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Abstract

Systems with stochastic dynamics and complex structures are pervasive in the real
world. Examples abound in a variety of domains, and include the flow of wealth in
the stock market, and the ecology of evolving ecosystems. Such systems are composed

of many variables that tend to interact in a structured fashion.

The ability to perform inference in such systems is key to many applications, such
as tracking or learning based on observed behavior over time. The main obstacle to
scalability is the need to reason with probability distributions, which quickly become
unmanageable with more than a few variables. In the static case, Bayesian Networks
are known to provide an appropriate solution for structured systems. In the dynamic
case, inference is almost always intractable, even for nicely structured processes. Intu-
itively, this is because correlations propagate over time from one variable to another,

resulting in all variables becoming fully entangled.

These correlations are shown to be typically weak, and, for inference purposes,
to have a limited lifetime. These phenomena are exploited in an efficient approxi-
mate inference algorithm for stochastic processes represented as Dynamic Bayesian
Networks (DBNs), by factoring out provably weak correlations. Under certain as-
sumptions, it is shown that, even if approximate inference goes on forever, the total
approximation error remains small and bounded on expectation. Novel notions of
“weak” and “sparse” interaction are introduced, to capture quantitative aspects of
the interaction strength between subprocesses. These notions are useful both to refine
the estimation of inference errors, and to guide the design of approximations. Ex-
perimental performance and accuracy evaluations are provided for tracking complex

systems borrowed from real life.



With regard to learning the structure and parameters of partially observable pro-
cesses, it is shown how approximate inference can greatly accelerate structural and
parametric learning, with minimal accuracy penalty. An additional temporal ap-
proximation based on similar ideas is also shown to produce high-performance online
learners. Finally, it is suggested how to discover hidden state variables simply by iden-
tifying unexplained temporal correlations. Experimental results are given in which
DBN structures and parameters for several real-life stochastic processes are learned

from raw time series data.
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Chapter 1

Introduction

Complex stochastic systems are pervasive in real life. From the changing patterns of
air masses that define our climate, to the delicate equilibrium of populations in an
ecosystem, to an orchestrated immune response against a bacterial invasion, to the
chaotic motion of pedestrians across a large city—in all these examples, complex and
highly structured systems seem to obey hidden laws, whereby a patient order emerges
from the volatility of the instant. In all these examples, a large stochastic system,
composed of myriad hidden random processes interacting with each other in pre-
cise ways, evolves with utter unpredictability, yet can be reliably tracked, explained,

anticipated, and learned.

In this thesis, we study inference and learning algorithms for complex stochastic
processes, i.e., evolving systems composed of a number of subprocesses which inter-
act with each other in structured ways, albeit non-deterministically. In structured
processes, variables tend not to interact indiscriminately with all the other variables;
rather, interactions are often limited to small subsets of neighboring variables, form-
ing sparse dependency graphs with complex structures. The study of such processes
is very important, if only because many processes found in real life are similarly

patterned.
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1.1 Motivation

Although well-known and effective inference methods exist for many classes of stochas-
tic processes, such as Kalman filters and related techniques for Gaussian processes,
reasoning with complex processes remains an unsolved problem, due to the general
lack of scalability of those methods. For example, roughly speaking, the mere repre-
sentation of the state distribution in a discrete multi-variate system takes exponential
space in the number of variables. The scalability problem is even more acute when
complex processes are richly and compactly modeled as dynamic Bayesian networks,
which do not afford the same scalability of inference as provided by regular Bayesian
networks in the atemporal case. As it turns out, there are very fundamental reasons
why scaling up inference in stochastic dynamic systems is essentially infeasible, in
stark contrast with the static case, where adequate process structure goes a very long

way to make inference efficient.

The ability to reason effectively about large processes, however, is essential for
many purposes. In the natural sciences, for example, it is common investigative prac-
tice to conduct extensive simulations of a phenomenon of interest, using handcrafted
models that are successively refined based on the results of previous simulations. Since
the vast majority of systems studied this way are—at once—dynamic, stochastic, and
complex, it is clear that any simulation technique based on rigorous probabilistic in-

ference will soon meet some fundamental tractability limitations.

The tractability problem is even more acute when one wishes to induce explana-
tory models directly from measurement data. Learning a model from data is, in
a sense, very similar to the manual investigative process above; the widely used
Expectation-Maximization algorithm for learning under uncertainty is actually based
on an alternation between inference and model refinement. One of the consequences
of this dependence on inference, is that whatever scalability barriers were faced by
probabilistic inference methods will be encountered many times over upon attempting

probabilistic learning.

Even more challenging than our metaphorical scientist’s successive adjustments to

his handcrafted model, is the task of coming up with a working model without relying
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on much if any prior knowledge about the system. In the world of machine learning,
this is what structure discovery is to parametric tuning. Here, the computational
complexity is even greater, as the learner must now search a large discrete space
of competing structures, in addition to optimizing values in a continuous space of

probabilities.

1.2 Summary of contributions

In this dissertation, we show that probabilistic inference in complex dynamic systems
does not always need to be intractable, if only we tolerate some approximations in the
results. More precisely, we show that, just as the structure of a static model played
a dominant role in rendering Bayesian inference feasible, the structure of a dynamic
model can be exploited to greatly reduce the apparent complexity of approximate
inference in dynamic Bayesian networks, depending on the structure of the model.
Based on those insights, we propose a truly scalable approximate inference algorithm
for dynamic Bayesian networks. We also provide a thorough analysis of the errors
incurred by the approximations, and discuss the accuracy-vs.-complexity trade-offs

in relation to the structure of the model.

Building on those results, and in view of the central role that inference plays
in learning, we then naturally address the problem of learning structured dynamic
models under uncertainty. We first present a scalable and efficient algorithm for
learning the numerical parameters of a model given its graphical structure, both in
an off-line and in an on-line fashion. We provide ample experimental evidence that our
learning algorithm hardly suffers at all from using approximate inference as its core,

while being significantly faster and much more scalable than competing techniques.

Lastly, we explore the structural learning problem. Using a similar approximation
framework as before, we develop a learning algorithm able not only to learn the
structure and parameters of the model, but also to populate it with any necessary
hidden variables. We illustrate the behavior of this algorithm on a few synthetic and

real-life learning tasks.
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1.3 Overview of the thesis

The rest of this thesis is organized as follows. The core of the exposition is articulated
in two main threads: an Inference part, from Chapter 3 through 6, and a Learning
part, from Chapter 7 through 9.

First, in Chapter 2, we briefly recapitulate some important notions of probability
and information theory.

Turning to inference, in Chapter 3, we recapitulate a series of important notions
relating to stochastic processes, Bayesian networks, and dynamic Bayesian Networks,
including a reasonably detailed description of the classic BN inference algorithm.

In Chapter 4, we first study why the classic inference methods, which were so
successful for BNs, are bound to fail when applied to DBNs due to an irremediable
intractability caused by the temporal dimension. From the insights of this analysis,
we propose an alternative solution based on approximate inference. We also provide
some empirical validation for our algorithm.

In Chapter 5, we analyze the properties of our algorithm, focusing on the long
term effects of repeated approximation. In particular, we show that, due to a stochas-
tic contraction phenomenon, accumulated errors remain nicely bounded rather than
diverge to infinity. We also show that the contraction benefits can be maximized by
selecting approximations that match the structure of the process, thereby reducing
the error.

In Chapter 6, we refine our study of the approximation error, this time focusing
on the incremental error incurred at each approximation step. This perspective leads
us to introduce quantitative measures of the weakness and sparsity of interactions in
complex hierarchical systems, bringing us a refined understanding of how information
propagates and correlations arise in such systems.

Shifting our focus to learning, in Chapter 7, we recapitulate a number of the most
relevant learning algorithms for partially observable processes, noting that they all
rely heavily on multiple probabilistic inference to cope with partial observability.

In Chapter 8, we show how our approximation techniques can be used in para-

metric learning to break the inference bottleneck. We also propose a theoretically
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sound algorithm for on-line learning, amd provide experimental validation.

In Chapter 9, we address the problem of structural learning, and propose a novel
method for discovering hidden state variables by identifying temporal correlations in
the raw data. We present an algorithm that allows us to learn complete structured
DBN models from raw time series data. We illustrate the working of the algorithm
in a few experiments with synthetic and real-life data.

We devote Chapter 10 to a discussion of related approaches from the literature.

Finally, in Chapter 11, we give a brief conclusion and outline a couple of future

research directions.

1.4 Original publications

This dissertation covers the results of research performed during the years 1997-1999.
Chapters 2, 3, and 7 summarize some relevant background material known in the art,
while Chapters 4, 5, 6, 8, and 9 present our contributions.

The results of Chapters 4 and 5 were originally published in [BK98b]. The contents
of Chapter 6 first appeared in [BK99|, Chapter 8 in [BK98a], and Chapter 9 in
[BFK99.
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Chapter 2
Background

Before delving into stochastic processes and Bayesian inference, it is useful to reca-

pitulate a few useful concepts from probability theory and information theory.

2.1 Notions of probability theory

2.1.1 Probability spaces

Mathematically, a probability space is a triple (Q, ¥, P), where Q is a set of outcomes,
Y is a set of events, and P is a unit measure on the measurable space (€, ).

The set €2 may be viewed as the set of all possible states of the world, where each
distinguished state w exhaustively encompasses information relevant to all aspects of
the randomness present in the system; in other words, there is no random variable
or quantity, observed or not, that is not uniquely determined by the value of ). By
itself, however, specifying €2 is typically not enough to ascribe meaningful probabilities
to its elements, especially in the case of uncountable and continuous spaces, where
the probability of any particular outcome will most typically have to be zero. The
standard definition of a probability space is therefore measure-theoretic, whereby
probabilities are not defined on outcomes but on events, which are measurable sets
of outcomes. The set of measurable events, denoted X, is a non-empty collection

of subsets of €2 with the structure of a o-field, i.e., closed under complementation
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and under countable union and intersection of its elements. The pair (2, X)) is called
a measurable space. To make a probability space, the measurable space (Q,X) is
equipped with a probability measure P, i.e., a non-negative countably additive set
function P : ¥ — [0 --1] that assigns probabilities' to events, such that P[Q] = 1.

2.1.2 Random variables

The notion of random variable is useful when one seeks to restrict attention to only
a portion of the information contained in w, the random state of the world. More
precisely, a random variable is defined as a function X : Q — dom[X] from the state
space into any set of interest.

As the values taken by a random variable X are mapped to subsets of €2, or events,
they also define a transformation of the probability measure P : ¥ — [0 --1] into
another probability measure Py : ¥x — [0 --1], called the probability distribution?,
or, simply, distribution of X. The distribution Px is defined the natural way: if A
is a subset of dom[X] such that the event (X € A) is measurable, i.e., A C dom[X],
and {w: X € A} € ¥, then Px[A] =P[{w : X € A}].

For simplicity, the notation Py is never used: Px[A] is conveniently written
P[X € A]; similarly, if z € dom[X], Px[{z}] is abbreviated as P[.X = z].

2.1.3 Discrete spaces

The general definitions introduced above may be simplified in the case where the
outcome space € is finite or countably infinite, and each outcome w € €2 has a well-
defined probability P[{w}]. In this case, the event set 3 is the set of all subsets of €,

'Some authors use the term “probability” as an abbreviation for “probability measure”. In our
convention, a probability is the numerical value assigned by a probability measure to an event of
interest.

2Tt is noted that, often in the field of statistics, random variables are specifically required to take
values on the real line; correspondingly, statisticians often refer to “distributions” as probability
measures over measurable subsets of the reals. We do not impose such restrictions; indeed, in the
probability space (Q, X, P),  itself may be seen as a random variable (via the identity map) whose
distribution is P.
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i.e., ¥ = 292 and the probability of any event F € ¥ is given by:

PE] = ) P[{w}],
weE
where P[{w}] > 0 for all w € E and P[Q}] = 1.

Since we focus almost entirely on the discrete case, this will be the default assump-
tion, unless explicitly specified otherwise. In addition, when talking about a discrete
space €2, we will often omit mention of the event set, which is implicitly taken as
Y =29

2.1.4 Joints and marginals

Let V = {Xi,..., X} be a set of random variables over some discrete space €2, on
which a probability measure P is assumed. Let also 1, denote the characteristic

function of the predicate p. The joint distribution over V is defined as follows:

Vi, € dom[X4], ..., x, € dom[X,,]
P[Xl = T, ,Xn = In] = Z 1X1[w]:w1 1Xn[w]=$n P[w] .

The marginal distribution over a subset V' = {X,,, ..., X;,} C V is defined in a
similar way, substituting the variables in V' for those in V. Although they share a
definition, joint and marginal distributions convey different meanings: a distribution
is called joint if the emphasis is placed on the plurality of random variables; it is
referred to as marginal if the emphasis is placed on the restriction to some variables

of interest.

2.1.5 Operations on measures

It is easy to see that the marginal P[V'] from the previous section can be obtained
by integrating the joint P[V] over the domains of all the variables in the difference
V' \V'. More generally, let V and V' be sets of variables over a discrete space €2, such

that V' C V; let also P[V] be any measure over V (not necessarily a distribution).



12 CHAPTER 2. BACKGROUND

The marginalization of P[V] over V' is written:
PV = ) PIVI],
V\V/

and satisfies, for every v’ € dom[V']:
P[V’ = U’] = Z 1vl[w]:1ﬂ f’[w] .

