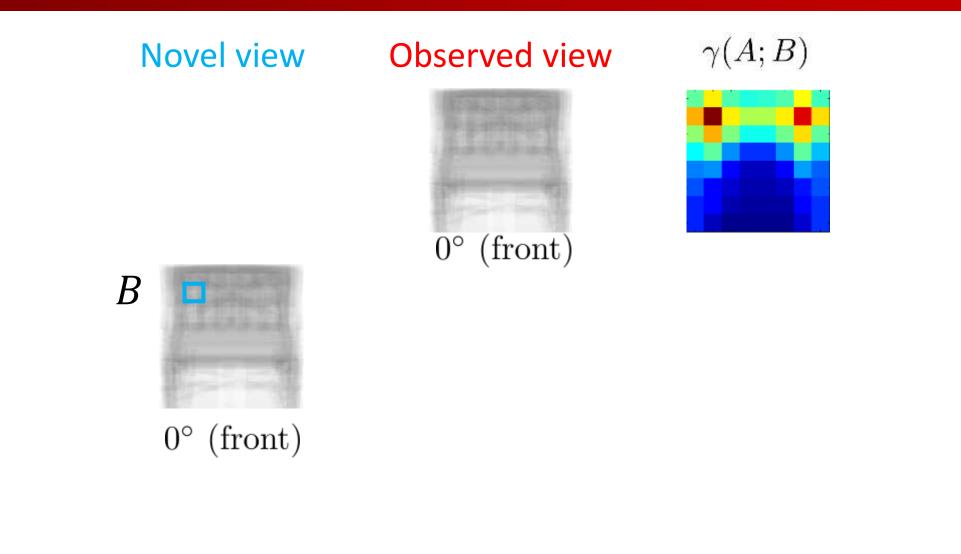
where V_A and V_B are vocabulary size of A and B

Theoretically optimal algorithm is proposed that reaches the bound

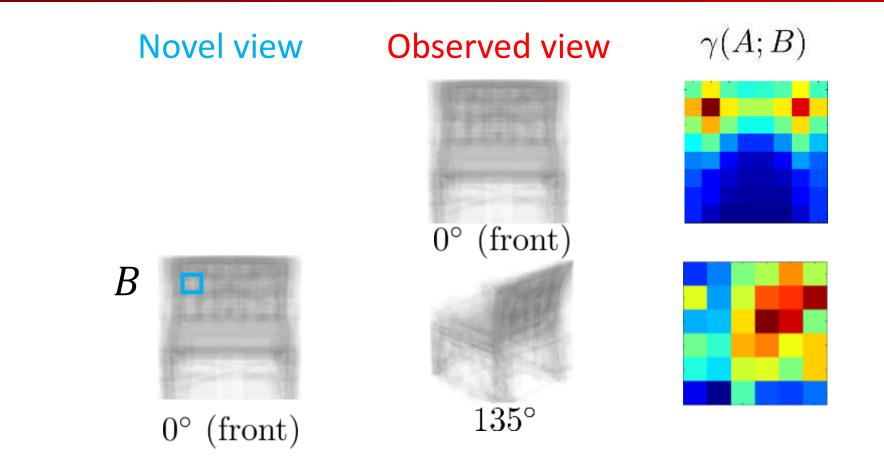
Strong connection with Mutual Information

$$MI(A,B) = -H(A,B) + H(A) + H(B)$$

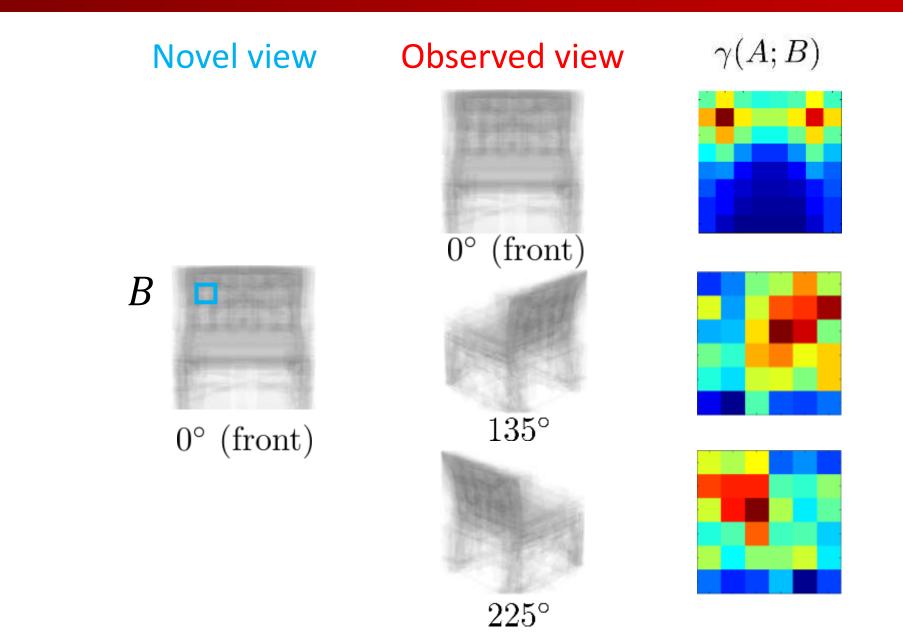
More Visualization of Surrogate Suitability Matrix



