

Scalable Multi-Label Annotation

Jia Deng Olga Russakovsky Jonathan Krause, Michael Bernstein Alexander Berg Li Fei-Fei

Multi-label annotation

Data Item

Labels

Table	Chair	Horse	Dog	Cat	Bird
+	+	_	_	_	_

Task: Crowdsource object labels for images.

Application: Benchmarking, training, modeling

Generalization:

- musical attributes of songs
- actions in movies
- sentiments in documents

IM ... GENET

Large-Scale Visual Recognition Challenge ILSVRC 2010-2014

Current focus: 200 Category Detection (~100,000 fully labeled images)

The New Hork Times

Consulting

Table Cl	hair Horse	Dog	Cat	Bird
?	? ?	?	?	?

Table	Chair	Horse	Dog	Cat	Bird	
+	?	?	?	;	?	

Table	Chair	Horse	Dog	Cat	Bird	
+	+	?	?	?	?	

Table	Chair	Horse	Dog	Cat	Bird
+	+	-	?	?	?

Table	Chair	Horse	Dog	Cat	Bird
+	+	-	-	?	?

Table	Chair	Horse	Dog	Cat	Bird
+	+	-	-	-	?

Table	Chair	Horse	Dog	Cat	Bird
+	+	-	-	-	-

Cost: O(NK) for N images and K objects

Table	Chair	Horse	Dog	Cat	Bird
+	+	-	-	-	-
+	-	-	-	+	-
+	+	-	-	-	-

Table	Chair	Horse	Dog	Cat	Bird	
+	+	-	-	-	-	
+	-	-	-	+	-	
+	+	-	_	-	-	

Correlation

Sparsity

Selecting the Right Question

Goal:

Get as much utility (new labels) as possible, for as little cost (worker time) as possible, given a desired level of accuracy

Accuracy constraint

- User-specified accuracy threshold, e.g., 95%
- Majority voting assuming uniform worker quality

[GAL: Sheng, Provost, Ipeirotis KDD '08]

 Might require only one worker, might require several based on the task

Cost: worker time (time = money)

expected human time to get an answer with 95% accuracy

Question (is there)	Cost (second)
a thing used to open cans/bottles	14.4
an item that runs on electricity (plugged in or using batteries)	12.6
a stringed instrument	3.4
a canine	2.0

Utility: expected # of new labels

						Yes	Table	Chair	Horse	Dog	Cat	Bird
Table	Chair	Horse	Dog	Cat	Bird	103	+	?	?	?	?	?
?	?	?	?	?	?							
	-		-	•		No	Table	Chair	Horse	Dog	Cat	Bird
ls	Is there a table?								?	?	?	?
	utility = 1											

Utility: expected # of new labels

utility =
$$0.5 * 0 + 0.5 * 4 = 2$$

Selecting the Right Question

Pick the question with the most labels per second

Query: Is there a	Utility (num labels)	Cost (worker time in secs)	Utility-Cost Ratio (labels per sec)
mammal with claws or fingers	12.0	3.0	4.0
living organism	24.8	7.9	3.1
mammal	17.6	7.4	2.4
creature without legs	5.9	2.6	2.3
land or avian creature	20.8	9.5	2.2

Results

- Dataset: 20K images from ImageNet Challenge 2013.
- Labels: 200 basic categories (dog, cat, table...),
 64 internal nodes in hierarchy

Results

- Dataset: 20K images from ImageNet Challenge 2013.
- Labels: 200 basic categories (dog, cat, table...),
 64 internal nodes in hierarchy
- Setup:
 - 50-50 training test split
 - Estimate parameters on training, simulate on test
 - Future work: online estimation

Results: accuracy

Annotating 10K images with 200 objects

Accuracy Threshold per question (parameter)	Accuracy (F1 score) Naïve approach	Accuracy (F1 score) Our approach
0.95	99.64 (75.67)	99.75 (76.97)
0.90	99.29 (60.17)	99.62 (60.69)

Results: cost

Annotating 10K images with 200 objects

Accuracy Threshold per question (parameter)	Cost saving (our approach compared to naïve approach)
0.95	3.93 x
0.90	6.18 ×

Results: cost

Annotating 10K images with 200 objects

Accuracy Threshold per question (parameter)	Cost saving (our approach compared to naïve approach)
0.95	3.93 x
0.90	6.18 x

6 times more labels per second

Conclusions

Speeds up crowdsourced multi-label annotation by exploiting the structure and distribution of labels. Could be a bargain for you!

