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Abstract
We present a new machine learning frame-
work called “self-taught learning” for using
unlabeled data in supervised classification
tasks. We do not assume that the unla-
beled data follows the same class labels or
generative distribution as the labeled data.
Thus, we would like to use a large number
of unlabeled images (or audio samples, or
text documents) randomly downloaded from
the Internet to improve performance on a
given image (or audio, or text) classification
task. Such unlabeled data is significantly eas-
ier to obtain than in typical semi-supervised
or transfer learning settings, making self-
taught learning widely applicable to many
practical learning problems. We describe an
approach to self-taught learning that uses
sparse coding to construct higher-level fea-
tures using the unlabeled data. These fea-
tures form a succinct input representation
and significantly improve classification per-
formance. When using an SVM for classifi-
cation, we further show how a Fisher kernel
can be learned for this representation.

1. Introduction

Labeled data for machine learning is often very diffi-
cult and expensive to obtain, and thus the ability to
use unlabeled data holds significant promise in terms
of vastly expanding the applicability of learning meth-
ods. In this paper, we study a novel use of unlabeled
data for improving performance on supervised learn-
ing tasks. To motivate our discussion, consider as a
running example the computer vision task of classi-
fying images of elephants and rhinos. For this task,
it is difficult to obtain many labeled examples of ele-
phants and rhinos; indeed, it is difficult even to obtain
many unlabeled examples of elephants and rhinos. (In
fact, we find it difficult to envision a process for col-
lecting such unlabeled images, that does not immedi-
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ately also provide the class labels.) This makes the
classification task quite hard with existing algorithms
for using labeled and unlabeled data, including most
semi-supervised learning algorithms such as the one
by Nigam et al. (2000). In this paper, we ask how un-
labeled images from other object classes—which are
much easier to obtain than images specifically of ele-
phants and rhinos—can be used. For example, given
unlimited access to unlabeled, randomly chosen im-
ages downloaded from the Internet (probably none of
which contain elephants or rhinos), can we do better
on the given supervised classification task?

Our approach is motivated by the observation that
even many randomly downloaded images will contain
basic visual patterns (such as edges) that are similar
to those in images of elephants and rhinos. If, there-
fore, we can learn to recognize such patterns from the
unlabeled data, these patterns can be used for the su-
pervised learning task of interest, such as recognizing
elephants and rhinos. Concretely, our approach learns
a succinct, higher-level feature representation of the in-
puts using unlabeled data; this representation makes
the classification task of interest easier.

Although we use computer vision as a running exam-
ple, the problem that we pose to the machine learning
community is more general. Formally, we consider
solving a supervised learning task given labeled and
unlabeled data, where the unlabeled data does not
share the class labels or the generative distribution of
the labeled data. For example, given unlimited access
to natural sounds (audio), can we perform better
speaker identification? Given unlimited access to news
articles (text), can we perform better email foldering
of “ICML reviewing” vs. “NIPS reviewing” emails?

Like semi-supervised learning (Nigam et al., 2000),
our algorithms will therefore use labeled and unlabeled
data. But unlike semi-supervised learning as it is typ-
ically studied in the literature, we do not assume that

the unlabeled data can be assigned to the supervised

learning task’s class labels. To thus distinguish our
formalism from such forms of semi-supervised learn-
ing, we will call our task self-taught learning.

There is no prior general, principled framework for
incorporating such unlabeled data into a supervised
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learning algorithm. Semi-supervised learning typically
makes the additional assumption that the unlabeled
data can be labeled with the same labels as the clas-
sification task, and that these labels are merely unob-
served (Nigam et al., 2000). Transfer learning typi-
cally requires further labeled data from a different but
related task, and at its heart typically transfers knowl-
edge from one supervised learning task to another;
thus it requires additional labeled (and therefore often
expensive-to-obtain) data, rather than unlabeled data,
for these other supervised learning tasks.1 (Thrun,
1996; Caruana, 1997; Ando & Zhang, 2005) Because
self-taught learning places significantly fewer restric-
tions on the type of unlabeled data, in many practi-
cal applications (such as image, audio or text classi-
fication) it is much easier to apply than typical semi-
supervised learning or transfer learning methods. For
example, it is far easier to obtain 100,000 Internet im-
ages than to obtain 100,000 images of elephants and
rhinos; far easier to obtain 100,000 newswire articles
than 100,000 articles on ICML reviewing and NIPS
reviewing, and so on. Using our running example of
image classification, Figure 1 illustrates these crucial
distinctions between the self-taught learning problem
that we pose, and previous, related formalisms.

