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Abstract
Sparse coding provides a class of algorithms for finding succinct representations
of stimuli; given only unlabeled input data, it discovers basis functions that cap-
ture higher-level features in the data. However, finding sparse codes remains a
very difficult computational problem. In this paper, we present efficient sparse
coding algorithms that are based on iteratively solving two convex optimization
problems: anL1-regularized least squares problem and anL2-constrained least
squares problem. We propose novel algorithms to solve both of these optimiza-
tion problems. Our algorithms result in a significant speedup for sparse coding,
allowing us to learn larger sparse codes than possible with previously described
algorithms. We apply these algorithms to natural images and demonstrate that the
inferred sparse codes exhibit end-stopping and non-classical receptive field sur-
round suppression and, therefore, may provide a partial explanation for these two
phenomena in V1 neurons.

1 Introduction
Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given
only unlabeled input data, it learns basis functions that capture higher-level features in the data.
When a sparse coding algorithm is applied to natural images, the learned bases resemble the recep-
tive fields of neurons in the visual cortex [1, 2]; moreover, sparse coding produces localized bases
when applied to other natural stimuli such as speech and video [3, 4]. Unlike some other unsuper-
vised learning techniques such as PCA, sparse coding can be applied to learning overcomplete basis
sets, in which the number of bases is greater than the input dimension. Sparse coding can also model
inhibition between the bases by sparsifying their activations. Similar properties have been observed
in biological neurons, thus making sparse coding a plausible model of the visual cortex [2, 5].
Despite the rich promise of sparse coding models, we believe that their development has been ham-
pered by their expensive computational cost. In particular, learning large, highly overcomplete
representations has been extremely expensive. In this paper, we develop a class of efficient sparse
coding algorithms that are based on alternating optimization over two subsets of the variables. The
optimization problems over each of the subsets of variables are convex; in particular, the optimiza-
tion over the first subset is anL1-regularized least squares problem; the optimization over the sec-
ond subset of variables is anL2-constrained least squares problem. We describe each algorithm
and empirically analyze their performance. Our method allows us to efficiently learn large over-
complete bases from natural images. We demonstrate that the resulting learned bases exhibit (i)
end-stopping [6] and (ii) modulation by stimuli outside the classical receptive field (nCRF surround
suppression) [7]. Thus, sparse coding may also provide a partial explanation for these phenomena in
V1 neurons. Further, in related work [8], we show that the learned succinct representation captures
higher-level features that can then be applied to supervised classification tasks.

2 Preliminaries
The goal of sparse coding is to represent input vectors approximately as a weighted linear combi-
nation of a small number of (unknown) “basis vectors.” These basis vectors thus capture high-level
patterns in the input data. Concretely, each input vector~ξ ∈ Rk is succinctly represented using
basis vectors~b1, . . . ,~bn ∈ Rk and a sparse vector of weights or “coefficients”~s ∈ Rn such that
~ξ ≈

∑
j
~bjsj . The basis set can be overcomplete (n > k), and can thus capture a large number of

patterns in the input data.



Sparse coding is a method for discovering good basis vectors automatically using only unlabeled
data. The standard generative model assumes that the reconstruction error~ξ−

∑
j
~bjsj is distributed

as a zero-mean Gaussian distribution with covarianceσ2I. To favor sparse coefficients, the prior
distribution for each coefficientsj is defined as:P (sj) ∝ exp(−βφ(sj)), whereφ(·) is a sparsity
function andβ is a constant. For example, we can use one of the following:

φ(sj) =


‖sj‖1 (L1 penalty function)
(s2

j + ε)
1
2 (epsilonL1 penalty function)

log(1 + s2
j ) (log penalty function).

(1)

In this paper, we will use theL1 penalty unless otherwise mentioned;L1 regularization is known to
produce sparse coefficients and can be robust to irrelevant features [9].

Consider a training set ofm input vectors~ξ(1), ..., ~ξ(m), and their (unknown) corresponding coeffi-
cients~s(1), ..., ~s(m). The maximum a posteriori estimate of the bases and coefficients, assuming a
uniform prior on the bases, is the solution to the following optimization problem:1

minimize{~bj},{~s(i)}
∑m

i=1
1

2σ2 ‖~ξ(i) −
∑n

j=1
~bjs

(i)
j ‖2 + β

∑m
i=1

∑n
j=1 φ(s(i)

j ) (2)

subject to ‖~bj‖2 ≤ c, ∀j = 1, ..., n.