Now, let P;[X] and P,[Y] be two measures over the variables or sets of variables
X and Y, defined over a common state space 2. The product of P1[X] and P,[Y] is

the joint measure P[X, Y], written:
P[X,Y] = P,[X]®@Py[Y],
and defined as:

PX=2Y=y = ) (Lxp=Pi[X =2]) (lyp=y P2[Y =1y]) .
The product P;[X]®P,[Y] is sometimes called the outer product of P1[X] and Py[Y].
The above definition still applies when X and Y are sets of variables with a non-empty

intersection.

2.1.6 Conditional distributions

Let (€, 2% P) be a discrete probability space, and X and Y be two variables or sets of
variables in that space. The conditional distribution of X given Y, denoted P[X|Y],
is a measure over X and Y, such that P[X,Y] =P[X|Y] ® P[Y].

The result of conditioning a distribution P[X, Y] on an event Y = y is the distri-
bution P[X|Y = y], given by:

P[X =12,V =y]
Yy PX=2Y=y]

PX=z|]Y =y| =
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2.1.7 Expectation

Let f: dom[X] — R be a real-valued function of a discrete random variable X with
probability distribution P[X]. The expectation of f[X] is defined as:

Ee[f[X]] = ) PX=4d]fla].

zedom[X]

2.2 Notions of information theory

We now recapitulate a few of the central notions of information theory, and refer the

reader to the excellent treatise by Cover and Thomas [CT91] for more information.

2.2.1 Entropy

Entropy is the most fundamental information theoretic notion. It expresses the

amount of randomness or uncertainty of a distribution or random variable.

Definition 2.1 Let ) be a discrete space, and ¢ be a probability distribution defined
over it. The entropy of the discrete distribution ¢ is defined as:

Hig] = Egpllog, é]

= 3 plllog, 1 .

wEeN (p[w]
where (Az. zlog, 1)[0] = 0, to ensure continuity at the limit when z — 0.

The entropy of a discrete distribution is always non-negative, and is zero if and
only if all the probability mass is concentrated on a single element of the space. When
computed using the logarithm in base 2, the unit of entropy is the bit.

The entropy of a discrete random variable X in some probability space (2, 2%, P),
is defined as the entropy of the probability distribution induced over the discrete
space formed by the domain of the variable, i.e., H X| = H[P[X]]. It is noted that
the notation H[X] implies without mentioning it the probability space in which X is
defined.
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2.2.2 Conditional entropy

Conditional entropy expresses the amount of randomness expected to remain in a

random variable or distribution after the value of a second variable becomes known.

Definition 2.2 Let ¢[X, Y] be a discrete probability distribution defined over the
product domain of two variables X and Y. The conditional entropy of X given Y is
defined as:

1
H[X|Y| = Ey|Exyl|log, —=]] -
[ ‘ ] Y[ X|Y[Og2 QO[X|Y]]]
The conditional entropy of a discrete variable is always bounded by its uncondi-
tional entropy, i.e., 0 < H[X|Y| < H[X], for any given distribution ¢[X, Y].

2.2.3 Relative entropy

Introduced by Kullback and Leibler [KL51], the discrete relative entropy, also called
KL divergence, is a measure of the difference between a given distribution ¥ and
a reference distribution ¢ over the same discrete space. As detailed by Cover and
Thomas [CT91, chap. 2], it can be thought of quantifying the information theoretic
loss or inefficiency incurred by using the distribution % when the true distribution is

. It is defined as follows.

Definition 2.3 Letting ¢ and % be two distributions over the same discrete space
Q, the relative entropy or Kullback-Leibler divergence of 9 with respect to ¢ is given
by:

Dialp|[#] = Egliog, ¥]

= Y gl log, 21

w; €N ,l)b[wZ] ’

where (01og, 2) = 0 for all z.

Discrete relative entropy is always non-negative, and is zero when and only when

the two distributions are equal. However, it is not a distance metric, as it does not
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obey the triangle inequality. It is also asymmetric, since, in general, Dki[p | 9] #
Dk || ¢]. When the logarithm is computed in base 2, relative entropy is expressed

in bits.

2.2.4 Mutual information

Mutual information is a measure of the correlation between two variables, or sets of
variables, in some probability space, here assumed discrete. Intuitively, it captures
how much information about one variable can be derived from knowledge about the

other.

Definition 2.4 Let ¢ be a probability distribution defined over a discrete space ).
Let X and Y be two random variables, or sets of random variables, defined in that

space. The mutual information between X and Y is defined as:
IX;Y] = Drifp[X,Y]|o[X]® ¢[Y]] .

It is symmetric and non-negative, and is null whenever the pairs of variables are

mutually independent.

2.2.5 Conditional mutual information

The related concept of conditional mutual information measures the correlation be-

tween two variables, in the expected context provided by a third variable.

Definition 2.5 With ¢ and ) as above, let X, Y, and Z be three random variables
or sets of random variables. The conditional mutual information between X and Y

given Z is defined as:
IX;Y[Z] = Eguz[Drilp[X,Y|Z]|o[X|Z]® @[Y|Z]] -

Again, it is noted that I[X;Y|Z] depends on ¢, which shall be clear from context.
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Chapter 3
Reasoning under uncertainty

Our focus in this thesis, is reasoning with discrete-time finite-state Markov processes,
and especially those featuring extra structure. In the simple case, discrete Markov
processes are ideally represented using the well-known hidden Markov model (HMM)
formalism, which does little more than specifying a flat state space and an explicit
stochastic transition law, usually conveyed as a large matrix. Here, we are mainly
interested in structured processes, i.e., processes whose state space is not flat, but
factored in a number of state variables, which may have structured ways of interact-
ing with each other. Such systems are more succinctly and usefully modeled using

dynamic Bayesian networks (DBN), which will most of this thesis is concerned.

3.1 Markov processes

3.1.1 Basic framework

The focus of this thesis is on discrete-time, finite-state, partially observable, station-
ary, time-invariant, complex stochastic processes.

A stochastic process is a dynamic system which evolves non-deterministically. In
other words, the state of the system changes over time, in a manner that is at least
partially affected by randomness. It follows that the future state of a stochastic

process cannot be predicted exactly, even with perfect knowledge of the trajectory of

19
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the system up to the present time. We say that a system is factored if it is described
in terms of a number of state variables, rather than a flat space of enumerated states.
We use the words structured and compler to convey the added connotation that the
variables interact with each other in some structured way. The system is stationary
if the laws that govern its evolution over time are themselves time invariant.

A partially observable process is a process in which the state variables are not
directly accessible to observation; they are hidden, and can only be observed indirectly
via the influence they exert on response variables, often tainted with noise and other
distortions. Due to the incurred loss of information, it is typically not possible to
know the state of such a system with perfect accuracy at any point in time (except
perhaps at some origin at which the process may have started in a determined state).

Under the discrete time assumption, time is assumed to range over a discrete set,
which we conventionally take as the set of integers. The notation S® = s is used to
denote that the state of S at time ¢ is s, where s € S = {51, ..., 8, }, and S is the finite

set, of possible states of the system.

3.1.2 The Markov assumption

Since the state of a stochastic process is rarely known with certainty, reasoning about
this state will require consideration of collections of alternate realities. Probability
theory provides the appropriate framework, allowing us to treat the uncertain state
as a random variable with an associated probability distribution.

At first sight, reasoning with probability distributions may seem a daunting task—
and even more so in dynamic systems, since we would presumably not only deal with
distributions of states at given points in time, but with distributions of trajectories
covering the entire life of the system. In principle, this level of generality is required
for reasoning with arbitrary stochastic processes.

The situation becomes significantly easier, however, if the process is Markovian.
A Markovian process is a process that satisfies the Markov assumption, which states
that the future trajectory is independent of the past given the present state of the

system. In other words, the Markov assumption asserts that the present state of the



3.1. MARKOV PROCESSES 21

system contains enough information to make its future independent from its past,
i.e., that P[StHD SO S0] = p[St1)|s®)],

Unfortunately, in a partially observable system, perfect knowledge of the present
state is unattainable. However, as Astrom [Ast65] shows, a probability distribution
over the present state plays essentially the same role of decoupling past and future, for
Markovian systems. Intuitively, to each distinct state in the distribution, corresponds
a possible world with that state in which the Markov assumption holds, and to which
we have simply assigned a probability. As they reflect the belief of the observer, such

state distributions are called belief states.

Provided the Markov assumption applies, it follows that many reasoning tasks can
be performed exclusively using instantaneous belief states, as opposed to distributions
over complete trajectories. As shown in [Ast65], examples of such tasks include the
estimation of the current state of the process, the prediction of its future evolution,
the explanation of past observations, as well as the synthesis of an optimal control

input.

More precisely, it follows from the Markov property that a belief state at some
time ¢ captures all information about the past (prior to t), that is relevant to the
future evolution of the process (posterior to t), and, in particular, predicting future

state distributions and making optimal decisions.

Not only is the Markov assumption very useful, it is also very reasonable. In
particular, the laws of classical physics are Markovian, so it should be expected that
any system that is accurately described by those laws should have a Markovian model.
For this reason, the Markov property is almost universally relied upon when reasoning
about stochastic dynamic models—although we hasten to add that it is sometimes

deemed useful to depart from this requirement in specific applications.

For mathematical convenience, we also assume our stochastic processes to be time
invariant. This means that the transition probability from state s; at time t — 1 to

state s; at time ¢ is independent of the value of ¢, i.e., V¢, :

P[SUD = 5[50V = 5] = P[SU7Y = 550D = 5] .
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3.1.3 Formalism

®)

Using s, to denote the event S () = s, it follows from the above assumptions that

the process can be described via a transition model S, defined as follows: V¢ :
Sls; B s;] = PlsP[sY)

In the case of an HMM, § is often described explicitly as an n x n matrix 7" such
that T; ; = S|s; S s4].

In a partially observable Markov process, the state is not directly observable.
Rather, a response R® is observed, where R is assumed drawn from a finite set
R = {ry,...,mn} of possible responses. The response at a given time slice depends
stochastically and exclusively on the state at the same time slice; i.e., R® is condi-

) to denote the event

tionally independent of any S®) and R®) given S®. Using r,(ct
R® = 1., the response of the process can be described via an observation model R,

defined as, for any t¢:
Rlsi Br] = PrPs) .

The Markov assumption implies that all the historical information needed to mon-
itor or predict the evolution of the process is contained in its present state, or more
exactly the partial knowledge of the present state that is theoretically available. This
partial knowledge can be summarized in a belief state, or probability distribution over

the possible states.

Since the knowledge contained in the belief state is to be updated every time a
new observation is available, it is necessary to distinguish between the belief states

before and after such an update.

Definition 3.1 The prior belief state at time ¢, denoted o(*?), is the distribution over
the process state at time ¢, given the response history from the origin of time up to

but not including time ¢. Letting r,(cll) denote the response observed at time [, for any
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[, the prior belief state is defined as:
. 0 -1
o(*t [si] = P[sgt)|r,(co), ---’Tl(ctt,l)] )

Definition 3.2 The posterior belief state at time ¢, denoted o(**), is the distribution
over the process state at time ¢, given the response history from the origin of time up

to and including time ¢. With r,(gll) as above:

. t 0 t—1 t
a®s;] = PO, 0 0]
Unless specified otherwise, an unqualified belief state at some time ¢ is always

understood to be the posterior belief state at time t.

3.2 Filtering

Monitoring or filtering a stochastic process is the operation of maintaining an up-to-
date belief state, as time advances and new process responses are observed. The orig-
inal optimal filtering algorithm is the celebrated Kalman filter [Kal60], whose inven-
tion arguably marks the era of effective reasoning with partially observable stochastic
systems.

In principle, the procedure is quite straightforward if the transition and observa-

(te

tion models S and R are known. The current posterior belief state o**) can be derived

(tflo

from the previous posterior belief state o ) and the current observed response R®),

in a two-state computation, as follows:

1. The prior belief state o(*? for the current time slice is obtained by propagating

o(*"1*) through the stochastic transition model S:

o*s;] = > 0"[si)S[s; ¥ 5]
i=1

(te

2. The posterior belief state ¢(**) is then obtained by Bayesian conditioning of o(*?
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on the observed response R®) under the observation model R:

o*V[s;] R[s; &% RO

0'(75') [sz] - o e ; .
Y oI R[sy — RW]

Abstractly, the transition model & can be viewed as a function mapping the

(t=1¢) to the probability distribution ¢(*, which is also the

probability distribution o
expected belief state at time ¢, where the expectation is taken over the distribution
of responses at time ¢ given the belief state at time ¢ — 1. Similarly, to the set
R = {ri,...,mn} of possible responses at time t, corresponds a family of functions
R,,, mapping o) to ¢ in the event that R®*) = r,. Therefore, assuming that the
response at time ¢ is R, the two-stage update rule for belief states is given by the
diagram:

ot) Ry te)

tflo) Rl 0_( ’

o S o

where the second map is parameterized by R®.

The actual methods needed to carry the above two steps depend on the chosen
representation. In the case of HMMs, as illustrated above, the computation reduces to
straightforward vector and matrix operations. Conversely, structured representations
require more sophisticated algorithms. A detailed account of probabilistic inference
using HMMs and variants thereof can be found in [SHJ96].

