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3D-Assisted Image Feature Synthesis
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View-agnostic Image Retrieval

Retrieval using AlexNet features




Cross-view Image Comparison




Cross-view Image Comparison

The comparison is between the
underlying 3D objects



Reconstruct 3D and then compare?

Su et al, SIGGRAPH’14 Kar et al, CVPR’15 Huang et al, SIGGRAPH’15



Single-image based 3D Reconstruction is hard

Many dependencies
Not Robust
Slow

2D image part segmentation 2D-3D Correspondence

3D shape part segmentation Non-convex iterative optimization



Our Formulation: Novel View Feature Synthesis
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Observed view

(HoG feature as an example)



Our Novel View Feature Synthesis Results

Novel View

/" Groundtruth (unobserved) Synthesized

Input Image

View HoG Features | HoG Features

(HoG feature as an example)
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Conclusion



Learn from a dataset of many objects with multi-view features




Learn from a dataset of multi-view features

The dataset is generated by rendering 3D models




Key idea

Learn from a dataset of multi-view features

The dataset is generated by rendering large-scale 3D models
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http://shapenet.cs.stanford.edu/

3D-assisted Feature Synthesis: Nearest Neighbour

Observed view image
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Novel view

(HoG feature as an example)



3D-assisted Feature Synthesis: Nearest Neighbour

Observed view image

Strong assumption:
very similar model exists
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(HoG feature as an example)



3D-assisted Feature Synthesis: Multiple Shapes

Observed view image
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Novel view feature

(HoG feature as an example)



3D-assisted Feature Synthesis: Multiple Shapes

Attention:
Brain games start!




Pipeline

Observed view image

Novel view feature

(HoG feature as an example)



Pipeline

Observed view image

Novel view feature

(HoG feature as an example)



Observed view image
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Novel view feature

(HoG feature as an example)



Observed view image
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Novel view feature

(HoG feature as an example)



Observed view image
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Novel view feature

(HoG feature as an example)



Pipeline

Observed view image Locally Llnear Reconstruction

(HoG feature as an example)

Novel view feature



Pipeline

Observed view image Locally Llnear Reconstruction
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Novel view feature

(HoG feature as an example)



Pipeline

Observed view image Locally Llnear Reconstruction
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Novel view feature

(HoG feature as an example)



Observed view image Locally Llnear Reconstruction
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Novel view feature
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Inter-shape relationship (HoG feature as an example)




Surrogate Relationship Discovery

Observed view image Locally Llnear Reconstruction
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Inter-shape relationship (HoG feature as an example)
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Surrogate Relationship Discovery

Observed view
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Surrogate Relationship Discovery

Observed view

5
Shape Collection j

Surrogate suitability matrix




Formal Definition of Surrogate Suitability

Observed view
Assume
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Formal Definition of Surrogate Suitability

Observed view
Assume

T . .
1 A, B are discrete random variables

Shape Collection - (ay, by), (a,, by), are i.i.d samples of (4, B)

wy
y Nl ek S
e [ —
) - o LTRSS [
: " i ‘b‘_l i l"
P 5 . o = "
DAL Bty i i /"3/ s \
b A+ -t

- '__\,>~._. e ;
e § )

W ,
g T ,.?: —1 ;,?:\‘ LN
Ve ; ‘
=

Novel view




Formal Definition of Surrogate Suitability

Shape Collection
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Assume

A, B are discrete random variables

(a4,bq1), (a,, b,), arei.i.d samples of (4, B)

Surrogate suitability:

y(4; B) =log P(b; = by|a; = ay)



Formal Definition of Surrogate Suitability

How well can
the sameness at A

predict
the sameness at B?