This problem can be written more concisely in matrix form: letX ∈ Rk×m be the input matrix (each
column is an input vector), letB ∈ Rk×n be the basis matrix (each column is a basis vector), and let
S ∈ Rn×m be the coefficient matrix (each column is a coefficient vector). Then, the optimization
problem above can be written as:

minimizeB,S
1

2σ2 ‖X −BS‖2
F + β

∑
i,j φ(Si,j) (3)

subject to
∑

i B2
i,j ≤ c, ∀j = 1, ..., n.

Assuming the use of eitherL1 penalty orepsilonL1 penalty as the sparsity function, the optimization
problem is convex inB (while holdingS fixed) and convex inS (while holdingB fixed),2 but
not convex in both simultaneously. In this paper, we iteratively optimize the above objective by
alternatingly optimizing with respect toB (bases) andS (coefficients) while holding the other fixed.
For learning the basesB, the optimization problem is a least squares problem with quadratic con-
straints. There are several approaches to solving this problem, such as generic convex optimization
solvers (e.g., QCQP solver) as well as gradient descent using iterative projections [10]. However,
generic convex optimization solvers are too slow to be applicable to this problem, and gradient de-
scent using iterative projections often shows slow convergence. In this paper, we derive and solve
the Lagrange dual, and show that this approach is much more efficient than gradient-based methods.
For learning the coefficientsS, the optimization problem is equivalent to a regularized least squares
problem. For many differentiable sparsity functions, we can use gradient-based methods (e.g., con-
jugate gradient). However, for theL1 sparsity function, the objective is not continuously differen-
tiable and the most straightforward gradient-based methods are difficult to apply. In this case, the
following approaches have been used: generic QP solvers (e.g., CVX), Chen et al.’s interior point
method [11], a modification of least angle regression (LARS) [12], or grafting [13]. In this paper,
we present a new algorithm for solving theL1-regularized least squares problem and show that it is
more efficient for learning sparse coding bases.

3 L1-regularized least squares: The feature-sign search algorithm
Consider solving the optimization problem (2) with anL1 penalty over the coefficients{s(i)

j } while

keeping the bases fixed. This problem can be solved by optimizing over each~s(i) individually:

minimize~s(i)‖~ξ(i) −
∑

j

~bjs
(i)
j ‖2 + (2σ2β)

∑
j

|s(i)
j |. (4)

Notice now that if we know the signs (positive, zero, or negative) of thes
(i)
j ’s at the optimal value,

we can replace each of the terms|s(i)
j | with eithers(i)

j (if s
(i)
j > 0), −s

(i)
j (if s

(i)
j < 0), or 0 (if

1We impose a norm constraint for bases:‖~bj‖2 ≤ c,∀j = 1, ..., n for some constantc. Norm constraints
are necessary because, otherwise, there always exists a linear transformation of~bj ’s and~s(i)’s which keeps∑n

j=1
~bjs

(i)
j unchanged, while makings(i)

j ’s approach zero. Based on similar motivation, Olshausen and Field
used a scheme which retains the variation of coefficients for every basis at the same level [1, 2].

2A log (non-convex) penalty was used in [1]; thus, gradient-based methods can get stuck in local optima.



s
(i)
j = 0). Considering only nonzero coefficients, this reduces (4) to a standard, unconstrained

quadratic optimization problem (QP), which can be solved analytically and efficiently. Our algo-
rithm, therefore, tries to search for, or “guess,” the signs of the coefficientss

(i)
j ; given any such

guess, we can efficiently solve the resulting unconstrained QP. Further, the algorithm systematically
refines the guess if it turns out to be initially incorrect.
To simplify notation, we present the algorithm for the following equivalent optimization problem:

minimizexf(x) ≡ ‖y −Ax‖2 + γ‖x‖1, (5)

whereγ is a constant. The feature-sign search algorithm is shown in Algorithm 1. It maintains an
active setof potentially nonzero coefficients and their corresponding signs—all other coefficients
must be zero—and systematically searches for the optimal active set and coefficient signs. The
algorithm proceeds in a series of “feature-sign steps”: on each step, it is given a current guess for the
active set and the signs, and it computes the analytical solutionx̂new to the resulting unconstrained
QP; it then updates the solution, the active set and the signs using an efficient discrete line search
between the current solution andx̂new (details in Algorithm 1).3 We will show that each such step
reduces the objectivef(x), and that the overall algorithm always converges to the optimal solution.