We pose the self-taught learning problem mainly to
formalize a machine learning framework that we think
has the potential to make learning significantly eas-
ier and cheaper. And while we treat any biologi-
cal motivation for algorithms with great caution, the
self-taught learning problem perhaps also more accu-
rately reflects how humans may learn than previous
formalisms, since much of human learning is believed
to be from unlabeled data. Consider the following in-
formal order-of-magnitude argument.2 A typical adult
human brain has about 1014 synapses (connections),
and a typical human lives on the order of 109 seconds.
Thus, even if each synapse is parameterized by just a
one bit parameter, a learning algorithm would require
about 1014/109 = 105 bits of information per second
to “learn” all the connections in the brain. It seems
extremely unlikely that this many bits of labeled infor-
mation are available (say, from a human’s parents or
teachers in his/her youth). While this argument has
many (known) flaws and is not to be taken too seri-
ously, it strongly suggests that most of human learn-
ing is unsupervised, requiring only data without any
labels (such as whatever natural images, sounds, etc.
one may encounter in one’s life).

1We note that these additional supervised learning tasks
can sometimes be created via ingenious heuristics, as in
Ando & Zhang (2005).

2This argument was first described to us by Geoffrey
Hinton (personal communication) but appears to reflect a
view that is fairly widely held in neuroscience.

Supervised Classification

Semi-supervised Learning

Transfer Learning

Self-taught Learning

Figure 1. Machine learning formalisms for classifying im-
ages of elephants and rhinos. Images on orange background
are labeled; others are unlabeled. Top to bottom: Super-
vised classification uses labeled examples of elephants and
rhinos; semi-supervised learning uses additional unlabeled
examples of elephants and rhinos; transfer learning uses ad-
ditional labeled datasets; self-taught learning just requires
additional unlabeled images, such as ones randomly down-
loaded from the Internet.

Inspired by these observations, in this paper we present
largely unsupervised learning algorithms for improving
performance on supervised classification tasks. Our
algorithms apply straightforwardly to different input
modalities, including images, audio and text. Our ap-
proach to self-taught learning consists of two stages:
First we learn a representation using only unlabeled
data. Then, we apply this representation to the la-
beled data, and use it for the classification task. Once
the representation has been learned in the first stage,
it can then be applied repeatedly to different classifi-
cation tasks; in our example, once a representation has
been learned from Internet images, it can be applied
not only to images of elephants and rhinos, but also to
other image classification tasks.

2. Problem Formalism

In self-taught learning, we are given a labeled

training set of m examples {(x
(1)
l , y(1)), (x

(2)
l , y(2)),

. . . , (x
(m)
l , y(m))} drawn i.i.d. from some distribution

D. Here, each x
(i)
l ∈ R

n is an input feature vector (the
“l” subscript indicates that it is a labeled example),
and y(i) ∈ {1, . . . , C} is the corresponding class label.
In addition, we are given a set of k unlabeled examples

x
(1)
u , x

(2)
u , . . . , x

(k)
u ∈ R

n. Crucially, we do not assume

that the unlabeled data x
(j)
u was drawn from the same

distribution as, nor that it can be associated with the
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Figure 2. Left: Example sparse coding bases learned from
image patches (14x14 pixels) drawn from random grayscale
images of natural scenery. Each square in the grid repre-
sents one basis. Right: Example acoustic bases learned by
the same algorithm, using 25ms sound samples from speech
data. Each of the four rectangles in the 2x2 grid shows the
25ms long acoustic signal represented by a basis vector.

same class labels as, the labeled data. Clearly, as in
transfer learning (Thrun, 1996; Caruana, 1997), the
labeled and unlabeled data should not be completely
irrelevant to each other if unlabeled data is to help the
classification task. For example, we would typically

expect that x
(i)
l and x

(j)
u come from the same input

“type” or “modality,” such as images, audio, text, etc.

Given the labeled and unlabeled training set, a self-
taught learning algorithm outputs a hypothesis h :
R

n → {1, . . . , C} that tries to mimic the input-label
relationship represented by the labeled training data;
this hypothesis h is then tested under the same distri-
bution D from which the labeled data was drawn.