Observed view
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Novel view

Assume

A, B are discrete random variables

(a4,bq1), (a,, b,), arei.i.d samples of (4, B)

Surrogate suitability:

y(4; B) =log P(b; = by|a; = ay)



Formal Definition of Surrogate Suitability

Observed view

Assume
‘“\ d A, B are discrete random variables
(a4,bq1), (a,, b,), arei.i.d samples of (4, B)
How well can
the sameness at A A

predict |
the sameness at B’) | Novel view

Cross-view transfer Surrogate suitability:

of relationships
y(4; B) =log P(b; = byla; = ay)



Estimation of Surrogate Suitability

Derivation shows

v(A; B) =log » P?*(A,B) —log Y P*(B)
= —HRr(A, B) + Hr(B)

Hp: Renyi-entropy



Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound O(V, + V)

Sample complexity: tight bound @(V, + V/p)

where V, and Vg are vocabulary size of A and B



Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound O(V, + V)

Sample complexity: tight bound @(V, + V/p)
where V, and Vg are vocabulary size of A and B

Theoretically optimal algorithm is proposed that reaches the bound



Estimation of Surrogate Suitability

Derivation shows

Sample complexity: tight bound O(V, + V)

Sample complexity: tight bound @(V, + V/p)
where V, and Vg are vocabulary size of A and B

Theoretically optimal algorithm is proposed that reaches the bound

Strong connection with Mutual Information
MI(A,B)=—-H(A,B)+ H(A) + H(B)



More Visualization of Surrogate Suitability Matrix

Novel view Observed view
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More Visualization of Surrogate Suitability Matrix

Novel view Observed view v(A; B)
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More Visualization of Surrogate Suitability Matrix

Novel view Observed view
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Review of Pipeline

Observed view image
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Novel view feature




Review of Pipeline

Observed view image

j> Inter-shape relationship:

Knowledge transfer
from 3D shape database
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Inter-shape relationship




Review of Pipeline

Observed view image

Intra-shape relationship: ’ Inter-shape relationship:

Knowledge transfer
from observed view

Knowledge transfer
from 3D shape database

fo new instance

e

fo novel view

Intra-shape relationship

,.
‘-\li

Novel view feature

< b

Inter-shape relationship
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Application: Cross-view localized image comparison




Cross-view Image Retrieval
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Application: View-agnostic Image Retrieval

vertical bars

swivel base
Ours (combined HoG)



Application: View-agnostic Image Retrieval

vertical bars

swivel base
Ours (combined HoG)



Application: View-agnostic Image Retrieval

vertical bars

swivel base
Ours (combined HoG)



Part-based View-agnostic Image Retrieval




Generalizability to Many Feature Types

Feature Method Chair Car Bus Motorbike | Train Avg
original 710 27.8 | 374 40.7 321 45.8
H augmented 80.1 32.0 | 43.0 48.0 63.6 33:3 #ed
original 67.8 28.0 | 38.0 40.2 52.1 45.2
SOXV augmented 70.2 30.9 | 41.7 44.1 61.0 49.6 &4
Fisher original 67.5 27.0 | 353 42.1 48.1 44.0 453
augmented 70.2 30.7 38.4 46.9 60.2 49.3 -
original L7 283 | 354 40.6 33.9 46.4
R augmented 74.9 34.8 | 44.9 45.7 60.2 32.1 e
3 original 69.0 26.7 | 39.1 42.1 55.3 46.4
Clie Pl | o rmentedt | 746 | 310 | 220 44.8 557 || 288 | T4
. original 74.4 28.7 | 38.6 45.6 38.2 49.1
Calie FCT | wemented | 785 | 348 | 425 49.8 613 || 534 | 43

* Task: fine-grained retrieval (images and annotations are from ImageNet)

* Metric: Average Precision
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How many shapes are sufficient?

€200

0 1000 2000 3000 4000 5000
Number of shapes

(Measured by Average Precision on Fine-grained retrieval for Chairs)



How many neighboring shapes for interpolation?

0.82¢

AUC

0.77
10

10 10° 10°
Number of nearest neighbors

(Measured by Average Precision on Fine-grained retrieval for Chairs)



How well can one view predict another view?

Controlled diaghosis on renderings
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Conclusion

* A novel framework for synthesizing object features at novel views
* 3D shape database provides the knowledge of feature synthesis

* For relationship transfer, surrogate suitability is defined, which is a type of
“predictability” between random variables.

* A theoretically optimal estimator is proposed



Thank you!
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wei Clutter - Augmented HoG
Clutter — Augmented HoG + true pose| |
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(b) Clean vs. cluttered