3.3 Bayesian networks

Bayesian Networks (BNs), named after Reverend Thomas Bayes (1702-1761), were
first devised as a compact and expressive representation of structured multivariate
probability distributions over discrete domains [Pea88]. At first an expressive lan-
guage with limited inference capabilities, this formalism quickly became widely used
as the method of choice for reasoning under uncertainty. This success is due in large
part to the development of powerful inference algorithms, which could exploit the
model structure to great computational advantage. A number of extensions to the

formalism have subsequently been proposed, including Gaussian and Hybrid BNs for
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Volcanic Eruption Oil Consumption | P( OC) false | true
0.2 0.8
Snemoncas]

VE=fase, OC=fase | 0.99 | 0.01
VE=false, OC=true 025 | 075

VE=true, OC=fase 0.50 0.50
Toxic Contaminants T | VE=true, OC=true 0.10 | 0.90

Figure 3.1: Example of Bayesian network, specified as a directed acyclic graph, where
each node is associated with the conditional probability distribution of the random
variable it represents (shown for OC and GG only). The model and numbers shown
are fictitious.

Global Warming

modeling continuous systems [SK89, Mur98, LP01], as well as, more in line with our

subject, Dynamic BNs for modeling systems that evolve over time [DK89].

Example 3.3 Consider the Bayesian network represented in Figure 3.1, which de-
fines a joint probability distribution P[VE, OC, AD, GG, GW, TC]| over the six random
variables shown on the figure. The BN is composed of a directed acyclic graph over
the six variables (represented as nodes), and an annotation which specifies the con-
ditional probability distribution of each variable given its immediate parents in the
graph. The joint probability distribution is then defined as the product of the six

conditional probability distributions:

P|VE, OC, AD, GG, GW, TC] =
P[VE] ® P[OC] ® P[AD|VE] ® P[GG|VE, OC] ® P[GW|AD, GG] ® P[TC|OC]

Intuitively, each random variable is influenced only by the value of its direct parents,
or, more precisely, it is not directly influenced by any variable but its parents. For
example, GlobalWarming is directly influenced by AirborneDust and GreenhouseGases,
but not by VolcanicEruption or OilConsumption. It follows that one easy way to sample
from this distribution is to sample each variable according to the probability distribu-

tion that corresponds to the values of its parents. (The variables need to be sampled
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in topological order for the values of the parents to be available when needed.)

We now give a rigorous definition of the formalism.

3.3.1 Probabilistic semantics

Definition 3.4 A (static) Bayesian network over a set of variables U = {Uy, ..., U,}

is a tuple B = (G, ©) consisting of the following two components:

1. A directed acyclic graph G = (V,E), where V and E are the set of vertices and
edges, respectively. The vertices in V are in a one-to-one correspondence with
the variables in U, which they represent. The set of edges E defines a binary,

ordered, acyclic, irreflexive relation over the set of vertices V.

2. A parameterization or quantification © of G, which associates to each ver-
tex V of V a conditional probability distribution P[V|Pa[V']], where Pa[V] =
{V":(V',V) € E} is the set of all vertices of V which are the origin of an edge

in E whose extremity is V.

It can be shown that, under regularity assumptions which are always satisfied
in the discrete case, a Bayesian network B induces a joint probability distribution
over the Cartesian product of the respective domains of all variables in U. This

distribution is given by the outer product:

PU] = [[PwiraU]l,
i=1
where P[X| denotes the entire probability distribution of X, and P[X|Y] denotes the
collection of probability distributions of X given all instantiations of Y, indexed by
the instantiations of Y.

Equivalently, the individual probabilities of instantiations of U are given by:

Plu] = []Pluil{u;:U; € Pali]}] .

i=1
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3.3.2 Structural independence assumptions

It follows from the above definition that the network graph G encodes a number
of conditional independence assertions that the induced probability will necessarily
satisfy, regardless of the quantification ©. To emphasize this point, we sometimes
qualify them as structural.

An independence assertion is a statement of the form “X and Y are conditionally
independent given Z”, usually written X | Y|Z, and which formally means that, for
all possible tuples (z,vy, z) € dom[X] x dom[Y] x dom|[Z], the equalities P[z|y, z] =
P[z|z] and Ply|z, z] = Ply|z] hold. Informally, given the knowledge that Z = z, the
distribution of X would not be affected by any additional information about Y. The
above holds even if X, Y, and Z are sets of variables, which need not be necessarily
disjoint.

As shown in [Pea88, SS90], the structure of the graph encodes a number of con-
ditional independence assertions, which can be logically derived from a set of axioms
known as the graphoid arioms. The complete set of independence assertions that
can be derived from the graph is captured by a graph-theoretic relation known as d-
separation. Specifically, Z d-separates X and Y, if and only if X 1 Y|Z derives from
the network graph and the graphoid axioms, i.e., if and only if X | Y|Z structurally.

A complete characterization of d-separation is provided by the notion of active
path. Intuitively, an active path between two variables X and Y reflects a chain of
structural dependences between neighboring variables along the path. Active paths
are structural properties of a Bayesian network, and depend exclusively on the struc-
ture of G, and on which nodes of V correspond to evidence variables, i.e., variables

whose value is externally observed.

Definition 3.5 Let G = (V, E) be the graph of a Bayesian network, and let V* C 'V
be the subset of evidence nodes in V. Let us say that a node V' on an undirected
path in G is the focus of a v-structure, or v-node for short, if the path contains two
edges of G that are directed toward V. Then, the active paths between elements of
V \ V* are exactly the undirected paths in G that satisfy the two conditions:

1. every v-node on the path either is in V* or has at least one descendent in V*;
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2. every non-v-node node on the path is in V' \ V* (including the two extremities
of the path).

The following fact links the concept of active path to the structural independence

semantics of Bayesian networks for individual variables.

Fact 3.6 In a Bayesian network B = (G,0), two nodes X and Y are structurally
independent given a set of nodes Z, i.e., X LY|Z, if and only if there is no active

path between X and Y when Z is taken as the evidence set.

The following fact allows us to generalize structural independence semantics to

sets of variables.

Fact 3.7 Two sets of nodes X and Y are independent given a third set Z, denoted
X1YI|Z, if and only if X LY|Z forall X e X and Y €Y.

We also have the following corollary, which conveniently summarizes some of the

structural independence assertions encoded by a Bayesian network.

Corollary 3.8 In a Bayesian network B = (G, ©), any variable is structurally inde-

pendent of its non-descendents given its parents in G, irrespective of ©.

To illustrate how those results apply, we now return to our previous example in

Figure 3.1.

Example 3.9 Going back to the example of Figure 3.1, it is easy to see that GW [ VE
and GW f OC, since each of VolcanicEruption and OilConsumption is an ancestor of
GlobalWarming, and there is no evidence node along the undirected path from Vol-
canicEruption to OilConsumption via GlobalWarming.

More interestingly, we also have GW [ TC, even though GlobalWarming and Tox-
icContaminant do not influence each other in this model; they are nonetheless de-
pendent, as both have OilConsumption as common ancestor. However, we have
GW L TC|OC, since ToxicContaminant is no longer relevant to GlobalWarming once

OilConsumption is observed.
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Conversely, we have VE 1. OC, since VolcanicEruption and OilConsumption are a
priori independent in the model. However, we have VE £ OC|GG, since VolcanicErup-
tion and OilConsumption become competing explanations of a known outcome, once
GreenhouseGases is observed. Simlarly, we have VE £ OC|GW, since the observation
of GlobalWarming opens an active path between VolcanicEruption and OilConsumption.

3.3.3 Causal interpretation

Another useful intuition is given by the causal interpretation of Bayesian networks.
Under this interpretation, the network topology directly models the causal relation-
ships between the network variables, so that each directed edge between a pair of
variables represents a direct causal dependency from the origin of the edge toward its
extremity. Thus, each variable in the network jointly and stochastically depends on
its parent variables, and none other.

Although the causal interpretation is responsible for most of the intuitive appeal
of the formalism, and was, indeed, one of the early motivations for its creation, it
should be noted that Bayesian networks need not obey the causal interpretation.
In particular, the same probability distribution can often be represented by many
Bayesian networks with distinct topologies, most of which are causally incompatible
with each other. In general, however, for distributions that are modeled after causal
physical systems, causally faithful networks will typically provide the most compact

representation—an observation which has been exploited for learning causal relations
from data [HMC97] (see also [HS94]).

3.4 Inference

Bayesian inference is the process by which we answer questions such as: “Given that
A = a; and B = by, what is the joint probability that C' = ¢3 and D = d,”? More
precisely, a Bayesian network inference algorithm computes probability distributions
of the form P[C, D|A = a1, B = by], where A = a; and B = by are the evidence, C



30 CHAPTER 3. REASONING UNDER UNCERTAINTY

and D are the query, and P is a probability distribution given as a Bayesian network
over the variables A, B, C', D, and possibly others.

One of the most successful and widely used inference algorithms for (static)
Bayesian network is known as the junction tree or join tree algorithm, originally
due to Lauritzen and Spiegelhalter [LS88], and later extended in [JLO90]. A detailed
procedural presentation may be found in [HD94|, of which the following overview is

a summary.

3.4.1 Junction trees

The algorithm is composed of two major steps. The first step consists of a preprocess-
ing operation, in which the Bayesian network is transformed into a related structure
called a junction tree. The second step is the actual inference step, in which the distri-
bution over the query variables is calculated from the junction tree and the supplied

evidence.

Definition 3.10 A junction tree, also called join tree, clique tree, or cluster tree,
defined over a set of variables U, is a tuple T = (F, ®), consisting of the following

two components:

1. An undirected tree F, where with each node of F is associated a cluster of
variables, i.e., a non-empty subset of U. The clusters in F are required to
satisfy the running intersection property, which requires that all clusters in F
on the path between any two clusters X and Y contain all the variables in
XNY. It is also required that, for each variable U € U, the family of U, which
is defined as {U} U PalU], be contained in at least one of the clusters.

2. A set ® of belief potentials, which are defined as functions mapping each in-
stantiation of a set of variables to a non-negative real number. ® contains the

following potentials:

(a) cluster potentials: each cluster of F is attributed a potential over the

variables it contains;
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(b) sepset potentials: each sepset of F is associated with a potential over its
variables, where a sepset, or separator set, is defined as the intersection of

two adjacent clusters in F.

The junction tree is said to be locally consistent or calibrated, if, for each cluster X
and adjacent sepset S, the potential of S is identical to the potential of X marginalized

over the variables in S:

Z(bx = ¢g -

X\S

A junction tree T encodes a real-valued function over its set of variables U, ac-

cording to:

[1; #x,

P[U] L s

where ¢x. and ¢Sj respectively denote the cluster and sepset potentials of Y. In the
normalized case, where ) {; P[U] = 1, the function encoded by T is a joint probability
distribution over its set of variables U.

For any calibrated junction tree satisfying the above constraints, it can be shown
that the marginal probability over any cluster of Y is equal to the cluster potential. In
other words, ¢x = P[X] for any cluster X. It follows that the probability distribution
over any variable or set of variables Z can be computed from any cluster or sepset X

that contains Z, by simple marginalization, as follows:

PZ] = ) ¢x-

X\{z}

3.4.2 Graphical construction

The construction of a junction tree from a given Bayesian network involves a sequence

of graph transformations, whose steps are described next.
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Moralization

The first step is the construction of the moral graph Gy, which is an undirected graph
obtained by “marrying the parents” of each variable in the original Bayesian network
[LS88, LDLLI0]. More precisely, G is an undirected graph (Vys, Ear), where Vyy =V
as defined in the given Bayesian network. &£, contains one undirected edge for each
directed edge in £, and one undirected edge between each pair of vertices that are

the parents of the same vertex in G.

Triangulation

The goal of the second transformation is to ensure that the moral graph is trian-
gulated, or chordal, that is, every cycle of length four or greater contains a pair of
vertices connected by an edge not included in the cycle. The transformation consists
of adding edges to the moral graph until it achieves chordality. This is commonly
done using heuristics that seek to minimize the weight, or domain size, of the maximal

cliques that result from the triangulation (see [Kja90] for details).
This is an important phase, as the quality of the triangulated graph obtained in

this phase ultimately determines the computational cost of inference. Even though

Kjeerulft’s heuristic typically gives excellent results, the problem is known to be NP-
hard.

Clustering

The third operation is the identification of all maximal cliques in the triangulated
moral graph. The maximal cliques define the clusters in the junction tree. An identi-
fication procedure for arbitrary chordal graphs proposed by Golumbic [Gol80] is de-
scribed in [GVPI0], based on a particular ordering of the nodes which can be obtained
as Tarjan and Yannakakis suggest [TY84]. Huang and Darwiche [HD94] present an
alternative method which identifies the maximal cliques as the moral graph is being

triangulated.
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Junction

The last step of the construction is to arrange the set of clusters obtained in the
previous step into a junction tree that satisfies the running intersection property. An

efficient greedy construction is offered by Jensen and Jensen [JJ94].

3.4.3 Probability propagation

Once the structure of the junction tree has been determined, the various cluster
and sepset potentials must be determined before inference can be conducted. The

necessary steps are summarized in the following sections.

Initialization

The first required operation consists of assigning initial potentials to the junction tree,
so that it encodes the same probability distribution as the given Bayesian network B.
In other words, potentials are assigned to all clusters and sepsets to satisfy the global

semantic constraint:

I1; 9x,
I1; ¢s,

P[U]

This is obtained as follows. Each cluster and sepset is first initialized with the constant
potential which assigns the value 1 to any instantiation of the cluster or sepset. Then,
for each variable U in U, an arbitrary cluster Y that includes {U} U Pa[U] is selected,
and the potential ¢y of Y is multiplied by the conditional probability distribution
P[U|Pa[U]] associated with U in the Bayesian network. It can be shown that the
graphical construction of the junction tree guarantees the existence of at least one

suitable cluster Y for each variable U.

