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Abstract

Recent findings show that deep convolutional neural net-
works (DCNNs) do not generalize well under partial occlu-
sion. Inspired by the success of compositional models at
classifying partially occluded objects, we propose to inte-
grate compositional models and DCNNs into a unified deep
model with innate robustness to partial occlusion. We term
this architecture Compositional Convolutional Neural Net-
work. In particular, we propose to replace the fully con-
nected classification head of a DCNN with a differentiable
compositional model. The generative nature of the compo-
sitional model enables it to localize occluders and subse-
quently focus on the non-occluded parts of the object. We
conduct classification experiments on artificially occluded
images as well as real images of partially occluded objects
from the MS-COCO dataset. The results show that DC-
NNs do not classify occluded objects robustly, even when
trained with data that is strongly augmented with partial
occlusions. Our proposed model outperforms standard DC-
NNs by a large margin at classifying partially occluded ob-
jects, even when it has not been exposed to occluded ob-
jects during training. Additional experiments demonstrate
that CompositionalNets can also localize the occluders ac-
curately, despite being trained with class labels only. The
code used in this work is publicly available 1.

1. Introduction
Advances in the architecture design of deep convolu-

tional neural networks (DCNNs) [17, 22, 11] increased the
performance of computer vision systems at image classifi-
cation enormously. However, recent works [38, 14] showed
that such deep models are significantly less robust at clas-
sifying artificially occluded objects compared to Humans.
Furthermore, our experiments show that DCNNs do not
classify real images of partially occluded objects robustly.
Thus, our findings and those of related works [38, 14] point
out a fundamental limitation of DCNNs in terms of general-
ization under partial occlusion which needs to be addressed.

1https://github.com/AdamKortylewski/CompositionalNets

Figure 1: Partially occluded cars from the MS-COCO
dataset [20] that are misclassified by a standard DCNN
but correctly classified by the proposed CompositionalNet.
Intuitively, a CompositionalNet can localize the occluders
(occlusion scores on the right) and subsequently focus on
the non-occluded parts of the object to classify the image.

One approach to overcome this limitation is to use data
augmentation in terms of partial occlusion [6, 35]. How-
ever, our experimental results show that after training with
augmented data the performance of DCNNs at classifying
partially occluded objects still remains substantially worse
compared to the classification of non-occluded objects.

Compositionality is a fundamental aspect of human cog-
nition [2, 28, 9, 3] that is also reflected in the hierarchical
compositional structure of the ventral stream in visual cor-
tex [34, 27, 21]. A number of works in computer vision
showed that compositional models can robustly classify par-
tially occluded 2D patterns [10, 13, 29, 37]. Kortylewski et
al. [14] proposed dictionary-based compositional models, a
generative model of neural feature activations that can clas-
sify images of partially occluded 3D objects more robustly
than DCNNs. However, their results also showed that their
model is significantly less discriminative at classifying non-
occluded objects compared to DCNNs.

In this work, we propose to integrate compositional
models and DCNNs into a unified deep model with innate
robustness to partial occlusion. In particular, we propose to

1

https://github.com/AdamKortylewski/CompositionalNets


replace the fully-connected classification head of a DCNN
with a compositional layer that is regularized to be fully
generative in terms of the neural feature activations of the
last convolutional layer. The generative property of the
compositional layer enables the network to localize occlud-
ers in an image and subsequently focus on the non-occluded
parts of the object in order to classify the image robustly.
We term this novel deep architecture Compositional Convo-
lutional Neural Network (CompositionalNet). Figure 1 il-
lustrates the robustness of CompositionalNets at classifying
partially occluded objects, while also being able to localize
occluders in an image. In particular, it shows several images
of cars that are occluded by other objects. Next to these im-
ages, we show occlusion scores that illustrate the position
of occluders as estimated by the CompositionalNet. Note
how the occluders are accurately localized despite having
highly complex shapes and appearances.

