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Go beyond 2D Image Classification

* 3D bounding box

* 3D alignment

* 3D modelretrieval




Go beyond 2D Image Classification

3D Viewpoint Estimation
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3D Viewpoint Estimation in the Wild
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3D Perception in the Wild
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However.. Accurate Label Acquisition is Expensive

What's the camera viewpoint angles to
the SUV in the image?




However.. Accurate Label Acquisition Is Expensive

Load CAD Model

PASCAL3D+ dataset [Xiang et al.]
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However.. Accurate Label Acquisition Is Expensive

Stepa:
Choose similar
model




However.. Accurate Label Acquisition Is Expensive
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However.. Accurate Label Acquisition Is Expensive

Stepa:
Choose similar
model

Step2:
Coarse Viewpoint N s
Labeling R W VAN NN AY
‘ Annotation takes
~1 min per object
Step3: | e .
Label keypoints e
For alignment S




High-cost Label Acquisition High-capacity Model

30K images with viewpoint labels in PASCAL3D+
dataset [Xiang et al.]
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How to get MORE images with ACCURATE viewpoint labels?




Manual alignment
by annotators

Auto alignment
through rendering




Good News: ShapeNet
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Key Idea: Render for CNN

Training
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Key Idea: Render for CNN

Testing

Viewpoint [R3
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: | want data!
Convolutional Neural

Network

How to render data
with both quantity and
quality?

Rendering

4



Synthesize: Scalablility vs Quality
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Synthesize: Scalablility vs Quality
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Synthesize: Scalablility vs Quality
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A “Data Engineering” Journey

* 8oK rendered chair images
* Metric: 16-view classification accuracy tested on real images

At beginning..
* Lighting: 4 fixed point light sources on the sphere
* Background: clean



A “Data Engineering” Journey

95% on synthetic val set
47% on real test set ®

ConvNet: Q‘

Ah ha, | know!
Viewpoint is just
the brightness
pattern!

e



A “Data Engineering” Journey

95% on synthetic val set
47% on real test set ®




A “Data Engineering” Journey

Randomize
lighting

i

/ \ 47% -> 74%
T~ V"

ConvNet: hmm.. viewpoint is not the brightness
pattern. Maybe it's the contour?




A “Data Engineering” Journey

ConvNet: hmm.. viewpoint is not the brightness
pattern. Maybe it's the contour?



A “Data Engineering” Journey

backgrounds [Ein
. . e gl o

ConvNet: It becomes really hard! Let me look
more into the picture.




A “Data Engineering” Journey

bbox crop
texture

™

86% -> 93%




A “Data Engineering” Journey

bbox crop
texture

™

86% -> 93%

Key Lesson: Don't give CNN a chance to “cheat” - it's very good
at it. When there is no way to cheat, true learning starts.



Render for CNN Image Synthesis Pipeline

Sample lighting and

\camera params/

Sample cropping

params /

Hyper-parameters estimation from real images



Render for CNN Image Synthesis Pipeline
4 Rendering )
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Render for CNN Image Synthesis Pipeline

Sample lighting and Sample bkg. Image

\cameraparams/ \Alpha-blending/




Background Composition

* Simple but effective!

* Backgrounds randomly sampled from SUN397 dataset [Xiao et al.]

* Alpha blending composition for natural boundaries
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Sample lighting and

\camera params/

Sample bkg. Image

\ Alpha-blending/

Render for CNN Image Synthesis Pipeline

Sample cropping

\ params /




Image Cropping

Cropping patterns KDE from PASCAL3D+ train set




Image Cropping

Cropping patterns KDE from PASCAL3D+ train set




2.4M Synthesized Images for 12 Categories

* High scalability
* High quality

e Overfit-resistant
e Accurate labels




Results



3D Viewpoint Estimation Evaluation

Metric: median angle error (lower the better)

Real test images from PASCAL3D+ dataset

aero bike boat Dbottle bus car chair table mbike sofa train tv mean
Acc% (Tulsiani, Malik) 078 074 049 093 094 090 0.65 0.67 0.83 0.67 079 0.76 | 0.76
Acc% (Ours-Render) 074 083 052 091 091 088 086 0.73 078 090 086 0.92 | 0.82
MedFErr (Tulsiani, Malik) 14.7 18.6 31.2 13.5 6.3 8.8 177 174 17.6 151 89 17.8 | 156
MedFErr (Ours-Render) 154 148 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 | 11.7




3D Viewpoint Estimation Evaluation

Our model trained on rendered images outperforms state-of-the-art model trained on
real images in PASCAL3D+.

Vps&Kps RenderForCNN
(CVPR15) (Ours)



How many 3D models are necessary?
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3D Viewpoint Estimation




Azimuth Viewpoint Estimation
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Azimuth Viewpoint Estimation
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Fallure Cases

sofa occluded by people ambiguous car viewpoint

multiple cars
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Limitations of Current Synthesis Pipeline

* Modeling Occlusions?
* Modeling Background Context?

* Shape database augmentation by interpolation?



Render for CNN — Beyond Viewpoint

* 3D model retrieval
« Joint Embedding [Li et al sigasia1s] image

* Object detection
* Segmentation
* Intrinsic image decomposition

3d model .

results ﬂ

* Controlled experiments for DL .
* Vision algorithm verification =y



Conclusion

Images rendered from 3D models can be effectively used to train CNNs,
especially for 3D tasks. State-of-the-art result has been achieved.

Keys to success
* Quantity: Large scale 3D model collection (ShapeNet)
* Quality: Overfit-resistant, scalable image synthesis pipeline
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THE END

THANKYOU!