3. A Self-taught Learning Algorithm

We hope that the self-taught learning formalism that
we have proposed will engender much novel research
in machine learning. In this paper, we describe just
one approach to the problem.

We present an algorithm that begins by using the un-

labeled data x
(i)
u to learn a slightly higher-level, more

succinct, representation of the inputs. For example, if

the inputs x
(i)
u (and x

(i)
l ) are vectors of pixel intensity

values that represent images, our algorithm will use

x
(i)
u to learn the “basic elements” that comprise an im-

age. For example, it may discover (through examining
the statistics of the unlabeled images) certain strong
correlations between rows of pixels, and therefore learn
that most images have many edges. Through this, it
then learns to represent images in terms of the edges
that appear in it, rather than in terms of the raw pixel
intensity values. This representation of an image in
terms of the edges that appear in it—rather than the
raw pixel intensity values—is a higher level, or more
abstract, representation of the input. By applying this

learned representation to the labeled data x
(i)
l , we ob-

tain a higher level representation of the labeled data
also, and thus an easier supervised learning task.

3.1. Learning Higher-level Representations

We learn the higher-level representation using a mod-
ified version of the sparse coding algorithm due to Ol-

Figure 3. The features computed for an image patch (left)
by representing the patch as a sparse weighted combina-
tion of bases (right). These features act as robust edge
detectors.

Figure 4. Left: An example platypus image from the Cal-
tech 101 dataset. Right: Features computed for the platy-
pus image using four sample image patch bases (trained
on color images, and shown in the small colored squares)
by computing features at different locations in the image.
In the large figures on the right, white pixels represents
highly positive feature values for the corresponding basis,
and black pixels represents highly negative feature values.
These activations capture higher-level structure of the in-
put image. (Bases have been magnified for clarity; best
viewed in color.)

shausen & Field (1996), which was originally proposed
as an unsupervised computational model of low-level
sensory processing in humans. More specifically, given

the unlabeled data {x
(1)
u , ..., x

(k)
u } with each x

(i)
u ∈ R

n,
we pose the following optimization problem:

minimizeb,a

∑

i ‖x
(i)
u −

∑

j a
(i)
j bj‖

2
2 + β ‖a(i)‖1 (1)

s.t. ‖bj‖2 ≤ 1, ∀j ∈ 1, ..., s
The optimization variables in this problem are the ba-

sis vectors b = {b1, b2, . . . , bs} with each bj ∈ R
n,

and the activations a = {a(1), . . . , a(k)} with each

a(i) ∈ R
s; here, a

(i)
j is the activation of basis bj for

input x
(i)
u . The number of bases s can be much larger

than the input dimension n. The optimization objec-
tive (1) balances two terms: (i) The first quadratic

term encourages each input x
(i)
u to be reconstructed

well as a weighted linear combination of the bases bj

(with corresponding weights given by the activations

a
(i)
j ); and (ii) it encourages the activations to have low

L1 norm. The latter term therefore encourages the ac-
tivations a to be sparse—in other words, for most of
its elements to be zero. (Tibshirani, 1996; Ng, 2004)

This formulation is actually a modified version of Ol-
shausen & Field’s, and can be solved significantly more
efficiently. Specifically, the problem (1) is convex over
each subset of variables a and b (though not jointly
convex); in particular, the optimization over activa-
tions a is an L1-regularized least squares problem,
and the optimization over basis vectors b is an L2-
constrained least squares problem. These two convex
sub-problems can be solved efficiently, and the objec-
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tive in problem (1) can be iteratively optimized over
a and b alternatingly while holding the other set of
variables fixed. (Lee et al., 2007)

As an example, when this algorithm is applied to small
14x14 images, it learns to detect different edges in the
image, as shown in Figure 2 (left). Exactly the same
algorithm can be applied to other input types, such as
audio. When applied to speech sequences, sparse cod-
ing learns to detect different patterns of frequencies,
as shown in Figure 2 (right).

Importantly, by using an L1 regularization term, we
obtain extremely sparse activations—only a few bases

are used to reconstruct any input x
(i)
u ; this will give

us a succinct representation for x
(i)
u (described later).

We note that other regularization terms that result

in most of the a
(i)
j being non-zero (such as that used

in the original Olshausen & Field algorithm) do not
lead to good self-taught learning performance; this is
described in more detail in Section 4.