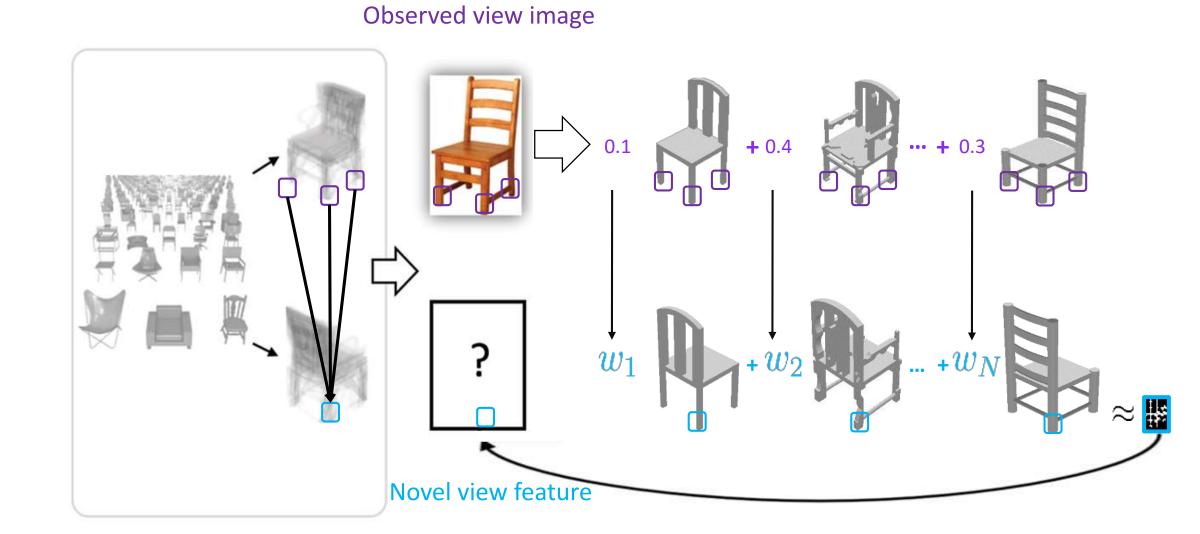
More Visualization of Surrogate Suitability Matrix



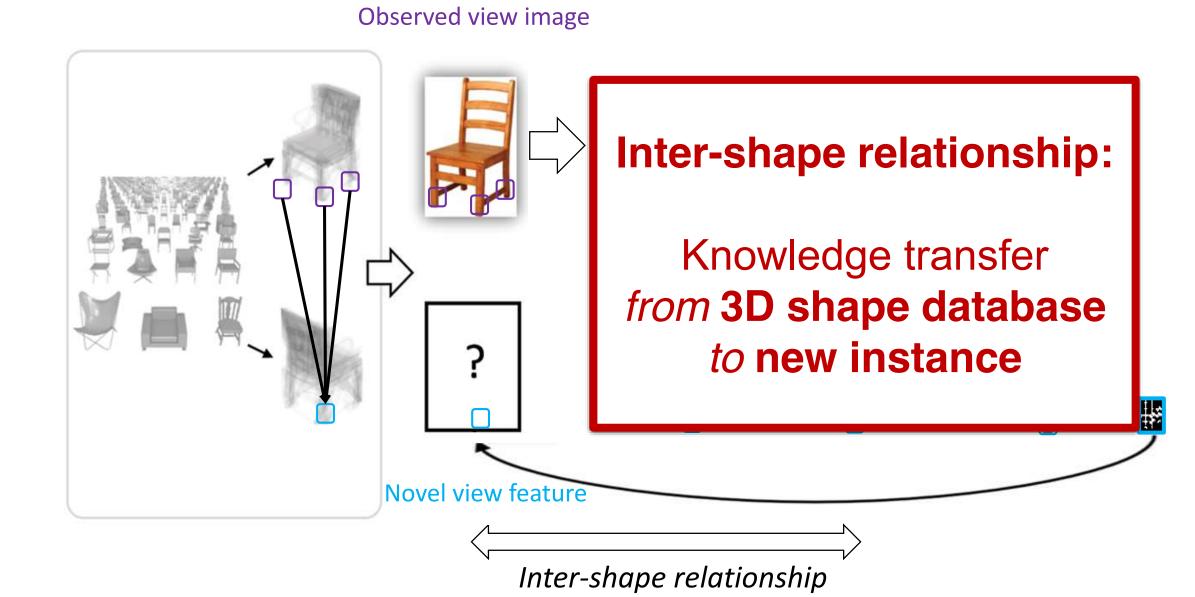
More Visualization of Surrogate Suitability Matrix