Calibration

Once the junction tree globally encodes the Bayesian network distribution, it remains

to make it locally consistent, ensuring that each sepset potential agrees with the
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potentials of its adjacent clusters when marginalized over the sepset variables. In

other words, for each cluster X and adjacent sepset S, it is required that:

Z(bx = o5 .

X\S

The local consistency requirement is achieved by a procedure known as calibration,
probability propagation, or message passing. The calibration procedure consists of
a series of local transformations, called message passes, between a pair of adjacent
clusters X and Y and their shared sepset S. A message from X to Y causes the
potential of S to become locally consistent with ¢x, while keeping the global semantic
constraint invariant. The messages are ordered in such a way that the consistency
achieved by previous messages is preserved. The details of the calibration process
may be found in [HD94].

Marginalization

As mentioned earlier, once local consistency and global semantics are achieved, the
marginal probability distribution over a set of variables may be readily extracted
from any cluster that includes it, provided such a cluster exists. In particular, queries

involving single variables can always be answered by the junction tree.

Joint queries

In the general case of queries P[Z] involving a set of variables Z C U, the easiest
approach is to require that all the queried variables be jointly contained in at least
one cluster. This condition can be achieved during the graphical construction of the
junction tree, by adding an undirected edge between each pair of variables in Z to
the moralized graph G,,, before the clusterization step as previously described. This
will force Z to form a clique, which will either cause Z to be in a cluster of its own,
or to be included in an even larger cluster.

It is noted that in the case where Z = U, the junction tree reduces to a single

huge cluster containing the entire set of variables U.



3.4. INFERENCE 35

3.4.4 Evidential conditioning

The above procedure answers unconditional queries of the form P[Z|, with Z C U,
although a slight modification will allow conditional queries of the form P[Z|W = w],
for any W C U and any w € dom[W].

To compute conditional probabilities of the form P[Z|W = w] using the junction
tree, one computes P[Z, W = w| and P[W = w|, and uses the definition of condi-

tional probability to obtain:

P[Z,W = w]|

PZ|W = w] T

where the denominator P[W = w| is advantageously computed as the sum:

PW=w| = Y PZW=w]|.

Incorporation

The required modification consists of incorporating the available evidence into the
potentials of the junction tree during or immediately after the initialization phase.
This is done by generating one evidence factor Aw, for each variable W; € W, defined
as a function over dom[W;| that is 0 everywhere, except for W; = w; where its value
is 1. Each evidence factor Ay, is incorporated multiplicatively into the potential
of a suitable cluster, exactly like the conditional probability distributions from the
Bayesian network. Since Ay, depends only on the single variable W;, it may be

incorporated into the potential of any cluster that contains W;.

Normalization

Following evidence incorporation, all probabilities subsequently computed using the
junction tree will be probabilities of events conjoined with the incorporated evidence.
It follows that a query over Z will produce the distribution P[Z, W = w|, as required.
As for the normalization scalar P[W = w], it is obtained by marginalizing the dis-

tribution P[Z, W = w] over the empty set, which amounts to taking the sum over



36 CHAPTER 3. REASONING UNDER UNCERTAINTY

all instantiations of Z. The conditional distribution of interest P[Z|W = w] is then

given by:

P[Z,W = w]|

PZW =w] = b

3.5 Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) [DK89] extend the Bayesian network framework
by providing an explicit discrete temporal dimension. As a Bayesian network repre-
sents a probability distribution over the possible states of a finite system, a dynamic
Bayesian network represents a probability distribution over the possible state histories
of a time-invariant process.

DBNs have been exploited in a number of interesting applications, ranging from
forecasting [DGH92] to speech recognition [ZR98], to the control of a water purifi-
cation station [JKOP89], to the study of automotive traffic [HKM*94] and vehicle
behavior [FHKR95].

A DBN is essentially a discrete stochastic transition model factored over a number
of random variables, and which describes a single step of the transition dynamics
of the process. The time invariance assumption ensures that this generic model
correctly represents the process dynamics at any point in time. The transition model
is encoded as a k-TBN, or k-time slice temporal Bayesian network. A k-TBN is a
fragment of Bayesian network over a set of time-dependent variables, that represents
semi-Markovian stochastic transition of order k — 1, i.e., a conditional probability
distribution over the variables given their £ — 1 previous values. Unless otherwise
specified, the term dynamic Bayesian network is usually used to denote a 2-TBN,

which is necessarily Markovian.

Definition 3.11 A k-time slice temporal Bayesian network, or k-TBN, over a set
of variables U = {Uy,...,U,} is a tuple B = (G, ©) consisting of the following two

components:
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"Anterior" "Ulterior" Givenseed Conditional distribution induced by the
timedice(s) - timedice distribution  2-TBN model

Figure 3.2: BN interpretation of the DBN semantics: (a) simple DBN represented
as a 2-TBN; (b) resulting unrolled BN over the first three time slices. Shaded nodes
denote observable variables.

1. A directed acyclic graph G = (V,E), whose vertices are organized in & lay-
ers. The layers are denoted by relative time indices in {—k + 1,..., —1, 0}, or,
equivalently, by absolute indices in {t — k + 1, ...,¢ — 1, ¢}, where t is a specified
time reference. V is such that, to each variable U € U corresponds exactly one
vertex U® in the layer having index ¢, and at most one vertex U*~% in each
layer of index t —d with 0 < d < k. E defines a binary acyclic relation, in which
all edges are further restricted to belong to V x V) where V) denotes the
last layer of V of index ¢.

2. A parameterization or quantification ©, which associates to each vertex U® in
the last layer of V, a conditional probability distribution P[U®|Pa[U®)]].

The semantics of DBNs are easily understood if we consider the operation of
“unrolling” a k-TBN into an ordinary BN. As illustrated in Figure 3.2, a k-TBN can
be unrolled into a BN simply by duplicating the nodes in the right-most column of
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the k-TBN over and over again, along with their associated conditional probability
distributions, in the obvious way. (We call ulterior the right-most layer of the k-TBN,
and anterior the k — 1 layers on which the ulterior layer depends.) This produces
an ordinary BN, albeit arbitrarily large, depending on the number of time slices over
which the DBN is unrolled. We call the variables of the DBN instantaneous when
indexed by time; 7.e., the nodes in the unrolled BN represent as many instantaneous

variables.

To complete the conversion, it remains to specify an initial distribution for the
very first k£ — 1 slices of the unrolled DBN (which correspond to the anterior layers
of the first instantiation of the £-TBN in the unrolled DBN). This is because the
unrolled DBN, being a BN, must specify a well-defined distribution, and all that we
have at this point is a conditional distribution conditioned on the node in those first
k —1 layers. For example, Figure 3.2(a) shows a 2-TBN with four state variables and
one observable response variable. Figure 3.2(b) shows the corresponding unrolled
DBN, which is a well-specified BN when adjoined with an initial “seed” distribution
over the variables in layer ¢ = 0. We now provide a more rigorous characterization of
the DBN semantics.

Formally, we define the probabilistic semantics of a dynamic Bayesian network,
assuming a primordial seed distribution over k£ — 1 time slices, where £ — 1 is the
Markovian order of the transition model represented by the k-TBN. For simplicity,
the primordial distribution is assumed to span the £ — 1 non-positive time indices
—k +2,...,0. Then, given the joint probability distribution P[U(*+2-(0] over all
variables in the first £ — 1 time slices, the joint probability distribution P[U{=¥+2)-(7)]

over all variables from the origin up to time 7 > 0 is given by:
P[U(—k—|—2)..(r)] _ P[U(—k+2)..(0)] ® H HP[Ui(t)‘Pa[Ui(t)]] _
t=1 i=1

More generally, for 0 < 71 < 7, the conditional probability distribution over all

variables in U from time 7; through 75, given the k£ — 1 preceding values of those
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variables (i.e., at times 77 — k + 1,...,71 — 1), is

P[U-(2) | g —k+ 1) (n—1)] HHP[U |PalU]] .

t=71 1=1

Similarly, the independence assumptions encoded by a dynamic Bayesian net-
work are defined in terms of the unrolled Bayesian network. Specifically, two sets of
instantaneous variables X = {U; (t“), t”” }and Y = {7 t” - Ui(;i”)} are condi-
tionally independent given a third set Z = {U(t’1 , Ui(zt“ }, if the vertices of the
unrolled Bayesian network that correspond to X and those that correspond to Y are
d-separated given those corresponding to Z. In particular, any instantaneous vari-
able is independent of its non-descendents given its parents, in the unrolled Bayesian
network. It is stressed that the above independence assumptions only make sense
in terms of instantaneous variables, which are time-dependent random variables con-
sidered at specific points in time, as opposed to the variables themselves. Indeed,
whereas a DBN variable translates to a potentially infinite set of time-indexed ver-

tices in the unrolled BN, an instantaneous variable corresponds to a single vertex in
the unrolled BN.

In spite of the compact representation of evolving processes provided by the DBN
model, this representation is not directly amenable to probabilistic inference over
multiple time slices. Probabilistic reasoning usually requires that the DBN be first
unrolled into a BN, on which the previously described inference algorithm can be

used.

One major problem with this procedure is that, not only is DBN inference unable
to exploit the compactness of the representation along the temporal axis, but, as will
become evident in the next chapter, it generally fails to make use of the very indepen-
dence relations between variables that are expressed by the graphical structure of the
model. The latter limitation renders algorithms that try to track dynamic systems
exactly [Kja92] impractical for complex problems. This phenomenon is pathological
of temporal inference, and would seem to present a fundamental impediment to using

the Bayesian formalism for reasoning with dynamic systems.
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3.6 Other structured representations

We have seen that DBNs provide a compact and flexible representation of multi-
variate Markovian processes. Other representations exist, such as the somewhat less
expressive Factorial HMMs (FHMMs) of [GJ96].

FHMMs may be thought of as a special kind of DBN with a number of state and
observable variables per time slice, arranged in such a way that the state variables
are hidden and evolve without influencing each other, and the observable variables

are influenced by any or all the state variables in the same time slice.



Chapter 4
Tractable inference

Given the obvious similarity of the DBN representation for structured stochastic
processes to the BN represenation for atemporal distributions, a reasonable question
to ask is whether conditional independence assumptions can be exploited to make
inference practical in large DBNs, just as in the case of atemporal BNs. Unfortunately,
this question has a resounding negative answer, for reasons discussed in Section 4.1.

The next question to ask, then, is whether a scalable approximate algorithm
could be devised at the expense of the requirement for an exact solution. It turns out
that such an algorithm exists, which can be shown to produce reasonably accurate
answers, under the right conditions. In this chapter, we present such an algorithm
and experimentally study its performance on actual models. The various aspects of

its analysis are deferred until the next two chapters.

4.1 Debunking the myth of structure

In view of the success of Bayesian networks at providing efficient representation and
inference of static stochastic systems, it would be expected that DBNs would enjoy
analogous properties for dynamic stochastic processes. As described in Section 3.5,
the structure of DBNs supports a decomposed representation of the trajectory dis-
tribution. Unfortunately, the structure is, in most cases, unexploitable for inference,

for very fundamental reasons. The main cause of this difficulty resides in the fact

41



42 CHAPTER 4. TRACTABLE INFERENCE

~( ) ()
N?“‘@

W0
o
V3

(@ : ™ : (b)

anterior ulterior

OO0 O

() (OO O G

,_,.
1
o

Figure 4.1: Tllustration of propagating correlations in stochastic processes: (a) struc-
tured DBN represented as a 2-TBN; (b) unrolled DBN over the first three time slices.
The figure shows one of the active paths between V(2 and Z® using thicker lines to
show the edges and nodes involved.

that, even if the interactions between variables are very structured and local, as they
would be in a DBN with a sparse graph, correlations quickly propagate throughout
the entire system, and eventually all variables become correlated with each other. At
this point and beyond, the belief state no longer has a decomposed representation,

and inference is rendered intractable.

To illustrate, consider the DBN of Figure 4.1(a), which has a fairly sparse graph,
and in which all direct dependences of one variable on another are fairly localized.
Furthermore, all variables are assumed to start out being independent at time 0, e.g.,
as would be the case if the start state were known exactly (a point distribution) or
not at all (the uniform distribution). Nevertheless, if we consider the unrolled BN
of Figure 4.1(b), for now disregarding the shaded evidence nodes, we can easily see
that all the variables are structurally correlated at time 3, according to the rules of
d-separation. In particular, any pair of variables at time 3 share a common ancestor

at time 0, whose influence propagates to both via variables at times 1 and 2, causing
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their correlation (for instance, V® and Z® have a common ancestor W(®). The
situation is even worse if we bring in the evidence nodes; in this case, it takes only 2
time steps for all the state variables to become fully correlated. For example, there
are two active paths between V() and Z(® one of which is shown in Figure 4.1(b).
In general, unless a process decomposes into completely independent subprocesses,
the belief state will become fully correlated very early in time. The independence con-
dition to avoid such a fateful outcome is unrealistically stringent, as it requires not
only that the respective states of the processes do not influence each other, but also
that the two processes do not influence the same evidence variable, even indirectly. As
any factored decomposition of a distribution rests on some form of conditional inde-
pendence, it follows that, for most stochastic processes of interest, no decomposition
of the belief state is possible. This phenomenon, which has been tacitly observed by
several researchers [Pro92, GJ96], is perhaps the most serious impediment to applying

probabilistic reasoning methods to dynamic systems.

Notation In the sequel, we conventionally denote the ulterior time slice of a tran-
sition model using the mark > in exponent of the symbol it applies to, as in X".