3.2. Unsupervised Feature Construction

It is often easy to obtain large amounts of unlabeled
data that shares several salient features with the la-
beled data from the classification task of interest. In
image classification, most images contain many edges
and other visual structures; in optical character recog-
nition, characters from different scripts mostly com-
prise different pen “strokes”; and for speaker identifi-
cation, speech even in different languages can often be
broken down into common sounds (such as phones).

Building on this observation, we propose the follow-
ing approach to self-taught learning: We first apply

sparse coding to the unlabeled data x
(i)
u ∈ R

n to learn
a set of bases b, as described in Section 3.1. Then, for

each training input x
(i)
l ∈ R

n from the classification

task, we compute features â(x
(i)
l ) ∈ R

s by solving the
following optimization problem:

â(x
(i)
l ) = arg mina(i) ‖x

(i)
l −

∑

j a
(i)
j bj‖

2
2 + β ‖a(i)‖1 (2)

This is a convex L1-regularized least squares problem
and can be solved efficiently (Efron et al., 2004; Lee

et al., 2007). It approximately expresses the input x
(i)
l

as a sparse linear combination of the bases bj . The

sparse vector â(x
(i)
l ) is our new representation for x

(i)
l .

Using a set of 512 learned image bases (as in Fig-
ure 2, left), Figure 3 illustrates a solution to this op-
timization problem, where the input image x is ap-
proximately expressed as a combination of three ba-
sis vectors b142, b381, b497. The image x can now be
represented via the vector â ∈ R

512 with â142 = 0.6,
â381 = 0.8, â497 = 0.4. Figure 4 shows such features â
computed for a large image. In both of these cases, the
computed features capture aspects of the higher-level
structure of the input images. This method applies

equally well to other input types; the features com-
puted on audio samples or text documents similarly
detect useful higher-level patterns in the inputs.

We use these features as input to standard supervised
classification algorithms (such as SVMs). To classify a
test example, we solve (2) to obtain our representation
â for it, and use that as input to the trained classifier.
Algorithm 1 summarizes our algorithm for self-taught
learning.

Algorithm 1 Self-taught Learning via Sparse Coding

input Labeled training set

T = {(x
(1)
l , y(1)), (x

(2)
l , y(2)), . . . , (x

(m)
l , y(m))}.

Unlabeled data {x
(1)
u , x

(2)
u , . . . , x

(k)
u }.

output Learned classifier for the classification task.

algorithm Using unlabeled data {x
(i)
u }, solve the op-

timization problem (1) to obtain bases b.
Compute features for the classification task
to obtain a new labeled training set T̂ =

{(â(x
(i)
l ), y(i))}m

i=1, where

â(x
(i)
l ) = arg mina(i) ‖x

(i)
l −

∑

j a
(i)
j bj‖

2
2 + β ‖a(i)‖1.

Learn a classifier C by applying a supervised learning
algorithm (e.g., SVM) to the labeled training set T̂ .
return the learned classifier C.

3.3. Comparison with Other Methods

It seems that any algorithm for the self-taught learning
problem must, at some abstract level, detect structure
using the unlabeled data. Many unsupervised learn-
ing algorithms have been devised to model different
aspects of “higher-level” structure; however, their ap-
plication to self-taught learning is more challenging
than might be apparent at first blush.

Principal component analysis (PCA) is among the
most commonly used unsupervised learning algo-
rithms. It identifies a low-dimensional subspace
of maximal variation within unlabeled data. In-
terestingly, the top T ≤ n principal components
b1, b2, . . . , bT are a solution to an optimization problem
that is cosmetically similar to our formulation in (1):

minimizeb,a

∑

i ‖x
(i)
u −

∑

j a
(i)
j bj‖

2
2 (3)

s.t. b1, b2, . . . , bT are orthogonal

PCA is convenient because the above optimization
problem can be solved efficiently using standard nu-

merical software; further, the features a
(i)
j can be com-

puted easily because of the orthogonality constraint,

and are simply a
(i)
j = bT

j x
(i)
u .