Algorithm 1 Feature-sign search algorithm

1 Initializex := ~0, θ := ~0, andactive set:= {}, whereθi ∈ {−1, 0, 1} denotessign(xi).

2 From zero coefficients ofx, selecti = arg maxi

∣∣∣ ∂‖y−Ax‖2
∂xi

∣∣∣.
Activatexi (addi to theactive set) only if it locally improves the objective, namely:

If ∂‖y−Ax‖2
∂xi

> γ, then setθi := −1, active set:= {i}∪ active set.

If ∂‖y−Ax‖2
∂xi

< −γ, then setθi := 1, active set:= {i}∪ active set.
3 Feature-sign step:

Let Â be a submatrix ofA that contains only the columns corresponding to theactive set.
Let x̂ andθ̂ be subvectors ofx andθ corresponding to theactive set.
Compute the analytical solution to the resulting unconstrained QP (minimizex̂‖y − Âx̂‖2 + γθ̂>x̂):

x̂new := (Â>Â)−1(Â>y − γθ̂/2),
Perform a discrete line search on the closed line segment fromx̂ to x̂new:

Check the objective value atx̂new and all points where any coefficient changes sign.
Updatex̂ (and the corresponding entries inx) to the point with the lowest objective value.

Remove zero coefficients of̂x from theactive setand updateθ := sign(x).
4 Check the optimality conditions:

(a) Optimality condition for nonzero coefficients:∂‖y−Ax‖2
∂xj

+ γ sign(xj) = 0,∀xj 6= 0

If condition (a) is not satisfied, go to Step 3 (without any new activation); else check condition (b).

(b) Optimality condition for zero coefficients:
∣∣∣ ∂‖y−Ax‖2

∂xj

∣∣∣ ≤ γ,∀xj = 0

If condition (b) is not satisfied, go to Step 2; otherwise returnx as the solution.

To sketch the proof of convergence, let a coefficient vectorx be calledconsistentwith a given active
set and sign vectorθ if the following two conditions hold for alli: (i) If i is in the active set, then
sign(xi) = θi, and, (ii) If i is not in the active set, thenxi = 0.

Lemma 3.1. Consider optimization problem (5) augmented with the additional constraint thatx is
consistent with a given active set and sign vector. Then, if the current coefficientsxc are consistent
with the active set and sign vector, but are not optimal for the augmented problem at the start of
Step 3, the feature-sign step is guaranteed to strictly reduce the objective.

Proof sketch.Let x̂c be the subvector ofxc corresponding to coefficients in the given active set. In
Step 3, consider a smooth quadratic functionf̃(x̂) ≡ ‖y− Âx̂‖2 +γθ̂>x̂. Sincex̂c is not an optimal
point of f̃ , we havef̃(x̂new) < f̃(x̂c). Now consider the two possible cases: (i) ifx̂new is consistent
with the given active set and sign vector, updatingx̂ := x̂new strictly decreases the objective; (ii) if
x̂new is not consistent with the given active set and sign vector, letx̂d be the first zero-crossing point
(where any coefficient changes its sign) on a line segment fromx̂c to x̂new, then clearlyx̂c 6= x̂d,

3A technical detail has been omitted from the algorithm for simplicity, as we have never observed it in prac-
tice. In Step 3 of the algorithm, in casêA>Â becomes singular, we can check ifq ≡ Â>y−γθ̂/2 ∈ R(Â>Â).
If yes, we can replace the inverse with the pseudoinverse to minimize the unconstrained QP; otherwise, we can
updatex̂ to the first zero-crossing along any directionz such thatz ∈ N (Â>Â), z>q 6= 0. Both these steps
are still guaranteed to reduce the objective; thus, the proof of convergence is unchanged.