Similarly, we denote the anterior time slice by the modified < as in Y~.

Proposition 4.1 Let G be the directed graph of a 2-TBN model, assumed devoid
of intra-time-slice edges. Let G be the directed graph obtained by extending G with
backward edges going from all (non-evidence) ulterior nodes Z* to the corresponding
anterior nodes Z°, i.e., G = GU {(Z”, Z%)}. If two ulterior nodes X and Y> are
connected by a directed path that involves n backward edges in G, then the correspond-

ing variables X and'Y are structurally correlated after at most n time slices in the
unrolled DBN.

Proof It suffices to observe that any directed path in G involving n backward edges
can be transformed into an active path over n time slices in the unrolled DBN. Specif-
ically, 3W such that W™ is a common ancestor of both X® and Y provided
that ¢ > n. O



44 CHAPTER 4. TRACTABLE INFERENCE

Corollary 4.2 If every pair of (non-evidence) ulterior nodes is connected by a di-
rected path in G involving at most n backward edges, then all variables are structurally

correlated after at most n time slices.

This general phenomenon is unfortunate, whereby even loosely coupled variables
are bound to become irretrievably correlated, defeating all hope of exploiting any
model structure for exact inference. However, it is also the case that, had two subsets
of variables not interacted at all with each other, no correlation would have ever
occured between them. By a continuity principle, this suggests that, in a system where
most dependence relations between variables are weak or altogether missing, many of
the induced correlations should be weak, and propagate slowly. Even though, in all
likelihood, all variables are quickly going to become correlated with each other, the
hope is that many of those correlations will be weak enough that they may safely be
ignored without incurring excessive error. As these decouplings result in independence
relations between variables, this approximation provides us with a factored belief
state, much more compactly representable than the exact one, and on which inference

should be much easier to conduct.

In particular, a filtering algorithm as described in Section 3.2, which would, in
addition, approximate away properly chosen weak correlations at every step to ensure
a compactly representable belief state, should stand to benefit considerably from a
computational standpoint. For example, even though many or all variables in the
system are likely to be structurally correlated, if those variables can be grouped in
clusters which have provably weak correlations with one another, the belief state
could be advantageously approximated as a product of smaller belief states over the
individual clusters. However, the risks associated with this idea are clear: the errors
introduced at every step by the approximation may accumulate over time to make
the results of the chain of inferences completely erroneous. The hope is that the very
stochasticity of the process will prevent such an unlimited accumulation of error, and
instead strike a balance where accumulated errors are progressively forgotten, as fast

as new approximation errors are introduced.
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4.2 Structured filtering algorithm

We now present a general algorithm that implements the above ideas for DBN in-
ference, and study its empirical performance on data. Its analysis is deferred till
Chapters 5 and 6.

As we saw earlier, the key problem with DBN inference lies with the representation
of the instantaneous belief state at time ¢: its size grows exponentially with the
number of state variables. The simple idea behind our approximation algorithm is to
approximate the joint belief state as a collection of marginals over chosen clusters of
variables. This amounts to representing the joint distribution as its various orthogonal
projections on the chosen clusters. Since the size of each marginal is exponential in
the number of the variables it covers, the total size of the representation will remain

small as long as the size of the marginals is bounded sufficiently.

Example 4.3 To illustrate, consider a system composed of a fairly large number
of cars on a freeway. A correct representation of the belief state of the system at
some time ¢ is given by the joint distribution over the state of all the cars at time t.
Assuming that the state of each car is described by a similar set of discrete variables,
such as its position and speed, it is easy to see that the size of the joint distribution
grows exponentially with the number of cars involved. Alternatively, we can choose to
track the state of the system by maintaining a marginal belief state for each car in the
system. This leads to a much more compact representation, linear in the the number
of cars, at the expense of losing all correlations between cars in our estimation of the
global state. If desired, the joint belief state can be (approximately) reconstructed
from this representation by taking the product of all the marginals.

Clearly, the approximation is incorrect, and could lead to mistakes, such as at-
tributing greater probability to the event that two cars occupy the same position,
than the exact belief state would. However, the error will be small as long as the

individual cars are almost independent.
ol

Example 4.4 In the previous aproximation scheme, a separate marginal is used for

each car, which is appropriate if the pairwise correlation between cars is uniformly
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weak. In more realistic situations, there may be a group of cars traveling together, in
which case it would make sense to gather them all in a single cluster, and track them
using a single joint marginal.

In an even more difficult case, such as in a traffic jam, each car may interact signif-
icantly with its neighbors, causing a non-negligible correlation with a small number of
other cars. However, and contrarily to the previous case, the only way to account for
those correlations without resorting to the exact joint belief state, is to use clusters
that overlap. In this case, the marginal belief states are no longer (trivially) inde-
pendent in the approximate representation, but (pairwise) conditionally independent

given the variables they have in common.

Recall the notation of Section 3.1 for belief states, and denote by 6® our com-
pactly represented approximate belief state at time ¢. It is updated from the previous
time slice using the same propagation-conditioning process as used for the true belief
state o(*): first, =Y is propagated through the transition model S, to obtain L AE
then, 6 is conditioned on the observed response at time ¢, to give o). However,
as new correlations are introduced by the update process, ") does not usually admit
a compact representation. In order to maintain the feasibility of the update process,
it is necessary to further approximate 6(“), typically by finding a similar distribution
that admits a compact representation; the result is our new approximate belief state
&®. In the case of our freeway example, we would compute our new beliefs about

te)

the state of each vehicle by projecting ) on the state space of the vehicle, and use

the cross product of these individual belief states as our approximation .

Naturally, for this scheme to be workable, it will have to bypass the explicit com-
putation of 6*Y and 6%, which may not be compactly representable, and infer
from %=1 in one operation. We now delve into the details of how this is achieved,
first in the case of non-overlapping clusters, then in the more general case of overlap-

ping clusters.
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4.2.1 Independent clusters

The objective is now to apply the general idea presented above to the problem of
monitoring a process described as a DBN. In all generality, we consider a process
structured in terms of an ordered set of time-dependent state variables X, ..., X,,.
The probability model of a DBN is typically described using a time-invariant 2-TBN,
as defined in Section 3.5 and illustrated in Figure 3.2. The 2-TBN associates each vari-
able X with a conditional probability distribution P[X ,Et)|Pa[X ,Et)]], where Pa[X ,gt)]
can contain any variable at time t — 1 and such variables at time ¢ that preceed Xy in
the total ordering—the latter condition being equivalent to the acyclicity requirement
of Section 3.5. The model represents the conditional distribution over the state at
time ¢ given the values of the variables at time ¢ — 1, for any ¢. Recall that the two
layers of the 2-TBN at t—1 and t are referred to as antertor and ulterior, respectively.
It is useful to define the canonical set of state variables as {Y : Y1) € UkPa[X,gt)]},
i.e., the set of variables that have a direct edge from the anterior layer to another
variable in the ulterior layer. A 2-TBN is in canonical form if only the canonical
variables are represented at time ¢ — 1; in other words, in a canonical form 2-TBN,
the anterior layer contains only variables that have a direct influence on the same or
another variable in the ulterior layer.

To capture the idea of a subprocess, we partition the set of canonical state vari-
ables into L disjoint subsets or clusters Si,...,Sy. The partition must satisfy the
requirement that no variable in S;, may share an edge with a variable in S;, within
the same time slice; i.e., if X € S, then X cannot have Y® as a parent, where the
variable Y ¢ S;.

The approximate filtering procedure for DBNs follows the same lines as the general
procedure described in Section 3.2. At each point ¢ in time, we wish to compute the
current approximate belief state &®, having at our disposal the preceding belief

&(t—l

) and the most recent observed response R®. By the inductive hypothesis,
in &1 the clusters or subprocesses S; are all independent. We propagate ¢~ Y
through the transition model, and condition the result 6(* on the observed response
R® to produce 6); we then project it onto the partition of clusters {S:}, to give

our updated approximate belief state 6, whose marginals on the various clusters
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are given by 6([S;] = 6("[S;], and the entire distribution by the product of these
marginals. As mentioned earlier, however, to be feasible, the entire procedure ought
to be carried out without explicitly computing the intermediate distributions.

In the case of DBNs, we can actually accomplish this update procedure quite
efficiently. The method is based on the junction tree inference algorithm [L.S88],

which was described in detail in Section 3.4. Given 1

represented as marginals
over a set of disjoint clusters, and R®), we wish to compute 6 over the same set
of clusters. From the 2-TBN, we first construct the structure of a junction tree
with the requirement that every anterior cluster Sl(tfl) and every ulterior cluster
Sl(t) be fully contained in at least one tree clique each. This is easily done during
the construction of the junction tree by adding additional edges to the moral graph
before it is triangulated (see Section 3.4); specifically, for each cluster of interest,
we add an edge between each pair of variables it contains. We then incorporate the
various conditional probability distributions from the 2-TBN into the appropriate
tree potentials, as well as the marginals from ¢~V and the evidence R®. This is
possible since the tree has been constructed so that the variables of each marginal
from the approximate belief state are contained in full in at least one tree cluster. A
standard junction tree calibration algorithm such as that of Section 3.4 can then be
used to compute the posterior distribution over every clique. Once this is done, the
various marginals ¢ [Sl(t)] defining the new belief ® are easily extracted from the
appropriate cliques.

Further savings can be obtained under the time-invariance assumption if the ap-
proximation scheme is held static. In this case, it is possible to compute the topology
of the clique tree ahead of time, and initialize it once and for all with the numerical
information contained in the 2-TBN. This results in a proto junction tree that can
serve as a starting point for each propagation. The following algorithm summarizes

the above computations, including this optimization.
Algorithm 4.5 Approximate DBN monitoring assuming independent marginals.

INPUTS:

<& a 2-TBN in canonical form;
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<& a disjoint partition {S;} of the canonical variables;

&

an initial belief state ¢(©;

& a stream of observations RV, R® RG) ..

OuTPUT:

I> a stream of approximate belief states ("), 6@, 63 ...

METHOD:

1. Construct a clique tree from the 2-TBN, requiring that every Sl(t_l) and

Sl(t) be contained in full in at least one clique.
2. Initialize each clique potential to the constant function 1.

3. Incorporate the conditional probability distributions associated with the
(ulterior) variables of the 2-TBN into the appropriate clique potentials.
Let Ty be the resulting (uncalibrated) proto junction tree.

4. Fort=1,2,3,...:

(a) Let T be a clone of Ty, assigning indices ¢ — 1 and ¢ to the anterior
and ulterior variables of Y;, respectively.

(b) For each cluster S;, incorporate the marginal 6(’:’1)[51(75_1)] in a suitable
clique potential of Y.

(¢) Incorporate the evidence R) in a suitable clique potential of Y.

(d) Calibrate the potentials in T; using a standard junction tree propaga-
tion algorithm.

(e) For each cluster S;, compute the posterior distribution Tt[Sl(t)] by
marginalizing a suitable clique from the calibrated Y.

(f) Represent ¢ as the (implicit) product of the extracted marginals
T[]

(g) Output 6® and discard Y.

4.2.2 Conditionally independent clusters

Dealing with the conditional independence assumption requires a few modifications

to Algorithm 4.5, since the set of clusters {S;} no longer forms a partition of the
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canonical variables, but a covering with overlaps. First, a refined definition of cluster

is in order, based on the notion of cluster forest [JLO90] .

Definition 4.6 A cluster forest F over a set of BN or DBN nodes {Ay, ..., 4,}, is an
undirected forest (V, E), whose vertices or clusters V = {F;} are arbitrarily chosen
non-empty subsets of the A;’s, and whose edges E = {E; ; : ¢ < j} are such that there
is a path between distinct clusters F; and Fj if the intersection F; N Fj is not empty.
In addition, the cluster forest satisfies the running intersection property, whereby any

vertex A, € F; N F} is also contained in every cluster on the path between F; and Fj.

This definition generalizes the previous notion of cluster as used in Algorithm 4.5,
by allowing clusters to overlap. Cluster forests are also virtually identical to the
notion of junction tree on which the inference procedure of Section 3.4 relies. In close
connection with our previous use of junction trees, forests of overlapping clusters
allow us to define a broader class of compactly representable distributions than in the

disjoint case, as follows.

Definition 4.7 We say that a distribution ¢ is representable over F if it is rep-
resented as a set of calibrated marginals ¢, over the clusters Fj, i.e., such that

@:[Fi N Fj] = @;[F; N Fy] for any 4, j. The distribution ¢ is defined as:

HFieV wilFi

A, A, .
QO[ 1y ) ] HEl,]EE(PZ[EﬂF]]

It is now easy to extend Algorithm 4.5 to deal with conditionally independent
clusters, under the assumption that the graph of these clusters forms a cluster forest.

The full belief state at time ¢ becomes, in the notation of the algorithm:

[1,00[5"]

(t) [X(t) x®
o 1y e ] ,
Hzl<12 o® [Sl(lt) n Sl(?]

n

which differs from the corresponding expression in the independent case by the in-

troduction of the denominator. Hence, in order to maintain a useful belief state, we
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also need to obtain the marginals over all non-empty cluster intersections in the for-
est, and incorporate the inverse factors (¢® [Sl(f) N Sl(zt)])_1 in addition to the regular
(o) [Sl(t)]) in the junction tree Y before calibrating it. We note the deep similar-
ity between dividing by the cluster intersection factors and the treatment of sepset
potentials in the algorithm of Section 3.4.

The complete DBN filtering algorithm for overlapping clusters is as follows.