When compared with sparse coding as a method for
constructing self-taught learning features, PCA has
two limitations. First, PCA results in linear feature

extraction, in that the features a
(i)
j are simply a linear

function of the input.3 Second, since PCA assumes

3As an example of a nonlinear but useful feature for im-
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Table 1. Details of self-taught learning applications evaluated in the experiments.
Domain Unlabeled data Labeled data Classes Raw features
Image
classification

10 images of outdoor
scenes

Caltech101 image classifi-
cation dataset

101 Intensities in 14x14 pixel
patch

Handwritten char-
acter recognition

Handwritten digits
(“0”–“9”)

Handwritten English char-
acters (“a”–“z”)

26 Intensities in 28x28 pixel
character/digit image

Font character
recognition

Handwritten English
characters (“a”–“z”)

Font characters (“a”/“A” –
“z”/“Z”)

26 Intensities in 28x28 pixel
character image

Song genre
classification

Song snippets from 10
genres

Song snippets from 7 dif-
ferent genres

7 Log-frequency spectrogram
over 50ms time windows

Webpage
classification

100,000 news articles
(Reuters newswire)

Categorized webpages
(from DMOZ hierarchy)

2 Bag-of-words with 500 word
vocabulary

UseNet article
classification

100,000 news articles
(Reuters newswire)

Categorized UseNet posts
(from “SRAA” dataset)

2 Bag-of-words with 377 word
vocabulary

Table 2. Classification accuracy on the Caltech 101 image
classification dataset. For PCA and sparse coding results,
each image was split into the specified number of regions,
and features were aggregated within each region by taking
the maximum absolute value.

Features
Number of regions

1 4 9 16
PCA 20.1% 30.6% 36.8% 37.0%

Sparse coding 30.8% 40.9% 46.0% 46.6%
Published baseline (Fei-Fei et al., 2004) 16%

the bases bj to be orthogonal, the number of PCA fea-
tures cannot be greater than the dimension n of the
input. Sparse coding does not have either of these lim-
itations. Its features â(x) are an inherently nonlinear
function of the input x, due to the presence of the L1

term in Equation (1).4 Further, sparse coding can use
more basis vectors/features than the input dimension
n. By learning a large number of basis vectors but
using only a small number of them for any particular
input, sparse coding gives a higher-level representation
in terms of the many possible “basic patterns,” such as
edges, that may appear in an input. Section 6 further
discusses other unsupervised learning algorithms.

4. Experiments

We apply our algorithm to several self-taught learn-
ing tasks shown in Table 3.3. Note that the unlabeled
data in each case cannot be assigned the labels from
the labeled task. For each application, the raw input
examples x were represented in a standard way: raw
pixel intensities for images, the frequency spectrogram
for audio, and the bag-of-words (vector) representation
for text. For computational reasons, the unlabeled
data was preprocessed by applying PCA to reduce its

ages, consider the phenomenon called end-stopping (which
is known to occur in biological visual perception) in which
a feature is maximally activated by edges of only a specific
orientation and length; increasing the length of the edge
further significantly decreases the feature’s activation. A
linear response model cannot exhibit end-stopping.

4For example, sparse coding can exhibit end-
stopping (Lee et al., 2007). Note also that even though
sparse coding attempts to express x as a linear combina-
tion of the bases bj , the optimization problem (2) results
in the activations aj being a non-linear function of x.

dimension;5 the sparse coding basis learning algorithm
was then applied in the resulting principal component
space.6 Then, the learned bases were used to construct
features for each input from the supervised classifica-
tion task.7 For each such task, we report the result
from the better of two standard, off-the-shelf super-
vised learning algorithms: a support vector machine
(SVM) and Gaussian discriminant analysis (GDA). (A
classifier specifically customized to sparse coding fea-
tures is described in Section 5.)

We compare our self-taught learning algorithm against
two baselines, also trained with an SVM or GDA: us-
ing the raw inputs themselves as features, and using
principal component projections as features, where the
principal components were computed on the unlabeled

5We picked the number of principal components to pre-
serve approximately 96% of the unlabeled data variance.

6Reasonable bases can often be learned even using a

smooth approximation such as (
P

j

q

a2

j + ε) to the L1-

norm sparsity penalty ‖a‖1. However, such approximations
do not produce sparse features, and in our experiments, we
found that classification performance is significantly worse
if such approximations are used to compute â(x). Since
the labeled and unlabeled data can sometimes lead to very
different numbers of non-zero coefficients ai, in our exper-
iments β was also recalibrated prior to computing the la-
beled data’s representations â(xl).