Review of Pipeline

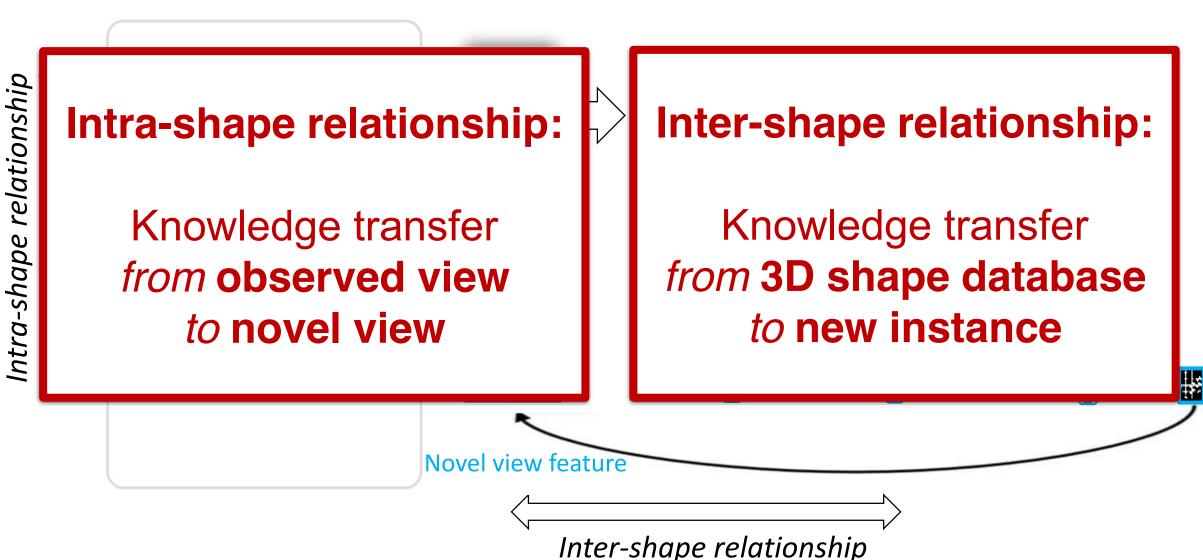


Review of Pipeline



Review of Pipeline

Observed view image



Motivation

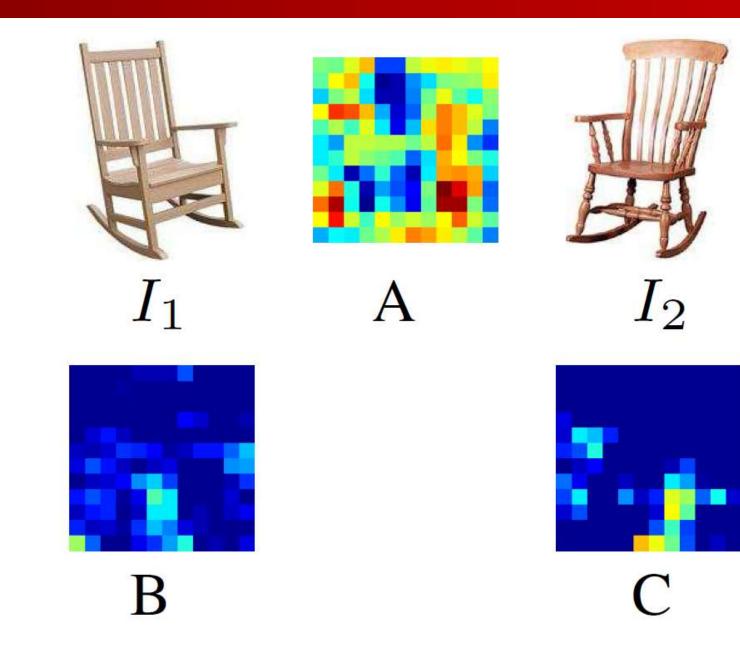
Approach

Applications

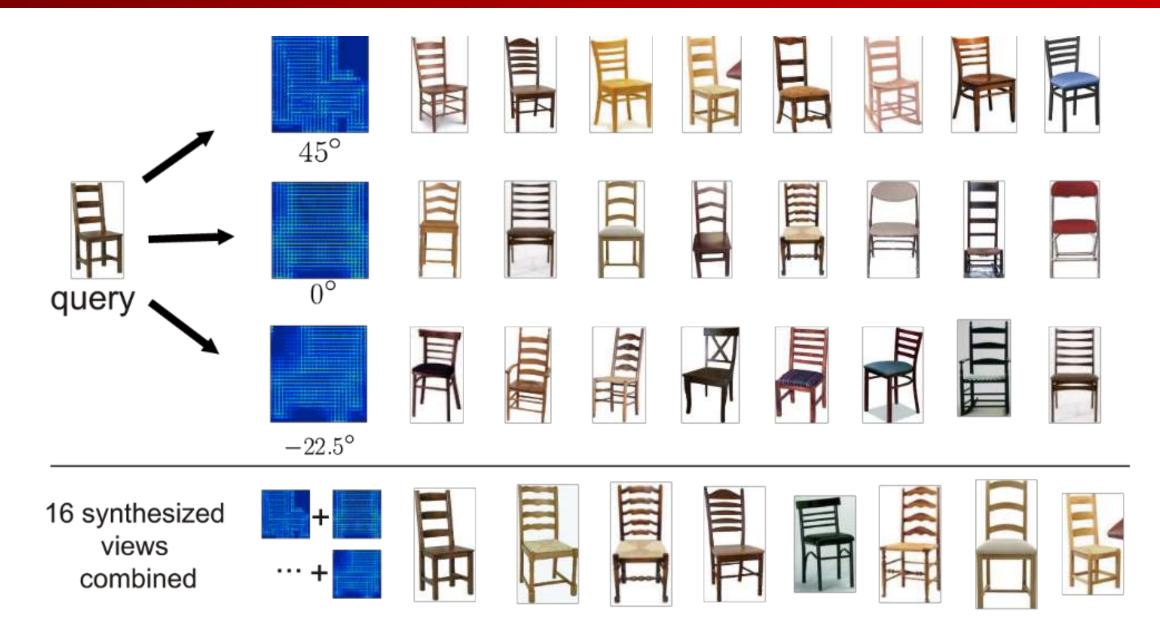
Method Diagnosis

Conclusion

Application: Cross-view localized image comparison



Cross-view Image Retrieval



Application: View-agnostic Image Retrieval

vertical bars swivel base

HoG L2

Ours (combined HoG)

Application: View-agnostic Image Retrieval

vertical bars swivel base

HoG L2

Ours (combined HoG)

Application: View-agnostic Image Retrieval

HoG L2

Ours (combined HoG)

Part-based View-agnostic Image Retrieval

Generalizability to Many Feature Types

Feature	Method	Chair	Car	Bus	Motorbike	Train	Avg	
HoG	original	71.0	27.8	37.4	40.7	52.1	45.8	+7.5
	augmented	80.1	32.0	43.0	48.0	63.6	53.3	
BoVW	original	67.8	28.0	38.0	40.2	52.1	45.2	+4.4
	augmented	70.2	30.9	<mark>41.7</mark>	<mark>44</mark> .1	61.0	49.6	+4.4
Fisher	original	67.5	27.0	35.3	42.1	48.1	44.0	+5.3
	augmented	70.2	30.7	38.4	46.9	60.2	49.3	
LLC	original	71.7	28.3	35.4	40.6	55.9	46.4	+5.7
	augmented	74.9	34.8	<mark>44.9</mark>	45.7	60.2	52.1	
Caffe Pool5	original	69.0	26.7	39.1	42.1	55.3	46.4	+3.2
	augmented	74.6	31.0	42.0	44.8	55.7	49.6	+3.2
Caffe FC7	original	7 <mark>4.</mark> 4	28.7	38.6	45.6	58.2	49.1	+4.3
	augmented	78.5	34.8	42.5	49.8	61.3	53.4	

- Task: fine-grained retrieval (images and annotations are from ImageNet)
- Metric: Average Precision