Algorithm 4.8 Approximate DBN monitoring assuming conditionally independent

marginals.

INPUTS:

< a 2-TBN in canonical form;
<& a forest of clusters {S,;} over the canonical variables;
< an initial belief state 6(©);

<& a stream of observations RV, R® RO .

OuTPUT:

> a stream of approximate belief states 6", 6@, ) ...

METHOD:

1. Construct a clique tree from the 2-TBN, requiring that every Sl(t_l) and

Sl(t) be contained in full in at least one clique.

2. Initialize each clique potential to the constant function 1.

3. Incorporate the conditional probability distributions associated with the
(ulterior) variables of the 2-TBN into the appropriate clique potentials.

Let Ty be the resulting (uncalibrated) proto junction tree.

4. Fort=1,2,3,...

(a) Let T, be a clone of Ty, assigning indices ¢ — 1 and ¢ to the anterior
and ulterior variables of Y;, respectively.
(b) For each cluster S;, incorporate the marginal & V[S"" V] in a suitable

clique potential of Y.
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(c) For each unordered pair of clusters {S;, Sy} corresponding to an edge
(1,1') in the forest, marginalize 6(’5’1)[5'[“_1)] over the variables in S; N
Sy, take the inverse of each value in the result, and incorporate the
final result in a suitable clique potential of T;.

(d) Incorporate the evidence R® in a suitable clique potential of ;.

(e) Calibrate the potentials in Y; using a standard junction tree propaga-
tion algorithm.

(f) For each cluster S;, compute the posterior distribution Tt[Sl(t)] by
marginalizing a suitable clique from the calibrated Y.

(2) Represent 6¢) as the set of the extracted marginals Tt[Sl(t)] (using the
semantics of Definition 4.7).

(h) Output 6 and discard Y.

The following theorem characterizes the approximate belief states produced by

the above algorithms.

Theorem 4.9 At each time step t, among the distributions in the representation class
of Algorithm 4.5 (resp. Algorithm 4.8), the approrimate belief state ) computed
by that algorithm from the previous belief 6"V, is the one with the smallest KL
divergence to the distribution that one would obtain by performing one step of exact

inference from the same starting belief 5~ and evidence R®.

Proof The case of Algorithm 4.5 follows immediately by observing that the KL
divergence decomposes additively with respect to the non-overlapping clusters, and
that projecting a distribution onto a cluster by marginalization yields the closest
approximation representable over that cluster in terms of KL divergence.

The case of Algorithm 4.8 is similar to result due to Chow and Liu [CL68], based
on the notion of tree distribution. We say that a distribution 7 over a set of variables
V ={VW,...,V,.} is conformal with a forest (V, E) if it can be factored as:

v, vyee Vi, Vil

T[V] HVkeV T[V;c]dengfl ’

(4.1)
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where 7[V;, V] denotes the distribution T marginalized over V; and V.

Using techniques similar to [CL68], it is easy to show that, if a distribution 7 is
conformal with a forest (V,E), and has the same marginals over all elements of V
as some other distribution o, then, among all the distributions that conform with
(V,E), 7 is the best approximation of w in the sense of KL divergence. In other

words, 7 satisfies:
T = argminrfea[<v,E)]DKL[7T |77,

where Z[(V, E)] is the class of distributions representable over (V, E).

We now describe how a belief state () as produced by Algorithm 4.8 is mapped
to a tree-conforming distribution. The forest (V, E) is constructed as follows. For
each cluster in 6, we create one node V; € V. For each sepset in () that links two
overlapping clusters represented as V; and Vj, we create one node V; € V and two
edges (Vi, Vi), (V}, Vi) € E. The domains of the V;’s and their marginal probabilities
7[Vi] are defined the obvious way from ®; the entire distribution 7 is then defined

as in Equation 4.1.

It is easy to see that 7 represents the same distribution as ¢¥). To show this,
we observe that the numerator Equation 4.1 contains one factor 7[V;,Vj] for each
adjacent cluster-sepset pair in . Since, by definition each cluster encompasses its
adjacent sepsets, the factors over these pairs all reduce to factors over the correspond-
ing clusters. Hence, the numerator of Equation 4.1 reduces to a product of cluster
potentials from 6, where each potential is counted with a multiplicity equal to the
number of sepsets adjacent to that cluster. As for the denominator, by construction
of 7, it decomposes in a product of sepset factors and cluster factors. It is easy to
see that the sepset factors all have multiplicity one (since the degree of a sepset is 2),
whereas the cluster factors appear with the same multiplicity as in the numerator,

minus one. In summary, the distribution 7 can be rewritten as:

Hclusters a® [cluster]

[Tsepsets @ “)[sepset]

T =
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which is our representation of .

Thus, since 7 represents the same distribution as 6, it also shares with 6 the
same marginals as the calibrated clique tree T; in Algorithm 4.8. We deduce from
Equation 4.2 that 7 is the best approximation of Y; with that respective structure.
Since any distribution 69 with the same structure as 6 can be similarly mapped
to a distribution 7/ € Z[(V, E)], we conclude that 6 is also the best approximation
of T, for that structure. Since Y; is an exact representation of the distribution of

interest, the claim follows. a

4.3 Experimental results

We have validated the above algorithm in the context of two structured dynamic
Bayesian networks constructed for real life applications. The first model—the BAT
network—is used for monitoring freeway traffic [FHKR95]; the second model—the
WATER network—is used for monitoring the biological processes of a water purification
plant [JKOP89].

Both models are sketched in Figures 4.2 and 4.3 as they are used in our exper-
iments. Hidden and observed variables are respectively drawn as clear and shaded
nodes.

As the original WATER network did not have any distinguished response variables,
we added four of them to obtain the network represented in Figure 4.3. Each of the
added variables has the same domain as and replicates the immediate value of one of
the original state variables, with added noise. Specifically, for a variable X taking m
possible values, the conditional probability table for X’ — noisyX' is arbitrarily set
(given that 2 < m < 10 for the variables of interest in this particular model) to:

1— ml—gl when X' = noisyX’
1

o otherwise

PlnoisyX'|X'] = {

This modification allows us to treat the WATER network as a partially observable

model with clearly identified response variables, which is more conducive to interesting
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Figure 4.2: Structure of the BAT network, represented in canonical 2-TBN form. The
anterior and ulterior hidden state variables are gathered in the first and second col-
umn, respectively. The fourth column contains the observed variables in the ulterior
time slice. The third column contains the remaining ulterior variables, which are
hidden but not part of the canonical state. The dotted boxes and arcs respectively
delineate the two-cluster and four-cluster approximations as used in the experiments.

experiments. The BAT model is used without any alteration.

The experimental methodology for each model is as follows. In the preparation
phase, a number of trajectories of simulated responses are generated by random sam-
pling of the given model; this phase was made necessary due to the lack of published
actual data for either network—and also allowed us to test our algorithm in isolation,

by removing the possibility of a mismatch between model and data. The initial belief
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Gl
dicet dicet+l evidence

Figure 4.3: Structure of the WATER network with added observation variables, in
canonical 2-TBN form. The dotted boxes represent one of the approximation clus-
terings used in the experiments.

state in the sampled data is chosen to be the uniform distribution, for it is fully de-
composable and assumes no knowledge of the initial process state. In the test phase,
for each trajectory, the evolution of the process is monitored time slice after time
slice, using both exact inference and our approximation algorithm, feeding on the
stream of sampled responses to supply the needed observations. At every time slice,
the approximate belief state is compared to the true one, using several discrepancy
measures, such as relative entropy (or KL divergence) and Manhattan distance (or
distance in £;). For simplicity, and to facilitate speed comparisons, exact inference

is emulated by using the approximation algorithm with the trivial partition which
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places all canonical variables in the same cluster (it is easy to see that this results
in an exact computation; moreover, the computational overhead for using the ap-
proximate algorithm to perform exact inference is truly negligible). Unless specified
otherwise, the approximated runs use the non-overlapping version of the algorithm,
i.e., Algorithm 4.5.

Figure 4.4 shows the evolution of the relative entropy error, for the BAT network,
on a typical 1000-point trajectory independently sampled from the same network.
In this network, the canonical belief state is determined by 10 variables partitioned
in two weakly interacting groups of 5, as can be observed from Figure 4.2: this is
the approximation scheme that was used to generate the plot of Figure 4.4. On a
360 MHz workstation, approximate monitoring with the above partition took about
0.11 second per time slice, as compared to 1.72 for exact inference, yielding a 15-fold
speedup. In terms of accuracy, the relative entropy averages at 0.0007 in base e,
or one thousandth of one bit as expressed in base 2, and remains very low most of
the time, with, as would be expected, infrequent spikes to somewhat larger values,
peaking at 0.065. We also note that the error does not appear to grow over time.
Since, for traditional reasons, the L£; error over individual variables is also regarded
as a relevant benchmark, we also computed this error for the marginalized beliefs
over two selected variables—LateralAction’ and ‘ForwardAction’, whose meaning
can be found in [FHKR95]. Their £, error respectively averaged 0.00013 and 0.0019,
and remained bounded by 0.02 and 0.07 over the 1000-step run of our experiment,

featuring a qualitative pattern similar to that of relative entropy.

Similar experiments were conducted on the WATER network with the aforemen-
tioned amendment, as drawn in Figure 4.3, using the three-cluster partition (A-B)
(C-D-E-F) (G-H) as shown on the figure. Over a typical run of length 3000, the two
largest relative entropy values reached 0.14 and 0.06, while the average hovered at
0.006 for that run. Running times were 0.19 second per time slice under the above
approximation scheme, versus 6.02 seconds per slice for the exact algorithm, or a
31-fold speedup.

To investigate the influence of the chosen partition for the approximate belief

state representation, we compared three different approximation clusterings on the
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Figure 4.4: Experimentally observed relative entropy error for a typical run using the
BAT network.

BAT network, in addition to the exact case. Figure 4.5 shows, on a logarithmic scale,
the evolution of the relative entropy error for all three approximations. In order to
improve their legibility, these curves were produced by averaging eight independent
runs, using the same eight distinct trajectories for all three approximations. The lower
curve corresponds to the ‘545’ clustering used in the previous experiment, which now
achieves an average error of 0.0006, for a 15-fold computational speedup with respect
to exact inference. The medium curve corresponds to the four-cluster ‘3+2+4+1’
partition shown in Figure 4.2, which is obtained by further splitting the clusters of the
previous partition; this approximation achieves an average error of 0.015 and a 20-fold
computational speedup, which demonstrates the increased efficiency and decreased
accuracy of the more aggressive partition. The upper curve corresponds to a three-
cluster ‘34344’ partition, whose clusters bear no relationship to the connectivity
of the variables in the network; in this case, the average error jumps to 0.13, for a
comparable 20-fold speedup. This case clearly illustrates the importance of devising

approximations that respect the structure of the process.
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Figure 4.5: Experimental comparison of relative entropy error for three different
approximate belief state representations (BAT network, results averaged over 8 runs).

The accuracy is further improved by using Algorithm 4.8 with a conditionally in-
dependent approximation scheme, i.e., with overlapping clusters arranged as a cluster
forest. Tests were conducted on the WATER network using a belief state decomposed
into the three overlapping clusters (A-B-C-D-E) (C-D-E-F-G) (G-H). Using this ap-
proximation, we obtain, for the same sequence of observations as above, an average
error of just 0.0015. Also, the error now remains bounded by 0.018 throughout, re-
ducing the maximum error by a factor of 8. Approximate inference here took 0.47

second per slice, corresponding to a 13-fold speedup over exact inference.

We also briefly validated our approach in the case where there is no evidence.
Clearly, in this case, the instantaneous belief state converges quickly to the stationary
distribution of the process. The approximate distribution converges as well, to a
stationary distribution that can be represented under the approximation scheme.
This distribution will typically not be the best representable approximation of the
exact stationary distribution, although the foregoing discussion suggests that the

error will be small. To verify this, we tested the effect of removing all evidence in
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our filtering experiments. Without evidence, the error curve is completely smooth,
as it is not constantly pushed up and down at every step by the incoming data. It
also converges quickly to a constant error, corresponding to the error between the
correct stationary distribution of the process and our limiting approximation to it.
Interestingly, the error curve with evidence features a lower average than without,
indicating that the evidence is not only harmless to the average tracking error, but
is in fact beneficial as it further contributes to its reduction. This agrees with the
intuition that conditioning two distributions on the same evidence “should” bring

them closer to each other.



Chapter 5
Contraction analysis

As mentioned in the introduction, the ability to reason efficiently and accurately with
complex, structured models of dynamic systems is fundamental to many applications.
Of particular importance is the task of filtering, or monitoring the state of a system
given observations. This is an important task both in its own right, and as it forms the
basis of many other tasks of practical importance. Although long solved and routinely
applied in many applications that rely on traditional models such as Kalman filters
and hidden Markov models, the filtering problem is intractable when applied to more
expressive models, such as DBNs, where the total state space may grow exponentially
with the size of the representation.

The purpose of this chapter is to study the fundamental intractability of inference
in complex dynamic systems, and to investigate ways to go around it. In particular,
the focus is on the study of some theoretical properties of a stochastic system that
make it amenable to a certain class of approximation whereunder inexact but accurate

and efficient inference becomes feasible.

