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Abstract

A Classification-by-Components network (CBC) oper-
ates under the assumption that every input image can be
classified based on its decomposition into a set of compo-
nents. An important characteristic of these components is
that they can be used in the decomposition of images from
different classes. The components are class independent. In
this work, we discuss the latent class structure encoded in
the sharing of components between classes. We propose to
visualize this structure using a Shared Component Graph
(SCG). Consecutively we discuss the insight into the deci-
sion making process of a CBC the visualization can provide.

1. Introduction
A Classification-By-Components network (CBC) [4]

classifies its input by structurally decomposing it based on a
set of learned components. The underlying assumptions are
inspired by the theory that humans recognize complex ob-
jects in a similar manner, introduced by I. Biederman and
coined ”Recognition-by-Components” [1]. An important
criteria in this theory is that the components on which the
classification is based are class independent, allowing com-
ponents to be used in the recognition of multiple objects.

An example of this would be the classification of the
classes passenger car and sports car, two distinct classes
in the ImageNet [3] dataset. Both classes have individual
components, e.g. seats for the passenger car and a spoiler
for the sports car, but they also share a number of compo-
nents, such as wheels and the hood of the car.

Where the class specific components obviously play a
crucial role in making the distinction between the two cars,
the shared components are equally important for the dataset
wide classification problem. For this reason, CBCs learn
class independent components and reason over all of them
to classify the input image. Basically, a CBC learns for each
component how its presence provides evidence in favour or
against the image being of a specific class.

In this work, we look at the relationship between classes
learned by a CBC by investigating their shared components.

First we will however provide a short introduction to CBCs
and consecutively discuss how the shared component natu-
rally encode a class structure. By visualizing the latent class
structure of CBCs using a novel Shared Component Graphs
(SCG), we both qualitatively and quantitatively evaluate
the capability of CBCs to recover the relationship between
classes. We find that CBCs can uncover intuitive relation-
ship between classes in a self-supervised manner. Addition-
ally, SCGs show to be an important tool for finding flaws in
the classification process of component based classifiers.

2. Background: Classification-By-Components
Given an input image x ∈ Rn×n, a CBC first decom-

poses it based on a set of components k ∈ Rm×m, where
n ≥ m. It does so using a detection probability function
dk(x), resulting in the probability for each component to
be present in the image. The detection probability function
is implemented using a sliding distance measure that cal-
culates the similarity between a patch of the input x and a
component k. By processing the input x using a feature
extractor fθ before computing the similarity between fθ(x)
and k the detection probability function can be improved.
The components k as well as the parameters θ of the fea-
ture extractor are trainable parameters of the classifier.

Given the detection probability dk(x) for every input x
a reasoning process is applied to determine the final clas-
sification decision. The detection of each component can
either contribute positively, negatively or not at all to the
probability of the input belonging to class c. The probabil-
ity of the component contributing positively, negatively or
not at all is represented in the reasoning probabilities of a
class c for component k, denoted respectively as r+c,k, r

−
c,k

and r0c,k. Combining the detection probability and the rea-
soning probability, the contribution of component k to the
probability of the input belonging to class c is calculated as

pc,k(x) =
dk(x) · r+c,k + (1− dk(x)) · r−c,k

(1− r0c,k)
. (1)

By summing these probabilities for all components the
final class hypothesis probability is achieved. Similar to the

1



giant  panda Great Dane

dalmatian

jaguar
english setter

snow 
leopard

hyena

koala

leopard

cheetah tiger tiger cat

candle

matchstick

paper towel
custard apple

Pekinese French bulldog

pug

barn

boathouse

(a)

(c)
(d)

street car trolley bus(b)

(e)

(f)

Figure 1: Shared Component Graph visualization of the latent class structure learned by the CBC discussed in [4]
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Figure 2: A selection of shared components represented in
the SCG in Fig. 1

components, the reasoning probabilities are trainable pa-
rameters of the classifiers.

3. Shared component Graph
The components learned by a CBC are class-

independent, meaning that they play a role in the classi-
fication process of all classes. A component k can con-
tribute positively to the class hypothesis probability of class
ci, by having a high r+ci,k, and negatively to class cj , by
having a high r−cj ,k. Similarly, classes ci and cj could con-
sider the presence of the same component important. In this
case both r+ci,k and r+cj ,k are high. The aforementioned role
of the wheel component in the classification of the classes
passenger car and sports car is a clear example of this. In
essence, two classes with a high positive reasoning proba-
bility for the same component can be said to share the com-
ponent. Assuming that a shared component between two
classes is an indication of the classes being considered sim-
ilar by the CBC, the collection of classes sharing compo-

nents can be considered its latent class structure. We pro-
pose Shared Component Graphs (SCG) to visualize this.