Our extensive experiments demonstrate that the pro-
posed CompositionalNet outperforms related approaches
by a large margin at classifying partially occluded objects,
even when it has not been exposed to occluded objects dur-
ing training. When trained with data augmentation in terms
of partial occlusion the performance increases further. In
addition, we perform qualitative and quantitative experi-
ments that demonstrate the ability of CompositionalNets
to localize occluders accurately, despite being trained with
class labels only. We make several important contributions
in this paper:

1. We propose a differentiable compositional model
that is generative in terms of the feature activations of
a DCNN . This enables us to integrate compositional
models and deep networks into compositional convo-
lutional neural networks, a unified deep model with
innate robustness to partial occlusion.

2. While previous works [37, 14, 33, 38] evaluate ro-
bustness to partial occlusion on artificially occluded
images only, we also evaluate on real images
of partially occluded objects from the MS-COCO
dataset. We demonstrate that CompositionalNets
achieve state-of-the-art results at classifying par-
tially occluded objects under occlusion.

3. To the best of our knowledge we are the first to study
the task of localizing occluders in an image and show
that CompositionalNets outperform dictionary-based
compositional models [14] substantially.

2. Related Work
Classification under partial occlusion. Recent work

[38, 14] has shown that current deep architectures are signif-
icantly less robust to partial occlusion compared to Humans.
Fawzi and Frossard [7] showed that DCNNs are vulnerable

to partial occlusion simulated by masking small patches of
the input image. Related works [6, 35], have proposed to
augment the training data with partial occlusion by mask-
ing out patches from the image during training. However,
our experimental results in Section 4 show that such data
augmentation approaches only have limited effects on the
robustness of a DCNN to partial occlusion. A possible ex-
planation is the difficulty of simulating occlusion due to the
large variability of occluders in terms of appearance and
shape. Xiao et al. [33] proposed TDAPNet a deep net-
work with an attention mechanism that masks out occluded
features in lower layers to increase the robustness of the
classification against occlusion. Our results show that this
model does not perform well on images with real occlu-
sion. In contrast to deep learning approaches, generative
compositional models [12, 39, 8, 4, 16] have been shown to
be inherently robust to partial occlusion when augmented
with a robust occlusion model [13]. Such models have been
successfully applied for detecting partially occluded object
parts [29, 37] and for recognizing 2D patterns under partial
occlusion [10, 15].

Combining compositional models and DCNNs. Liao
et al. [19] proposed to integrate compositionality into DC-
NNs by regularizing the feature representations of DCNNs
to cluster during learning. Their qualitative results show
that the resulting feature clusters resemble part-like detec-
tors. Zhang et al. [36] demonstrated that part detectors
emerge in DCNNs by restricting the activations in feature
maps to have a localized distribution. However, these ap-
proaches have not been shown to enhance the robustness of
deep models to partial occlusion. Related works proposed
to regularize the convolution kernels to be sparse [24], or
to force feature activations to be disentangled for differ-
ent objects [23]. As the compositional model is not ex-
plicit but rather implicitly encoded within the parameters
of the DCNNs, the resulting models remain black-box DC-
NNs that are not robust to partial occlusion. A number of
works [18, 25, 26] use differentiable graphical models to
integrate part-whole compositions into DCNNs. However,
these models are purely discriminative and thus also are
deep networks with no internal mechanism to account for
partial occlusion. Kortylewski et al. [14] proposed learn a
generative dictionary-based compositional models from the
features of a DCNN. They use their compositional model as
“backup” to an independently trained DCNN, if the DCNNs
classification score falls below a certain threshold.

In this work, we propose to integrate generative com-
positional models and DCNNs into a unified model that is
inherently robust to partial occlusion. In particular, we pro-
pose to replace the fully connected classification head with a
differentiable compositional model. We train the model pa-
rameters with backpropagation, while regularizing the com-
positional model to be generative in terms of the neural fea-
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ture activations of the last convolution layer. Our proposed
model significantly outperforms related approaches at clas-
sifying partially occluded objects while also being able to
localize occluders accurately.

3. Compositional Convolutional Neural Nets
In Section 3.1, we introduce a fully generative compo-

sitional model and discuss how it can be integrated with
DCNNs in an end-to-end system in Section 3.2.

3.1. Fully Generative Compositional Models

We denote a feature map F l 2 RH�W�D as the output
of a layer l in a DCNN, with D being the number of chan-
nels. A feature vector f lp 2 RD is the vector of features in
F l at position p on the 2D lattice P of the feature map. In
the remainder of this section we omit the superscript l for
notational clarity because this is fixed a-priori.