5.1 Contraction and distances

Let o(*) be the belief state of the system at the current time ¢, given all observations
obtained at time ¢ and before. Under the Markov assumption, this belief state cap-

tures all available knowledge about the state of the system that is pertinent to its

61
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Figure 5.1: Evolution of the error between approximate and exact inference. The
total error is composed of the accumulated error from the previous time steps, and
the momentary projection error resulting from the latest approximation step.

future evolution. This is also the belief state that one would obtain using the general
filtering procedure described in Section 3.2. For the reasons detailed in Section 4.1,
o) is not feasibly computable for reasonably complex DBN models. Therefore, let
%) be the estimated belief state as obtained by some approximate inference proce-
dure, such as one of the algorithms of Section 4.2, under the same observations.

Consider applying the general filtering procedure of Section 4.2 on each of o®**
and 6(“), for one additional step. Intuitively, as each of them is propagated through
the transition model S, some of the information about the state at time ¢ is forgotten;
and, as the two belief states forget about their differences, they become closer to each
other.

Naturally, further approximations on ¢ will again pull the exact and estimated
belief states away from each other, as illustrated in Figure 5.1. As will be shown in
Section 5.4, in order for the total approximation error to remain bounded, the effects

of each individual approximation error need to dampen exponentially quickly. That is,
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propagation through the transition model & should reduce the distance between two

t) and 6 by a constant factor. More generally, such a contraction

belief states o'
property should hold true for the entire filtering step, where the propagation through
the transition model S is followed by the conditioning on evidence according to the
observation model R.

The first half of this result is easily shown for various norms in £,, such as the
Manhattan distance in £;, and, under certain restrictive conditions, the Euclidean
distance in £o. Namely, if such an £, norm is used to evaluate the error between the
exact and estimated state distributions, there exists a constant 3, depending on the

transition model S, such that:
15[ =86, < B, 6" =6, .

Unfortunately, all £, norms for p > 1 are inappropriate with respect to the condi-
tioning step. The desirable contraction featured with respect to the transition model
is ruined by their behavior during the conditioning step. In general, if R® = r is
the observation at time ¢, the distance || R, [0(*Y] — R, [6¢*"]]|, can be larger than
| o(*t) — &](D't) | by an arbitrary factor. This gap would be reasonable if the distance
would only increase under unlikely evidence, and still decrease on expectation. Un-
fortunately, not only are there situations where the distance increases on expectation,
but there are cases where the distance increases under all possible observations, as

illustrated below.

Example 5.1 Consider a simple process with state space S = {so, s1, 2, 53}, and
possible responses R = {7y, 79, 73}. The observation model R specifies that, when the
system is in state sg, either of 1, r9, or r3 is randomly observed with equal probability
%. When the system is in s; with ¢ # 0, then r; is deterministically observed. Let the
estimated state distribution at time ¢ prior to observation be the uniform distribution,
ie., 60 = [1, 111 and assume that the true distribution places probability one
on s, i.e., o* = [1,0,0,0]. It follows from the true distribution that the response at
time ¢ will be 71, 9, or r3 with equal probability. Without loss of generality, suppose

that ry is the actual observation. Conditioning on ry, the true and estimated state
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distributions are straightforwardly computed per the rules of Section 3.2. One obtains,
for the true distribution, o**) = [1,0,0,0], and for the the estimated distribution,
o =1[1,2 0,0].

It is easy to observe that, for p > 1 and p = oo, the £, distance between the true
and estimated posterior distributions is strictly greater than between the correspond-
ing priors. By symmetry of argument, this conclusion holds uniformly for the three
possible observations ry, 79, 73.

A slightly more involved scenario can be constructed to show that conditioning
may also increase the £, distance on expectation, if not uniformly over all observa-

tions. The following example illustrates this situation.

Example 5.2 Let the state space S = {s1, s, s3}, and the response set R = {r{,75}.

Let the observation model:

R = P[R|S] =

O = N
— O Nl

Let the true prior distribution o(*? = [%, 0, %], and the estimated prior 6¢*) = [%, %, 0],

so that their initial £; distance is 1. It follows from o(*? and R that P[R®)] = [ 2].

=l
In the event that R®) = 7y, the true and estimated posteriors are, respectively,
o) = [1,0,0] and o) = [%, %,0], for a distance of % Similarly, in the event

that R® = r,, the true and estimated posteriors are, respectively, o(**) = [%,O, %],
and, 6 = [1,0, 0], for a distance of %.
Since the true probabilities of r1 and r, are respectively 1 and 2, it follows that
7

the expected £, distance between the posteriors is i% + %% = &, which is greater
than the initial distance of 1.

The above scenarios eloquently illustrate that the £, distance between a pair of

distributions may increase under expectation, or even with probability one, when
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conditioned on the same observation. This phenomenon is very counter-intuitive:
indeed, even if an unlikely observation may actually pull the distributions apart, one
would expect that, on average, the distance should be reduced. It turns out that
the above phenomenon is due to the nature of the £, norms, rather than being a
fundamental property of the conditioning itself.

A more useful measure of the error between a target distribution % and a reference
distribution ¢, is the discrete relative entropy, as defined in Section 2.2. Contrarily to
L, norms, relative entropy is not a distance metric; rather, it quantifies the cost, in an
information theoretic sense, of using the distribution % when the true distribution is
©. Relative entropy is, for a variety of reasons detailed in [CT91, chap. 2], an excellent
measure of discrepancy between a reference distribution and an approximation to it.
In particular, it is closely related to the theoretical penalty incurred by a rational agent
that acts optimally using an estimated distribution % when the true distribution is ¢.
Furthermore, and in contrast to £, norms, relative entropy behaves very reasonably

with respect to conditioning:

Fact 5.3 For any observation model R as previously defined, and for any o(*, 6(*9),
Epo [Dxr[Rpo (0] | Rrw 6] < Dxifo®? 6],

where p®) = (a('t) R) is the prior distribution for the response at time t just before it

OCCUrs.

For all of the above reasons, relative entropy makes a very natural choice for the
purpose of quantifying approximation errors in probabilistic inference.

Unfortunately, the problem seems to have simply shifted from one place to another.
While relative entropy is better behaved with respect to the conditioning phase, the
situation is not as clear with respect to the transition step. The literature contains
a large number of asymptotic contraction results applicable to stochastic transitions,
as outlined in [CT91, chap. 3]. Relative entropy never increases through a stochastic
process, i.e., Dxi[S[o®™)]||S[6(]] < Dki[c®™ ] 6], and it ultimately tends to

zero for a very broad class of processes, i.e., Dxr[S*[g()]||S*[6]] = 0 as k — oo
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when § is ergodic [CT91, page 34]. However, stronger results are needed to bound
the accumulation of approximation errors over time.

The next section presents a proof that stochastic transitions contract relative en-
tropy at a geometric rate, in the case of unstructured processes, such as hidden Markov
models. The analysis is later strengthened in various ways, to exploit the structure

present in more expressive representations, such as dynamic Bayesian networks.

5.2 Elementary contraction

We now show that a stochastic process S does, indeed, lead to a contraction in relative
entropy.

Before proceeding, we note that a similar result to the central theorem of this
section had been proven a few years earlier, unbeknownst to us, by a group of re-
searchers using a rather different approach [AL95]. However, an essential feature of
our own proof technique is that it generalizes readily to the more interesting case of
structured processes, as we will soon see, starting in Section 5.3.

It will be useful later on to consider a somewhat more general setting, where the
sets of states before and after the stochastic transition are not necessarily the same.
Thus, let Q¢ = {w7, ..., ws<} be the anterior state space, and " = {w}, ..., wps} be the
ulterior state space. Let @ be an n® x n” stochastic matrix, representing an arbitrary
random transition from Q to Q”. Let ¢ and %" be two arbitrary distributions
over the anterior state space Q9 and let ¢” and %" be the corresponding ulterior
distributions induced over 2> by one application of the stochastic transformation Q.

The objective of this analysis is to determine the minimal extent to which the
stochastic transition Q@ coerces the two anterior distributions ¢ and % toward the
same image. Clearly, if ¢ and % start out the same, their images will also be
the same. In the worst case, ¢ and %" are as different as they can be, i.e., they
have no probability mass in common. For example, one distribution ¢ might assign
probability one to some state wj,, while all of the mass in the other distribution " is
on some other state w;,. However, even in those circumstances, the stochastic nature

of the transition Q will typically cause each of ¢” and %" to place some weight on
14 g
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any posterior state w’: specifically, the probability ¢”[w?] is equal to Q[w}|ws] =
Qi, 5, while ¥°[w?] is given by Qw}|wi] = Qi, ;. Thus, even though none of the
probability mass of ¢ and % was in agreement, ¢~ and 9" agree on w} for a mass of
min{ Q[w|wj,], Q[w}|w;,]}, independently of the starting distributions ¢ and %°. By
repeating this reasoning and summing over all the elements of €2, one would obtain
the minimum fraction of the mass by which any two distributions would be forced to
agree, following one application of the stochastic transformation Q.

Based on this insight, we define the following natural characterization of the mix-

ing properties of a discrete stochastic transition:

Definition 5.4 For a discrete Markov stochastic transition Q, the pairwise mizing
coefficient of Q is:

nl>
Yo = mimy,Y  minf{Qwflwi], Quilwi]} -

=1

The pairwise mixing coefficient of any stochastic transition lies in the interval be-
tween 0 and 1. A mixing coefficient of 0 indicates that the transition is not mixing
for at least one pair of states; in other words, that there exists a pair of anterior
states that can be reliably distinguished from each other, given the induced ulterior
distribution. By contrast, a mixing coefficient of 1 characterizes completely mix-
ing transformations, which produce the same ulterior distribution regardless of the
anterior distribution.

Shortly, our first theorem will show the fundamental relationship between the
mixing coefficient yo and the reduction of relative entropy through stochastic propa-
gation by Q. We start by proving the following lemma, which provides a contraction
decomposition of Q, which is useful for isolating the probability mass in the two
distributions that is guaranteed to mix.

Intuitively, the lemma says that, for any pair of anterior distributions ¢ and %<,
the transition matrix Q can be additively decomposed into two matrices Q' and Q%,
such that the outcomes of transitioning ¢ and 9 by Q' are indistinguishable. The

additive decomposition is later used to show that, as far as ¢ and %" are concerned,
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the process defined by Q is equivalent to a coin flip (biased by the respective total
masses of QT and Q?) followed by a transition through either Q' or Q*, depending
on the outcome of the coin flip (and where QF or Q* are suitably renormalized). Since
¢ and ¥ are indistinguishable starting points when the Q' transition is chosen, the

entire process must contract with at least as much probability.

Lemma 5.5 Let Q be any n® X n> stochastic transition from Q% to (2° as previously
defined. For any non-negative v < vg, and any pair of anterior probability distribu-
tions ¢ and p° over 2%, the matriz Q admits an additive decomposition @ = QF +Q*

satisfying these three properties:
1. Vie{l,.,n%}, Vje{l,..,n°}, 0<QF, < Q;;
2. Wie{l,..,n%}, Y OF =
9. Vj € {l,,nt}, T o%lwf] QF; = Y, 9°lwi] QL.

The proof is based on the fact that, for at least a portion 7 of their probability
mass, the ulterior distributions ¢ and %" must agree. The purpose of Q' is to

capture the fraction of Q that forces this agreement.

Proof The first task is to establish a correspondence from the masses of one distri-
bution to the other. If some amount of mass in ¢ sent to w; by Q could be mapped
to a comparable amount of mass in 9 also sent to w;, this would ensure that this
fraction of the mass will end up distributed identically.

Let m; = min{p*[w;], ¥ [wi]|}, pi = @*wf] — m; and ¢ = ¥ [w] — m;. Note
that for every i, either p; = 0 or ¢; = 0, or both. Intuitively, m; is the fraction of

mass that is common to both anterior distributions for wy, and is trivially mapped,

i s
while p; is the portion of ¢*[w;] that remains to be mapped, and similarly for ¢;. Let
I, ={i:p;>0}and I, = {i: ¢ > 0}. We now choose a set of numbers 7;, ;, > 0 such
that ), mi i, = piy and Y, T 4, = Pi,. Since Y, piy, = Y, pi,, the construction of
such numbers is straightforward. Let also another set of numbers x;, ;,; > 0, such
that >, ki iy = 7 and £ i,,; < min{ Qw}|wy ], Qlw}|wy]}. Such a choice is always

possible, by the definition of yg and the fact that 0 < v < 7g.
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We now construct the matrix Q' as follows. For iy ¢ I, U I, define Qﬁ),j =
v Qi j- For iy € I, we take QF

11,]
1—‘ _ o e e
let Q;,; = > i (Trit in/ Gin) Kt in,j- Since I, and I, are disjoint, all cases are covered

— ZZ,Q (7Ti1,i'2/pi1)/€i1,i'2,ja while for i, € Iq, we

without conflict.