A SCG is a (disconnected) graph where each node repre-
sents a class and edges signal that the two connected classes
share one or more components. Formally an edge between
classes ci and cj is drawn when both r+ci,k > t and r+cj ,k > t

for any component k. Where threshold t ∈ [0, 1] is chosen
to represent the certainty that the presence of the component
is important for the classes.

4. Case study 1: ImageNet

In the following we will take a look at the latent class
structure learned by the CBC trained on ImageNet by Sar-
alajew et al. [4] . In their introductory paper Saralajew et al.
trained a CBC with a ResNet50 feature extractor to classify
the 1000 classes contained in the ImageNet dataset using
5000 components. We will use a SCG to visualize the class
structure learned by the CBC and discuss it for a subset of
the classes. Following this, we will use the WordNet hier-
archy of the ImageNet dataset to quantitatively evaluate the
capability of CBCs to recover this hierarchy. Note that this
is achieved in a self-supervised manner. During training of
the CBC only class labels were provided, without any indi-
cation of the relation between the classes.

In Fig. 1 the SCG of the CBC trained by Saralajew et al.
on the ImageNet database is visualized. To create the SCG
a threshold of 0.8 was used. The SCG of the ImageNet CBC
is a disconnected graph with a number of connected clusters
(in graph theory known as components, for clarity we will
use the term cluster). Note that only a small subset of the
full SCG is given. This subset is chosen to be illustrative
of the expressive capability of the SCG. A large number of
single nodes, small clusters (2-4 nodes) and larger cluster
(5+ nodes) were omitted. The full SCG can be found at
http://larsholdijk.com/scg.html. In Fig. 2 a
subset of the components belonging to the edges in the SCG
are given. The relation between components and edges is

2

http://larsholdijk.com/scg.html


given by the in brackets enclosed letters. The components
were extracted from the CBC as described in [4].

The largest cluster in the SCG contains a total of 33
nodes, of which a small sample is featured on the left of
Fig. 1. The full cluster extends from the giant-panda class
onwards. All nodes within the cluster represent classes orig-
inating from the animals synset in the ImageNet database.
Within the cluster a large number of black-and-white ani-
mals can be found, such as the snow leopard, English setter,
Great Dane, giant panda and dalmatian. The latter of which,
connected by component (a) in Fig. 2, were also discussed
in [4]. In addition to being black-and-white some of these
animals also feature a dotted pattern. This dotted pattern
can also be found in different colours on animals such as
jaguars, hyenas and cheetahs, also found in the cluster.

The disconnected graph, however, mainly consist of
smaller clusters, representing shared components between
two or three classes. Thematically, these smaller cluster still
contain related classes, such as street cars and trolley buses,
barns and boathouses or candles and matchsticks. The same
can be said for the fully connected cluster Pekinese, French
bulldog and pug that in fact share the same component (e).
This is also the case for the two sets of fully connected sub-
clusters of three nodes within the larger cluster. This shows
that CBCs are not only capable of uncovering class rela-
tions between two classes but also between larger groups
of classes. However, there are also a number of unrelated
classes that share components. In Fig. 1 this is highlighted
by the class paper towel and custard apple sharing compo-
nent (f). While component (f) closely resembles a custard
apple, it does not relate intuitively to a paper towel.

In total, the SCG of the CBC trained on ImageNet con-
tains 156 edges representing shared components, connect-
ing together 198 classes. The strongest connection can
be found between the classes indigo bunting and jay, both
birds. The indigo bird is also the most connected class, shar-
ing 14 components with other classes.

4.1. ImageNet WordNet

In contrast to many others, classes in the ImageNet
dataset are organized using a hierarchy called WordNet.
This makes ImageNet an excellent dataset for quantitatively
evaluating the latent class structure of a CBC. Using the
WordNet tree as a representation of the true class structure
of ImageNet, we can validate the latent class structure en-
coded in the shared components of a CBC.

For this purpose, we define the true distance between two
classes to be the shortest path of one of the two classes to a
common ancestor in the ImageNet WordNet tree. For exam-
ple, the distance between the class leopard and snow leop-
ard equals 1 as they are siblings within the tree with the
big cat synset as parent. The distance between leopard and
hyena however equals 2, as their closest common ancestor

Figure 3: Influence of the chosen threshold on the average
distance between two classes sharing a component.