7Partly for scaling and computational reasons, an ad-
ditional feature aggregation step was applied to the image
and audio classification tasks (since a single image is several
times larger than the individual/small image patch bases
that can be learned tractably by sparse coding). We aggre-
gated features for the large image by extracting features for
small image patches in different locations in the large im-
age, and then aggregating the features per-basis by taking
the feature value with the maximum absolute value. The
aggregation procedure effectively looks for the “strongest”
occurrence of each basis pattern within the image. (Even
better performance is obtained by aggregating features over
a KxK grid of regions, thus looking for strong activations
separately in different parts of the large image; see Ta-
ble 3.3.) These region-wise aggregated features were used
as input to the classification algorithms (SVM or GDA).
Features for audio snippets were similarly aggregated by
computing the maximum activation per basis vector over
50ms windows in the snippet.
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Figure 5. Left: Example images from the handwritten digit
dataset (top), the handwritten character dataset (middle)
and the font character dataset (bottom). Right: Example
sparse coding bases learned on handwritten digits.

Table 3. Top: Classification accuracy on 26-way handwrit-
ten English character classification, using bases trained on
handwritten digits. Bottom: Classification accuracy on
26-way English font character classification, using bases
trained on English handwritten characters. The numbers
in parentheses denote the accuracy using raw and sparse
coding features together. Here, sparse coding features
alone do not perform as well as the raw features, but per-
form significantly better when used in combination with
the raw features.

Digits → English handwritten characters
Training set size Raw PCA Sparse coding

100 39.8% 25.3% 39.7%
500 54.8% 54.8% 58.5%
1000 61.9% 64.5% 65.3%

Handwritten characters → Font characters
Training set size Raw PCA Sparse coding

100 8.2% 5.7% 7.0% (9.2%)
500 17.9% 14.5% 16.6% (20.2%)
1000 25.6% 23.7% 23.2% (28.3%)

data (as described in Section 3.3). In the PCA re-
sults presented in this paper, the number of principal
components used was always fixed at the number of
principal components used for preprocessing the raw
input before applying sparse coding. This control ex-
periment allows us to evaluate the effects of PCA pre-
processing and the later sparse coding step separately,
but should therefore not be treated as a direct evalua-
tion of PCA as a self-taught learning algorithm (where
the number of principal components could then also be
varied).

Tables 3.3-4 report the results for various domains.
Sparse coding features, possibly in combination with
raw features, significantly outperform the raw features
alone as well as PCA features on most of the domains.

On the 101-way Caltech 101 image classification task
with 15 training images per class (Table 3.3), sparse
coding features achieve a test accuracy of 46.6%. In
comparison, the first published supervised learning al-
gorithm for this dataset achieved only 16% test accu-
racy even with computer vision specific features (in-
stead of raw pixel intensities).8

8Since the time we ran our experiments, other re-
searchers have reported better results using highly spe-
cialized computer vision algorithms (Zhang et al., 2006:
59.1%; Lazebnik et al., 2006: 56.4%). We note that our
algorithm was until recently state-of-the-art for this well-

Table 4. Accuracy on 7-way music genre classification.
Training set size Raw PCA Sparse coding

100 28.3% 28.6% 44.0%
1000 34.0% 26.3% 45.5%
5000 38.1% 38.1% 44.3%

Table 5. Text bases learned on 100,000 Reuters newswire
documents. Top: Each row represents the basis most ac-
tive on average for documents with the class label at the
left. For each basis vector, the words corresponding to the
largest magnitude elements are displayed. Bottom: Each
row represents the basis that contains the largest magni-
tude element for the word at the left. The words corre-
sponding to other large magnitude elements are displayed.

Design design, company, product, work, market

Business car, sale, vehicle, motor, market, import

vaccine infect, report, virus, hiv, decline, product

movie share, disney, abc, release, office, movie, pay

Figure 5 shows example inputs from the three char-
acter datasets, and some of the learned bases. The
learned bases appear to represent “pen strokes.” In
Table 4, it is thus not surprising that sparse cod-
ing is able to use bases (“strokes”) learned on dig-
its to significantly improve performance on handwrit-
ten characters—it allows the supervised learning algo-
rithm to “see” the characters as comprising strokes,
rather than as comprising pixels.