We propose a differentiable generative compositional
model of the feature activations p(F jy) for an object class y.
This is different from dictionary-based compositional mod-
els [14] which learn a model p(Bjy), where B is a non-
differentiable binary approximation of F . In contrast, we
model the real-valued feature activations p(F jy) as a mix-
ture of von-Mises-Fisher (vMF) distributions:

p(F j�y) =
Y
p

p(fpjAp;y;�) (1)

p(fpjAp;y;�) =
X
k

�p;k;yp(fpj�k); (2)

where �y = fAy;�g are the model parameters and Ay =
fAp;yg are the parameters of the mixture models at every
position p 2 P on the 2D lattice of the feature map F . In
particular, Ap;y = f�p;0;y; : : : ; �p;K;yj

PK
k=0 �p;k;y = 1g

are the mixture coefficients, K is the number of mixture
components and � = f�k = f�k; �kgjk = 1; : : : ;Kg are
the parameters of the vMF distribution:

p(fpj�k) =
e�k�

T
k fp

Z(�k)
; kfpk = 1; k�kk = 1; (3)

where Z(�k) is the normalization constant. The parame-
ters of the vMF distribution � can be learned by iterating
between vMF clustering of the feature vectors of all train-
ing images and maximum likelihood parameter estimation
[1] until convergence. After training, the vMF cluster cen-
ters f�kg will resemble feature activation patterns that fre-
quently occur in the training data. Interestingly, feature vec-
tors that are similar to one of the vMF cluster centers, are
often induced by image patches that are similar in appear-
ance and often even share semantic meanings (see Supple-
mentary A). This property was also observed in a number
of related works that used clustering in the neural feature
space [30, 19, 29].

The mixture coefficients �p;k;y can also be learned with
maximum likelihood estimation from the training images.
They describe the expected activation of a cluster center �k
at a position p in a feature map F for a class y. Note that the
spatial information from the image is preserved in the fea-
ture maps. Hence, our proposed vMF model (Equation 1)
intuitively describes the expected spatial activation pattern
of parts in an image for a given class y - e.g. where the tires
of a car are expected to be located in an image. In Section
3.2, we discuss how the maximum likelihood estimation of
the parameters �y can be integrated into a loss function and
optimized with backpropagation.

Mixture of compositional models. The model in Equa-
tion 1 assumes that the 3D pose of an object is approxi-
mately constant in images. This is a common assumption
of generative models that represent objects in image space.
We can represent 3D objects with a generalized model using
mixtures of compositional models as proposed in [14]:

p(F j�y) =
X
m

�mp(F j�my ); (4)

with V=f�m 2 f0; 1g;
P
m �

m=1g and �y = f�my ;m =
1; : : : ;Mg. Here M is the number of mixtures of compo-
sitional models and �m is a binary assignment variable that
indicates which mixture component is active. Intuitively,
each mixture component m will represent a different view-
point of an object (see Supplementary B). The parameters
of the mixture components fAmy g need to be learned in an
EM-type manner by iterating between estimating the as-
signment variables V and maximum likelihood estimation
of fAmy g. We discuss how this process can be performed in
a neural network in Section 3.2.

Occlusion modeling. Following the approach presented
in [13], compositional models can be augmented with an
occlusion model. The intuition behind an occlusion model
is that at each position p in the image either the object model
p(fpjAmp;y;�) or an occluder model p(fpj�;�) is active:

p(F j�my ; �)=
Y
p

p(fp; z
m
p =0)1�zmp p(fp; z

m
p =1)z

m
p ; (5)

p(fp; z
m
p =1) = p(fpj�;�) p(zmp =1); (6)

p(fp; z
m
p =0) = p(fpjAmp;y;�) (1-p(zmp =1)): (7)

The binary variables Zm = fzmp 2 f0; 1gjp 2 Pg indicate
if the object is occluded at position p for mixture component
m. The occlusion prior p(zmp =1) is fixed a-priori. Related
works [13, 14] use a single occluder model. We instead use
a mixture of several occluder models that are learned in an
unsupervised manner:

p(fpj�;�) =
Y
n

p(fpj�n;�)�n (8)