Motivation

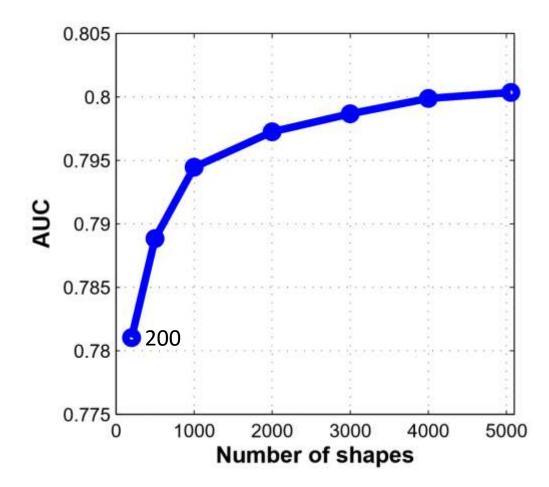
Approach

Applications

Method Diagnosis

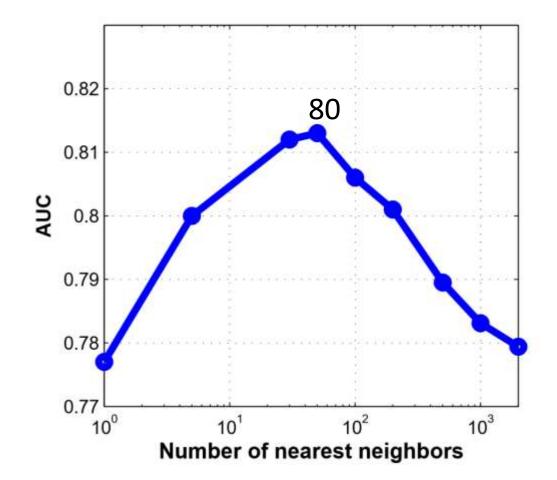
Conclusion

How many shapes are sufficient?



(Measured by Average Precision on Fine-grained retrieval for Chairs)

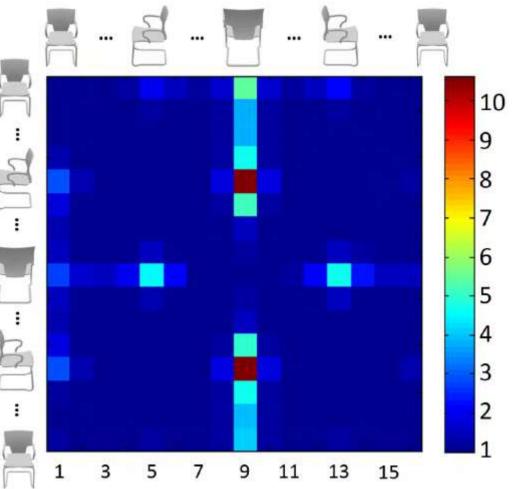
How many neighboring shapes for interpolation?



(Measured by Average Precision on Fine-grained retrieval for Chairs)

How well can one view predict another view?

Controlled diagnosis on renderings



Cross-view retrieval rank

Motivation

Approach

Applications

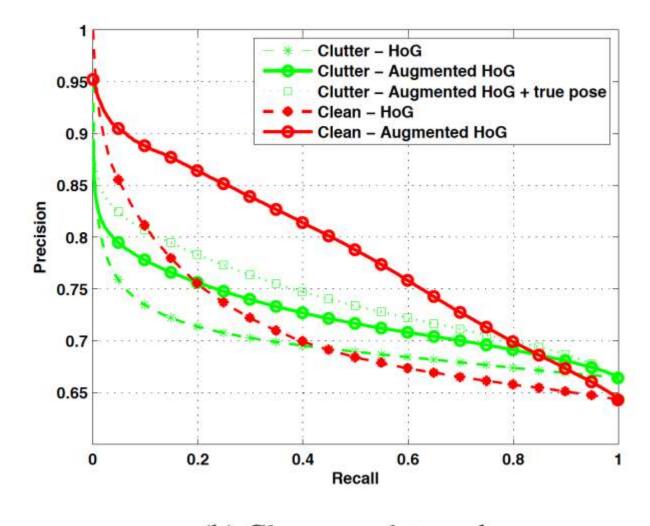
Method Diagnosis

Conclusion

Conclusion

- A novel framework for synthesizing object features at novel views
- 3D shape database provides the knowledge of feature synthesis
- For relationship transfer, surrogate suitability is defined, which is a type of "predictability" between random variables.
- A theoretically optimal estimator is proposed

Thank you!



(b) Clean vs. cluttered