For audio classification, our algorithm outperforms the
original (spectral) features (Table 4).9 When applied
to text, sparse coding discovers word relations that
might be useful for classification (Table 5). The per-
formance improvement over raw features is small (Ta-
ble 4).10 This might be because the bag-of-words rep-
resentation of text documents is already sparse, unlike
the raw inputs for the other applications.11

We envision self-taught learning as being most use-
ful when labeled data is scarce. Table 4 shows that
with small amounts of labeled data, classification per-
formance deteriorates significantly when the bases (in
sparse coding) or principal components (in PCA) are

known dataset, even with almost no explicit computer-
vision engineering, and indeed it significantly outperforms
many carefully hand-designed, computer-vision specific
methods published on this task (E.g., Fei-Fei et al., 2004:
16%; Serre et al., 2005: 35%; Holub et al., 2005: 40.1%).

9Details: We learned bases over songs from 10 genres,
and used these bases to construct features for a music genre
classification over songs from 7 different genres (with dif-
ferent artists, and possibly different instruments). Each
training example comprised a labeled 50ms song snippet;
each test example was a 1 second song snippet.

10Details: Learned bases were evaluated on 30 binary
webpage category classification tasks. PCA applied to text
documents is commonly referred to as latent semantic anal-
ysis. (Deerwester et al., 1990)

11The results suggest that algorithms such as LDA (Blei
et al., 2002) might also be appropriate for self-taught learn-
ing on text (though LDA is specific to a bag-of-words rep-
resentation and would not apply to the other domains).



Self-taught Learning

Table 6. Classification accuracy on webpage classification
(top) and UseNet article classification (bottom), using
bases trained on Reuters news articles.

Reuters news → Webpages
Training set size Raw PCA Sparse coding

4 62.8% 63.3% 64.3%
10 73.0% 72.9% 75.9%
20 79.9% 78.6% 80.4%

Reuters news → UseNet articles
Training set size Raw PCA Sparse coding

4 61.3% 60.7% 63.8%
10 69.8% 64.6% 68.7%

Table 7. Accuracy on the self-taught learning tasks when
sparse coding bases are learned on unlabeled data (third
column), or when principal components/sparse coding
bases are learned on the labeled training set (fourth/fifth
column). Since Tables 3.3-4 already show the results for
PCA trained on unlabeled data, we omit those results from
this table. The performance trends are qualitatively pre-
served even when raw features are appended to the sparse
coding features.

Domain
Training
set size

Unlabeled Labeled
SC PCA SC

Handwritten
characters

100 39.7% 36.2% 31.4%
500 58.5% 50.4% 50.8%
1000 65.3% 62.5% 61.3%
5000 73.1% 73.5% 73.0%

Font
characters

100 7.0% 5.2% 5.1%
500 16.6% 11.7% 14.7%
1000 23.2% 19.0% 22.3%

Webpages
4 64.3% 55.9% 53.6%
10 75.9% 57.0% 54.8%
20 80.4% 62.9% 60.5%

UseNet
4 63.8% 60.5% 50.9%
10 68.7% 67.9% 60.8%

learned on the labeled data itself, instead of on large
amounts of additional unlabeled data.12 As more and
more labeled data becomes available, the performance
of sparse coding trained on labeled data approaches
(and presumably will ultimately exceed) that of sparse
coding trained on unlabeled data.

Self-taught learning empirically leads to significant
gains in a large variety of domains. An important
theoretical question is characterizing how the “simi-
larity” between the unlabeled and labeled data affects
the self-taught learning performance (similar to the
analysis by Baxter, 1997, for transfer learning). We
leave this question open for further research.

5. Learning a Kernel via Sparse Coding
A fundamental problem in supervised classification is
defining a “similarity” function between two input ex-
amples. In the experiments described above, we used
the regular notions of similarity (i.e., standard SVM
kernels) to allow a fair comparison with the baseline

12For the sake of simplicity (and due to space con-
straints), we performed this comparison only for the do-
mains that the basic sparse coding algorithm applies to,
and that do not require the extra feature aggregation step.

algorithms. However, we now show that the sparse
coding model also suggests a specific specialized simi-
larity function (kernel) for the learned representations.