and f̃(x̂d) < f̃(x̂c) by convexity off̃ , thus we finally havef(x̂d) = f̃(x̂d) < f̃(x̂c) = f(x̂c).4
Therefore, the discrete line search described in Step 3 ensures a decrease in the objective value.
Lemma 3.2. Consider optimization problem (5) augmented with the additional constraint thatx
is consistent with a given active set and sign vector. If the coefficientsxc at the start of Step 2 are
optimal for the augmented problem, but are not optimal for problem (5), the feature-sign step is
guaranteed to strictly reduce the objective.
Proof sketch.Sincexc is optimal for the augmented problem, it satisfies optimality condition (a), but
not (b); thus, in Step 2, there is somei, such that

∣∣∣ ∂‖y−Ax‖2
∂xi

∣∣∣ > γ; thisi-th coefficient is activated, and

i is added to the active set. In Step 3, consider the smooth quadratic functionf̃(x̂) ≡ ‖y − Âx̂‖2 +
γθ̂>x̂. Observe that (i) since a Taylor expansion off̃ aroundx̂ = x̂c has a first order term inxi only
(using condition 4(a) for the other coefficients), we have that any direction that locally decreases
f̃(x̂) must be consistent with the sign of the activatedxi, and, (ii) sincêxc is not an optimal point
of f̃(x̂), f̃(x̂) must decrease locally nearx̂ = x̂c along the direction from̂xc to x̂new. From (i) and
(ii), the line search direction̂xc to x̂new must be consistent with the sign of the activatedxi. Finally,
sincef̃(x̂) = f(x̂) when x̂ is consistent with the active set, eitherx̂new is consistent, or the first
zero-crossing from̂xc to x̂new has a lower objective value (similar argument to Lemma 3.1).
Theorem 3.3. The feature-sign search algorithm converges to a global optimum of the optimization
problem (5) in a finite number of steps.
Proof sketch.From the above lemmas, it follows that the feature-sign steps always strictly reduce
the objectivef(x). At the start of Step 2,x either satisfies optimality condition 4(a) or is~0; in
either case,x is consistent with the current active set and sign vector, and must be optimal for the
augmented problem described in the above lemmas. Since the number of all possible active sets and
coefficient signs is finite, and since no pair can be repeated (because the objective value is strictly
decreasing), the outer loop of Steps 2–4(b) cannot repeat indefinitely. Now, it suffices to show that a
finite number of steps is needed to reach Step 4(b) from Step 2. This is true because the inner loop of
Steps 3–4(a) always results in either an exit to Step 4(b) or a decrease in the size of the active set.
Note that initialization with arbitrary starting points requires a small modification: after initializingθ
and the active set with a given initial solution, we need to start with Step 3 instead of Step 1.5 When
the initial solution is near the optimal solution, feature-sign search can often obtain the optimal
solution more quickly than when starting from~0.

4 Learning bases using the Lagrange dual
In this subsection, we present a method for solving optimization problem (3) over basesB given
fixed coefficientsS. This reduces to the following problem:

minimize ‖X −BS‖2
F (6)

subject to
∑k

i=1 B2
i,j ≤ c,∀j = 1, ..., n.

This is a least squares problem with quadratic constraints. In general, this constrained optimization
problem can be solved using gradient descent with iterative projection [10]. However, it can be
much more efficiently solved using a Lagrange dual. First, consider the Lagrangian:

L(B,~λ) = trace
(
(X −BS)>(X −BS)

)
+

n∑
j=1

λj(
k∑

i=1

B2
i,j − c), (7)

where eachλj ≥ 0 is a dual variable. Minimizing overB analytically, we obtain the Lagrange dual:

D(~λ) = min
B

L(B,~λ) = trace
(
X>X −XS>(SS> + Λ)−1(XS>)> − cΛ

)
, (8)

whereΛ = diag(~λ). The gradient and Hessian ofD(~λ) are computed as follows:

∂D(~λ)
∂λi

= ‖XS>(SS> + Λ)−1ei‖2 − c, (9)

∂2D(~λ)
∂λi∂λj

= −2
(
(SS> + Λ)−1(XS>)>XS>(SS> + Λ)−1

)
i,j

(
(SS> + Λ)−1

)
i,j

, (10)

4To simplify notation, we reusef(·) even for subvectors such asx̂; in the case off(x̂), we consider only
the coefficients in̂x as variables, and all coefficients not in the subvector can be assumed constant at zero.