Figure 4: Histogram of the distance between classes in the
recovered WordNet hierarchy by a CBC.

carnivore is two steps away from hyena (hyena - canine -
carnivore) and three steps from leopard (leopard - big cat -
feline - carnivore). This distance definition limits the im-
pact of difference in verbosity between sub-trees. With a
distance metric in place we can assign a quality score to
each shared component, or edge in the graph.

Its obvious that with increasing the threshold of accep-
tance, the number of shared components found is reduced.
Ideally however, the class combinations with small dis-
tance between them should have a shared component with
a higher shared positive reasoning probability, maintaining
the shared component status with higher thresholds, then
classes that are far apart in the WordNet hierarchy. In Fig. 3
the average distance between classes that share a compo-
nent is given for different thresholds. The graph shows that
this desired behaviour is the case for the ImageNet CBC. At
a threshold of 0.86 the minimal average distance between
classes that share a component is found. At this threshold,
on average the classes that share a component have a dis-
tance of 2.5 in the WordNet hierarchy.

In Fig. 4 a histogram of the assigned scores is given for a
SCG with threshold 0.8. Over half of all shared components
are shared by classes with an ancestor within 2 steps. The
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Figure 5: SCG of a CBC trained on the CUB dataset.

number of shared components with a larger distance drops
after this. We see this as preferred behaviour. While the
CBC only recovers a small portion of all class relationships,
it does recover the relationship between similar classes.

5. Case study 2: Bird species classification
Another interesting dataset for exploring the latent class

structure in CBCs is the CUB-200-2011 (CUB) dataset [5].
The CUB dataset contains a total of 11788 images dis-
tributed over 200 bird species. While no direct class hi-
erarchy is provided, the relation between classes is obvious
due to the taxonomy of bird species.

We trained a CBC using a DenseNet with 121 layers as
feature extractor to classify the images in the CUB dataset.
The CBC contained 1000 components of size 64 × 64 × 3
and used the cosine similarity in combination with global
maxpooling to achieve a single detection probability for
each component. To align our work with that of [4], the
same training procedure was used to retain the components
in the feature space and reduce complexity. The network
proposed in [2] by Chen et al. is very similar to CBCs, and
hence serves as a good benchmark. Similar to their work,
the DenseNet was pretrained using the ImageNet dataset. 1

The trained CBC achieved a validation accuracy of
82.7%, outperforming the ProtoPNet of Chen et al. In Fig. 5
the full SCG representing the latent class structure of the
trained CBC is given for a threshold of 0.65. In contrast to
the SCG of the CBC trained on ImageNet only a small por-
tion of the classes is connected through a shared component
and no large clusters of classes can be found. This is de-
spite the significantly lower threshold. Similarly, no strong
thematic connection can be found between the classes that

1Unfortunately, the test set of the CUB dataset does contain some im-
ages found in the ImageNet training dataset. Due to the architecture of
CBCs, which only used the DenseNet as feature extractor, this does not
influence the final classification layers.

share components, aside from the three classes on the top
left. All of these classes represent red birds. With the
threshold set lower, more classes share components. How-
ever, as we know from the evaluation using the ImageNet
WordNet hierarchy, this will also reduce the semantic sig-
nificance of the shared components.

Ultimately, the taxonomy of bird species tells us that
there is a relation between the classes in the CUB dataset.
The fact that, despite its high accuracy, the CBC did not un-
cover this structure shows that validation accuracy alone is
not sufficient for evaluating a component based classifier.

6. Conclusion
The usage of a SCG for visualizing the latent class struc-

ture learned by a CBC is a powerful method for extending
their already existing interpretability. Using the ImageNet
dataset and its WordNet hierarchy, we showed that using
the SCG we could gain a better understanding of how the
CBC arrived at its final classification decision. For example,
it heavily relies on the use of colour and low level pattern
matching. In addition to this, it also aided in finding current
flaws within the decision making process. The unexpected
shared component between the classes paper towel and cus-
tard apple is an example of this. Similarly, the SCG of the
CUB dataset CBC showed that SCGs can uncover flaws that
classic metrics such as validation accuracy can not.

In future work it is important to extend the notion of
shared components to other component based classifiers,
such as [2], and feature representation in normal neural
networks. However, these methods often do not follow
the strict probability assertion on the reasoning weights of
CBCs that make the threshold possible. This hurdle can po-
tentially be overcome using softmax on the trained weights.
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