=
Y
n

�X
k

�n;kp(fpj�k; �k)
��n

; (9)
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Figure 2: Feed-forward inference with a CompositionalNet. A DCNN backbone is used to extract the feature mapF ,
followed by a convolution with the vMF kernelsf � k g and a non-linear vMF activation functionN (�). The resulting vMF
likelihood L is used to compute the occlusion likelihoodO using the occluder kernelsf � n g. Furthermore,L is used to
compute the mixture likelihoodsf E m

y g using the mixture modelsf Am
y g. O andf E m

y g compete in explainingL (red box)
and are combined to compute an occlusion robust scoref sm

y g. The binary occlusion mapsf Z m
y g indicate which positions in

L are occluded. The �nal class scoresy is computed assy = maxm sm
y and the occlusion mapZy is selected accordingly.

wheref � n 2 f 0; 1g;
P

n � n = 1g indicates which occluder
model explains the data best. The parameters of the oc-
cluder models� n are learned from clustered features of ran-
dom natural images that do not contain any object of inter-
est (see Supplementary C). Note that the model parameters
� are independent of the positionp in the feature map and
thus the model has no spatial structure. Hence, the mixture
coef�cients� n;k intuitively describe the expected activation
of � k anywhere in natural images.

Inference as feed-forward neural network. The com-
putational graph of our fully generative compositional
model is directed and acyclic. Hence, we can perform in-
ference in a single forward pass as illustrated in Figure 2.

We use a standard DCNN backbone to extract a feature
representationF =  (I; ! ) 2 RH � W � D from the input
imageI , where! are the parameters of the feature extrac-
tor. The vMF likelihood functionp(f p j� k ) (Equation 3) is
composed of two operations: An inner producti p;k = � T

k f p

and a non-linear transformationN = exp( � k i p;k )=Z(� k ).
Since� k is independent of the positionp, computingi p;k is
equivalent to a1 � 1 convolution ofF with � k . Hence, the
vMF likelihood can be computed by:

L = fN (F � � k )jk = 1 ; : : : ; K g 2 RH � W � K (10)

(Figure 2 yellow tensor). The mixture likelihoods
p(f p jA m

p;y ; �) (Equation 2) are computed for every position
p as a dot-product between the mixture coef�cientsA m

p;y

and the corresponding vectorlp 2 RK from the likelihood
tensor:

E m
y = f lT

p A m
p;y j8p 2 Pg 2 RH � W ; (11)

(Figure 2 blue planes). Similarly, the occlusion likelihood
can be computed asO = f maxn lT

p � n j8p 2 Pg 2 RH � W

(Figure 2 red plane). Together, the occlusion likelihood
O and the mixture likelihoodsf E m

y g are used to estimate
the overall likelihood of the individual mixtures assm

y =
p(F j� m

y ; � ) =
P

p max(E m
p;y ; Op). The �nal model likeli-

hood is computed assy = p(F j� y ) = max m sm
y and the

�nal occlusion map is selected accordingly asZ y = Z �m
y 2

RH � W where �m = argmaxm sm
y .

3.2. Endtoend Training of CompositionalNets

We integrate our compositional model with DCNNs into
Compositional Convolutional Neural Networks(Composi-
tionalNets) by replacing the classical fully connected clas-
si�cation head with a compositional model head as illus-
trated in Figure 2. The model is fully differentiable and can
be trained end-to-end using backpropagation. Algorithm 1
shows the initialization and training of our Compositional-
Nets as pseudo code. The trainable parameters of a Com-
positionalNet areT = f !; � ; A y g. We optimize those pa-
rameters jointly using stochastic gradient descent. The loss
function is composed of four terms:

L (y; y0; F; T ) = L class (y; y0) +  1L weight (! )+ (12)

 2L vmf (F; �) +  3L mix (F; A y ): (13)

L class (y; y0) is the cross-entropy loss between the network
output y0 and the true class labely. L weight = k! k2

2 is
a weight regularization on the DCNN parameters.L vmf

and L mix regularize the parameters of the compositional
model to have maximal likelihood for the features inF .
f  1;  2;  3g control the trade-off between the loss terms.
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