5If the algorithm terminates without reaching Step 2, we are done; otherwise, once the algorithm reaches
Step 2, the same argument in the proof applies.



natural image speech stereo video
196×512 500×200 288×400 512×200

Feature-sign 2.16 (0) 0.58 (0) 1.72 (0) 0.83 (0)
LARS 3.62 (0) 1.28 (0) 4.02 (0) 1.98 (0)
Grafting 13.39 (7e-4) 4.69 (4e-6) 11.12 (5e-4) 5.88 (2e-4)
Chen et al.’s 88.61 (8e-5) 47.49 (8e-5) 66.62 (3e-4) 47.00 (2e-4)
QP solver (CVX) 387.90 (4e-9) 1,108.71 (1e-8) 538.72 (7e-9) 1,219.80 (1e-8)

Table 1: The running time in seconds (and the relative error in parentheses) for coefficient learning
algorithms applied to different natural stimulus datasets. For each dataset, the input dimensionk
and the number of basesn are specified ask× n. The relative error for an algorithm was defined as
(fobj − f∗)/f∗, wherefobj is the final objective value attained by that algorithm, andf∗ is the best
objective value attained among all the algorithms.

whereei ∈ Rn is thei-th unit vector. Now, we can optimize the Lagrange dual (8) using Newton’s
method or conjugate gradient. After maximizingD(~λ), we obtain the optimal basesB as follows:

B> = (SS> + Λ)−1(XS>)>. (11)

The advantage of solving the dual is that it uses significantly fewer optimization variables than the
primal. For example, optimizingB ∈ R1,000×1,000 requires only 1,000 dual variables. Note that
the dual formulation is independent of the sparsity function (e.g.,L1, epsilonL1, or other sparsity
function), and can be extended to other similar models such as “topographic” cells [14].6

5 Experimental results

5.1 The feature-sign search algorithm
We evaluated the performance of our algorithms on four natural stimulus datasets: natural images,
speech, stereo images, and natural image videos. All experiments were conducted on a Linux ma-
chine with AMD Opteron 2GHz CPU and 2GB RAM.
First, we evaluated the feature-sign search algorithm for learning coefficients with theL1 sparsity
function. We compared the running time and accuracy to previous state-of-the-art algorithms:
a generic QP solver,7 a modified version of LARS [12] with early stopping,8 grafting [13], and
Chen et al.’s interior point method [11];9 all the algorithms were implemented in MATLAB. For
each dataset, we used a test set of 100 input vectors and measured the running time10 and the
objective function at convergence. Table 1 shows both the running time and accuracy (measured
by the relative error in the final objective value) of different coefficient learning algorithms. Over
all datasets, feature-sign search achieved the best objective values as well as the shortest running
times. Feature-sign search and modified LARS produced more accurate solutions than the other
methods.11 Feature-sign search was an order of magnitude faster than both Chen et al.’s algorithm
and the generic QP solver, and it was also significantly faster than modified LARS and grafting.
Moreover, feature-sign search has the crucial advantage that it can be initialized with arbitrary
starting coefficients (unlike LARS); we will demonstrate that feature-sign search leads to even
further speedup over LARS when applied to iterative coefficient learning.

5.2 Total time for learning bases
The Lagrange dual method for one basis learning iteration was much faster than gradient descent
with iterative projections, and we omit discussion of those results due to space constraints. Below,
we directly present results for the overall time taken by sparse coding for learning bases from natural
stimulus datasets.

6The sparsity penalty for topographic cells can be written as
∑

l φ((
∑

j∈cell l s2
j )

1
2 ), whereφ(·) is a sparsity

function and celll is a topographic cell (e.g., group of ‘neighboring’ bases in 2-D torus representation).
7We used the CVX package available athttp://www.stanford.edu/ ∼boyd/cvx/ .
8LARS (with LASSO modification) provides the entire regularization path with discreteL1-norm con-

straints; we further modified the algorithm so that it stops upon finding the optimal solution of the Equation (4).
9MATLAB code is available athttp://www-stat.stanford.edu/ ∼atomizer/ .