The sparse coding model (1) can be viewed as learn-
ing the parameter b of the following linear generative
model, that posits Gaussian noise on the observations
x and a Laplacian (L1) prior over the activations:

P (x =
∑

j ajbj + η | b, a) ∝ exp(−‖η‖2
2/2σ

2),

P (a) ∝ exp(−β
∑

j |aj |)

Once the bases b have been learned using unlabeled
data, we obtain a complete generative model for the
input x. Thus, we can compute the Fisher kernel to
measure the similarity between new inputs. (Jaakkola
& Haussler, 1998) In detail, given an input x, we
first compute the corresponding features â(x) by ef-
ficiently solving optimization problem (2). Then, the
Fisher kernel implicitly maps the input x to the high-
dimensional feature vector Ux = ∇b log P (x, â(x)|b),
where we have used the MAP approximation â(x) for
the random variable a.13 Importantly, for the sparse
coding generative model, the corresponding kernel has
a particularly intuitive form, and for inputs x(s) and
x(t) can be computed efficiently as:

K(x(s), x(t)) =
(

â(x(s))T â(x(t))
)

·
(

r(s)T
r(t)

)

,

where r = x −
∑

j âjbj represents the residual vec-
tor corresponding to the MAP features â. Note that
the first term in the product above is simply the inner
product of the MAP feature vectors, and corresponds
to using a linear kernel over the learned sparse rep-
resentation. The second term, however, compares the
two residuals as well.

We evaluate the performance of the learned kernel on
the handwritten character recognition domain, since it
does not require any feature aggregation. As a base-
line, we compare against all choices of standard kernels
(linear/polynomials of degree 2 and 3/RBF) and fea-
tures (raw features/PCA/sparse coding features). Ta-
ble 5 shows that an SVM with the new kernel outper-
forms the best choice of standard kernels and features,
even when that best combination was picked on the
test data (thus giving the baseline a slightly unfair ad-
vantage). In summary, using the Fisher kernel derived
from the generative model described above, we obtain
a classifier customized specifically to the distribution
of sparse coding features.

6. Discussion and Other Methods
In the semi-supervised learning setting, several authors
have previously constructed features using data from
the same domain as the labeled data (e.g., Hinton &
Salakhutdinov, 2006). In contrast, self-taught learning

13In our experiments, the marginalized kernel (Tsuda
et al., 2002), that takes an expectation over a (computed
by MCMC sampling) rather than the MAP approximation,
did not perform better.



Self-taught Learning

Table 8. Classification accuracy using the learned sparse
coding kernel in the Handwritten Characters domain, com-
pared with the accuracy using the best choice of standard
kernel and input features. (See text for details.)

Training set size Standard kernel Sparse coding
100 35.4% 41.8%
500 54.8% 62.6%
1000 61.9% 68.9%

poses a harder problem, and requires that the struc-
ture learned from unlabeled data be “useful” for rep-
resenting data from the classification task. Several ex-
isting methods for unsupervised and semi-supervised
learning can be applied to self-taught learning, though
many of them do not lead to good performance. For
example, consider the task of classifying images of En-
glish characters (“a”—“z”), using unlabeled images of
digits (“0”—“9”). For such a task, manifold learn-
ing algorithms such as ISOMAP (Tenenbaum et al.,
2000) or LLE (Roweis & Saul, 2000) can learn a low-
dimensional manifold using the unlabeled data (dig-
its); however, these manifold representations do not
generalize straightforwardly to the labeled inputs (En-
glish characters) that are dissimilar to any single unla-
beled input (digit). We believe that these and several
other learning algorithms such as auto-encoders (Hin-
ton & Salakhutdinov, 2006) or non-negative matrix
factorization (Hoyer, 2004) might be modified to make
them suitable for self-taught learning.

We note that even though semi-supervised learning
was originally defined with the assumption that the
unlabeled and labeled data follow the same class la-
bels (Nigam et al., 2000), it is sometimes conceived
as “learning with labeled and unlabeled data.” Un-
der this broader definition of semi-supervised learning,
self-taught learning would be an instance (a particu-
larly widely applicable one) of it.

Examining the last two decades of progress in ma-
chine learning, we believe that the self-taught learning
framework introduced here represents the natural ex-
trapolation of a sequence of machine learning problem
formalisms posed by various authors—starting from
purely supervised learning, through semi-supervised
learning, to transfer learning—where researchers have
considered problems making increasingly little use of
expensive labeled data, and using less and less re-
lated data. In this light, self-taught learning can also
be described as “unsupervised transfer” or “transfer
learning from unlabeled data.” Most notably, Ando &
Zhang (2005) propose a method for transfer learning
that relies on using hand-picked heuristics to generate
labeled secondary prediction problems from unlabeled
data. It might be possible to adapt their method to
several self-taught learning applications. It is encour-
aging that our simple algorithms produce good results
across a broad spectrum of domains. With this paper,
we hope to initiate further research in this area.
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