10For each dataset/algorithm combination, we report the average running time over 20 trials.
11A general-purpose QP package (such as CVX) does not explicitly take the sparsity of the solutions into

account. Thus, its solution tends to have many very small nonzero coefficients; as a result, the objective values
obtained from CVX were always slightly worse than those obtained from feature-sign search or LARS.



L1 sparsity function
Coeff. / Basis learning natural image speech stereo video
Feature-sign / LagDual 260.0 248.2 438.2 186.6
Feature-sign / GradDesc 1,093.9 1,280.3 950.6 933.2
LARS / LagDual 666.7 1,697.7 1,342.7 1,254.6
LARS / GradDesc 13,085.1 17,219.0 12,174.6 11,022.8
Grafting / LagDual 720.5 1,025.5 3,006.0 1,340.5
Grafting / GradDesc 2,767.9 8,670.8 6,203.3 3,681.9

epsilonL1 sparsity function
Coeff. / Basis learning natural image speech stereo video
ConjGrad / LagDual 1,286.6 544.4 1,942.4 1,461.9
ConjGrad / GradDesc 5,047.3 11,939.5 3,435.1 2,479.2

Table 2: The running time (in seconds) for different algorithm combinations using different sparsity
functions.

Figure 1: Demonstration of speedup. Left: Comparison of convergence between the Lagrange dual
method and gradient descent for learning bases. Right: The running time per iteration for modified
LARS and grafting as a multiple of the running time per iteration for feature-sign search.

We evaluated different combinations of coefficient learning and basis learning algorithms: the fastest
coefficient learning methods from our experiments (feature-sign search, modified LARS and graft-
ing for theL1 sparsity function, and conjugate gradient for theepsilonL1 sparsity function) and the
state-of-the-art basis learning methods (gradient descent with iterative projection and the Lagrange
dual formulation). We used a training set of 1,000 input vectors for each of the four natural stimulus
datasets. We initialized the bases randomly and ran each algorithm combination (by alternatingly
optimizing the coefficients and the bases) until convergence.12

Table 2 shows the running times for different algorithm combinations. First, we observe that the
Lagrange dual method significantly outperformed gradient descent with iterative projections for
bothL1 andepsilonL1 sparsity; a typical convergence pattern is shown in Figure 1 (left). Second,
we observe that, forL1 sparsity, feature-sign search significantly outperformed both modified LARS
and grafting.13 Figure 1 (right) shows the running time per iteration for modified LARS and grafting
as a multiple of that for feature-sign search (using the same gradient descent algorithm for basis
learning), demonstrating significant efficiency gains at later iterations; note that feature-sign search
(and grafting) can be initialized with the coefficients obtained in the previous iteration, whereas
modified LARS cannot. This result demonstrates that feature-sign search is particularly efficient for
iterative optimization, such as learning sparse coding bases.

5.3 Learning highly overcomplete natural image bases
Using our efficient algorithms, we were able to learn highly overcomplete bases of natural images
as shown in Figure 2. For example, we were able to learn a set of 1,024 bases (each 14×14 pixels)

12We ran each algorithm combination until the relative change of the objective per iteration became less than
10−6 (i.e., |(fnew − fold)/fold| < 10−6). To compute the running time to convergence, we first computed
the “optimal” (minimum) objective value achieved by any algorithm combination. Then, for each combination,
we defined the convergence point as the point at which the objective value reaches within 1% relative error of
the observed “optimal” objective value. The running time measured is the time taken to reach this convergence
point. We truncated the running time if the optimization did not converge within 60,000 seconds.

13We also evaluated a generic conjugate gradient implementation on theL1 sparsity function; however, it did
not converge even after 60,000 seconds.



Figure 2: Learned overcomplete natural image bases. Left: 1,024 bases (each 14×14 pixels). Right:
2,000 bases (each 20×20 pixels).

Figure 3: Left: End-stopping test for 14×14 sized 1,024 bases. Each line in the graph shows the
coefficients for a basis for different length bars. Right: Sample input image for nCRF effect.

in about 2 hours and a set of 2,000 bases (each 20×20 pixels) in about 10 hours.14 In contrast, the
gradient descent method for basis learning did not result in any reasonable bases even after running
for 24 hours. Further, summary statistics of our learned bases, obtained by fitting the Gabor function
parameters to each basis, qualitatively agree with previously reported statistics [15].

5.4 Replicating complex neuroscience phenomena
Several complex phenomena of V1 neural responses are not well explained by simple linear models
(in which the response is a linear function of the input). For instance, many visual neurons display
“end-stopping,” in which the neuron’s response to a bar image of optimal orientation and placement
is actually suppressed as the bar length exceeds an optimal length [6]. Sparse coding can model the
interaction (inhibition) between the bases (neurons) by sparsifying their coefficients (activations),
and our algorithms enable these phenomena to be tested with highly overcomplete bases.
First, we evaluated whether end-stopping behavior could be observed in the sparse coding frame-
work. We generated random bars with different orientations and lengths in 14×14 image patches,
and picked the stimulus bar which most strongly activates each basis, considering only the bases
which are significantly activated by one of the test bars. For each such highly activated basis, and
the corresponding optimal bar position and orientation, we vary length of the bar from 1 pixel to
the maximal size and run sparse coding to measure the coefficients for the selected basis, relative to
their maximum coefficient. As shown in Figure 3 (left), for highly overcomplete bases, we observe
many cases in which the coefficient decreases significantly as the bar length is increased beyond the
optimal point. This result is consistent with the end-stopping behavior of some V1 neurons.
Second, using the learned overcomplete bases, we tested for center-surround non-classical receptive
field (nCRF) effects [7]. We found the optimal bar stimuli for 50 random bases and checked that
these bases were among the most strongly activated ones for the optimal stimulus. For each of these

14We used Lagrange dual formulation for learning bases, and both conjugate gradient withepsilonL1 sparsity
as well as the feature-sign search withL1 sparsity for learning coefficients. The bases learned from both
methods showed qualitatively similar receptive fields. The bases shown in the Figure 2 were learned using
epsilonL1 sparsity function and 4,000 input image patches randomly sampled for every iteration.



bases, we measured the response with its optimal bar stimulus with and without the aligned bar
stimulus in the surround region (Figure 3 (right)). We then compared the basis response in these two
cases to measure the suppression or facilitation due to the surround stimulus. The aligned surround
stimuli produced a suppression of basis activation; 42 out of 50 bases showed suppression with
aligned surround input images, and 13 bases among them showed more than 10% suppression, in
qualitative accordance with observed nCRF surround suppression effects.

6 Application to self-taught learning
Sparse coding is an unsupervised algorithm that learns to represent input data succinctly using only
a small number of bases. For example, using the “image edge” bases in Figure 2, it represents a new
image patch~ξ as a linear combination of just a small number of these bases~bj . Informally, we think
of this as finding a representation of an image patch in terms of the “edges” in the image; this gives
a slightly higher-level/more abstract representation of the image than the pixel intensity values, and
is useful for a variety of tasks.
In related work [8], we apply this toself-taught learning, a new machine learning formalism in
which we are given a supervised learning problem together with additional unlabeled instances that
may not have the same class labels as the labeled instances. For example, one may wish to learn
to distinguish between cars and motorcycles given images of each, and additional—and in practice
readily available—unlabeled images of various natural scenes. (This is in contrast to the much more
restrictive semi-supervised learning problem, which would require that the unlabeled examples also
be of cars or motorcycles only.) We apply our sparse coding algorithms to the unlabeled data to
learn bases, which gives us a higher-level representation for images, thus making the supervised
learning task easier. On a variety of problems including object recognition, audio classification, and
text categorization, this approach leads to 11–36% reductions in test error.

7 Conclusion
In this paper, we formulated sparse coding as a combination of two convex optimization problems
and presented efficient algorithms for each: the feature-sign search for solving theL1-least squares
problem to learn coefficients, and a Lagrange dual method for theL2-constrained least squares
problem to learn the bases for any sparsity penalty function. We test these algorithms on a variety
of datasets, and show that they give significantly better performance compared to previous methods.
Our algorithms can be used to learn an overcomplete set of bases, and show that sparse coding could
partially explain the phenomena of end-stopping and nCRF surround suppression in V1 neurons.
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