We now show that the construction satisfies the three required properties. It
follows from the definition of ;, ;, that, for ¢ € I, Q{l,j is a weighted average of
Kiyit,5 for varying i5. Properties 1 and 2 now follow from the definition of x;, ;, ;. An

analogous reasoning holds for QI ., with i5 € I,; and the result holds trivially for

12,57

z-ro,j, where 7y & I, U I,. Property 3 ensues from the following derivations:

Zw 90— Z'Hw o

nd
_ a1, 41, .« I
= ) (¢°wi] — ¥ wy]) Qi
i=1
nd
_ T
- E (pi - Qi) Qi,j
=1
- pll QZI,] qlg QiQ,j
11€lp i2€ly
. 7TZ1; 7TZI’22
- pzl ] 11,12,3 qZ2 ] zl,iz,j
11€lp ih 12€lq i)
= E E Ty il Kivgil,g — E E Tl ia Kil in,j
Zlelp 'L2 iZEIq ’L’l

= E : E :(71—1'1,1'2 - 7T'i1,i2) Kiyiayg o
71 19

where the last step is based on the fact, implied by the definition of m;, ;,, that
Tiii, = 0 when i3 € I, or when 4; € I,. Since that last expression equals 0, the

desired result is established. O

Based on this lemma, the contraction result now follows easily. Essentially, the

argument is based on a construction that makes explicit the different behavior of the
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Figure 5.2: Decomposition of a stochastic transition, as used in Theorem 5.6: (a)
discrete stochastic Markov transformation Q; (b) equivalent two-phase transformation
for the distributions ¢ and . In this diagram, the arrows denote stochastic state
transitions with non-zero probability.

stochastic transformation @, as induced by each part of the contraction decomposi-
tion, QT and Q*. The idea is to decompose the transformation into two separate
phases, as illustrated in Figure 5.2. In the first phase, the process randomly decides
whether to contract and forget its starting state, or to preserve its state unchanged. In
the second phase, the appropriate transition occurs, emulating either Q' or Q*, de-
pending on the choice made in the first phase. The decomposition makes use of a new
intermediate state space Qf, which duplicates the states of Q9 with one additional
distinguished contraction state denoted c. The decision to contract corresponds to
taking the transition from the initial state to c, in the first phase of the decomposed
transformation; in c, the initial state is forgotten, and the subsequent behavior is
constructed so that the whole process emulates Q'. The remaining states of Qf cor-
respond to the the initial states and are reached when there is no contraction; from
there, the behavior is dictated by @2, so that, as a whole, the entire decomposed
process behaves according to Q (at least for the specified ¢ and %, on which the

decomposition depends).

Theorem 5.6 For any discrete Q°, @, ¥°, Q°, ", ¥", Q, 7o, as above:

Drr[e”[|[97] < (1 = vg) Dxr[p®||47] .
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Proof Fix ¢ and ¥°, and let QF = {u,...,u,«,c} be a set of n® + 1 elements,
where n? is the cardinality of €29. Define a two-phase stochastic transformation W =
WA o W' comprising a first Markovian transition W' from Q¢ to Qf, followed by
a second Markovian transition W2 from Qf to ©”, as in Figure 5.2. Intuitively, the
distinguished intermediary state c is the state entered whenever contraction occurs,
while the remaining intermediary states u; simply duplicate the starting state in the
converse situation. The first stage W' is constructed to effect a random transition
to the contraction state c¢ with probability v, and preserve its starting state with
probability 1—~; i.e., for all i, W' [c|wi] = v while WT'[u;|w] = 1— and W' [uy|wi] =
0 for all i’ # i. The second stage W2 behaves on each u; as @ would on wj (suitably
normalized), while, from c, it duplicates the aggregate behavior of Q" on ¢ (suitably
normalized); i.e., W2[w|u;] = Q7/(1 — 1), while WA[w[c] = 3, ¢°[wi] Qj /-
(It is noted that the normalized matrices Q' /y and Q2/(1 — ) define legitimate

stochastic transformations, according to Lemma 5.5.)

We first need to show that the decomposed transformation is equivalent to the
original Q when applied to either one of the distributions ¢ and %°. Let ¢! and 9!
be the result of applying W' to ¢ and °, respectively. Consider the distribution
obtained by applying the two-phase transformation W = W2 o W' to ¢°. The
probability assigned to w; by the resulting distribution is:

1 o'[c] o <
= ;‘PT[W] Q,-A,j + o Zl(p [wy] Qg’j

(3

1 Y
= 15 (1—7) lwi] QP + o > " @°[wi1 Q)

= Yo+ Y el O,
= Zw“[wﬂ Qi -

Similarly, applying W = W2 o W' to 9 and evaluating at w; yields the proba-
bility Y, % [w;] Q7 + >, ¢°[wy] Qi ;, which, by property 3 of Lemma 5.5, reduces

to >, ¥ [w;] Qi;. This shows that W correctly emulates Q on both ¢ and %°, as
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required.

To show the contraction property Dxr[¢”||%"] < (1 —v) Dxi[p®||¥"], we first
note that since W2 is Markovian, we have Dxz[¢” ||4°] < Dxi[p'||%'], by the well-
known property that relative entropy does not increase through a stochastic trans-
formation [CT91, page 34]. On the other hand, we have:

[ui] ¢'[c]

(pT .
DKL[‘PT | ¢T] = XZ: <pT[uZ~] log, m + <pT[c] log, ,‘/,T—[C]

= Y (1—7) @] log, zﬁjq% + 7 log, %

1

= (1—19)Dxi[p®||¢7] .

Letting v = ¢ in the above expression concludes the proof. O

It is emphasized that the above transformation is specific to the given ¢ and .

To conclude this section, we remark that a mixing coefficient equal to 0 provides
no help in terms of contraction, since a null mixing coefficient is the reflection of some
kind of “deterministic core” within the process, at least for one stochastic transition.
This can happen even for ergodic processes. In this case, there is little that our single-
step contraction analysis can provide. However, it is sometimes the case that a null
mixing coefficient is due not to an unavoidable deterministic component of (part of)
the process, but to some simplifying assumption in its modelization, or to a bounded
“propagation speed” between non-neighboring states. In this case, it is useful to
consider a aggregate process obtained by composing a finite number of elementary
transitions of the original process. The analysis could be generalized this way to
arbitrary finite-state discrete-time ergodic systems by considering the minimum time
after which pairwise mixing must occur. In slight anticipation of the next section, we
note that, even though it is fairly harmless to lump together several time slices for
the contraction analysis in the flat case, this will not necessarily be the case when we

deal with structured contraction.
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5.3 Structured contraction

The previous results show that errors decrease geometrically in stochastic Markov
processes. The rate of decrease, however, depends on the transition model of the
process, and more specifically on its mixing coefficient vg. Clearly, one cannot guar-
antee that this coefficient will always be large enough to be useful: for example, if
the process has a component which is almost deterministic, 7o will be very close to
Zero.

That deterministic processes should not contract, and would therefore not be
amenable to belief state approximation, is not cause for concern; after all, deter-
ministic systems often tend to preserve and propagate their state in precise ways
for extended periods of time, and do not respond well to external noise and other
random disturbances. This restriction also applies, to a lesser extent, to locally dis-
tinguishable stochastic processes, in which contraction can only be guaranteed after a
plurality of transitions have been taken. In this case, the contraction analysis applies
to the macro-transition obtained by combining the appropriate number of elementary
transitions. Unfortunately, a lack of useful contraction also arises for truly stochastic
processes with a large number of variables, even if each individual variable is governed

by nicely stochastic transition dynamics.

Example 5.7 As an extreme example, imagine a process composed of N binary vari-
ables evolving independently in the domain {0, 1}, flipping their value from one time
slice to the next with probability 6. Each variable, viewed as a separate Markov
process, has a mixing coefficient of min{24,2 (1 —§)}, and is thus rapidly mixing
provided ¢ € [e --1 —¢], for a large enough ¢ > 0. Thus, one may expect the N-
variable process as a whole to be similarly rapidly mixing; indeed, since all of the N
subprocesses are independent, one could hardly expect otherwise. However, Theo-
rem 5.6 tells a different story: computing the mixing coefficient v for the transition
matrix of the compound process as a whole, according to Definition 5.4, one obtains
a discouragingly small value: v < 2 (2e6)V/2.

To see this, observe that 7 is bounded by twice the probability that at least N/2 of
the N variables flip!. Let X be the number of flips in a given step; X has a binomial
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distribution B(N, d), which, for small 6 and bounded p = § N, can be approximated
as a Poisson distribution P(u) of mean u. The probability of interest is now easily
bounded using the Chernoff bound, Pxp([X > & < e # (e p)¢ /& for £ > p, giving
in our case [Ros96, page 40]:

e
Px.pu[X 2 N/2] < G_M(N—;;)N/Q = e N0 (2eH)N? < (2e0)V?.

Is our definition of the mixing coefficient simply too pessimistic? Unfortunately
not. The fallacy lies in the assumption that local mixing properties would automati-
cally carry over to the compound process. In the example, each subprocess is rapidly
mixing for belief states defined over its own variable only. If the state of the compound
process somehow involves dependencies between variables belonging to different sub-
processes, then the compound belief state will contain correlations that are invisible
at the level of individual variables. And, indeed, such correlations can render the

contraction ratio as bad as the theorem predicts.

Example 5.8 In the context of the previous example, assume that the true starting
state distribution ¢ of the compound process gives probability 1 to the state (0, ..., 0)
(expressed as an assignment of values to the N variables); meanwhile, the estimated
starting distribution % gives some probability p to that state, and probability ¢ =
1 — p to its complement (1,...,1). The state space can be viewed as a hypercube,
and each of these distributions as an assignment of probability mass to vertices of the
hypercube. A single step through the stochastic transformation diffuses the respective
mass of the two distributions around their starting points. However, the probability
that the diffusion process around two opposite corners of the hypercube brings them to
the same place is exponentially low, since all of the bits have to flip in one or the other

of the two distributions. In the example, the relative entropy between the starting

!Consider two diametrically opposed corners a and b on the hypercube, and a dichotomy of the
cube in two regions based on closest proximity to the respective corners. For two imaginary markers
starting on a and b to meet after one stochastic transition, it is necessary that at least (in fact,
exactly) one of them travel to the region occupied by the other.
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distributions ¢ and %" is fairly low already, commensurate to log, [1/p] ~1—p =g,
provided that p ~ 1. However, after the stochastic transition, even though ¢ will
have moved in unison with the fraction of 9 at (0, ...,0), hardly any of it will have
traveled enough along the hypercube to meet the remaining fraction of ¥ that started
at (1,...,1). In terms of relative entropy, this translates to an almost imperceptible

reduction of the error.
" |

Given the above scenario, one must face the question of whether the previous
contraction theorem is even useful for large processes. As the example shows, even
the assumption that the process is highly decomposable is not necessarily helpful.
One idea is to make some additional assumptions about the structure of the state
distributions, for instance, that they decompose into a set of factors. In general, an
analysis based on decomposing a relative entropy expression requires an assumption
on the decomposability of the true or reference distribution (the first argument of
Dxr[-||]). In the present context, such an assumption would be patently false; indeed,
the whole point of Section 4.1 was that the state distributions in dynamic systems
tend to lose any kind of structure, even when the transition model itself features a
lot of structure. Furthermore, the above scenario shows that decomposability—and,
indeed, complete independence—of the reference distribution ¢ did not help in this
context.

Surprisingly, significant advantage may be gained by making a decomposability
assumption on the approximated belief state. Specifically, we can show that if the
process decomposes well, and the estimated distribution decomposes in a way that
matches the structure of the process, then significantly better bounds on the error
contraction coefficient can be obtained, regardless of the true belief state. Thus, as
far as error contraction goes, the properties of the true belief state are not crucial:
only those of the approximate belief state and the process itself matter. This is very
fortunate, as it is feasible to enforce decomposability properties on the approximate
belief state, whereas the true belief state usually remains beyond control.

Formally, it is most convenient to describe our results in the framework of inter-

acting HMMs; in the next section, we discuss how they can be applied to dynamic
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Bayesian networks. In the framework of interacting HMMs, a stochastic process is
composed of a number L of subprocesses. Each subprocess has a state, and is de-
scribed by a disctete-time Markovian evolution model. The state of subprocess [ at
time ¢ is denoted Sl(t). The transition model, denoted &, is a stochastic mapping from
the states of some set of subprocesses at some time ¢ — 1 to the state of process [ at
the time slice ¢; the mapping is time-invariant, and thus applies for all t. We say that
subprocess | depends on subprocess I’ if the map S; takes the state of subprocess [” as
argument. In addition, the stochastic process may include a set of response variables,
which can depend arbitrarily on the state of the various subprocesses in the same
time slice; however, as we are primarily interested in the contraction properties of
the transition model, the response variables as well as the observation model and the
conditioning phase are irrelevant to the analysis. For this reason, and for the sake
of simplicity, notations such as ¢*='* and ¢(**) are temporarily dropped in favor of

t—1

o1 and ¢ respectively.

5.3.1 Independent subprocesses

We begin by considering the simple case where multiple subprocesses exist, but are
completely independent, i.e., where each subprocess depends only on itself. In addi-
tion, we require that, at any time ¢, the estimated belief state &) decomposes along
the same lines, i.e., as the product of independent estimated belief states over the
individual subprocesses: ¢ = I 6l(t). We show that, under those fairly restrictive
assumptions, the contraction ratio of the entire process is commensurate to that of
the individual subprocesses, regardless of their numbers. Later on, this theorem will
form the basis for a more general result. We now prove the theorem, starting with

the following lemma.

Lemma 5.9 Let ¢* and ¥* be two distributions over the same space Q*. Let W and
Z be two random variables (or sets of variables) over this space, and E be some event

in the space. If W and Z are conditionally independent given E in v*, then:

Dxilp*[Z|E]||[¢*[Z|E]] < E@«w g |Dxil*[Z|W, E]||¢*[Z|W, E]]] .
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Proof Letting H[-] represent the standard entropy function as defined in Section 2.2,

we have:

Eo-iw [ Dxi|@*[Z|W, E] || ¢*[Z|W, E]]
= Egp-wg[Ep-zw,zlog, ¢* [ Z|W, E|| — Eg«zw,zlog, ¥*[Z|W, E]|]
= Eg:wm[-Hl@*[Z|W, Ell] - Ep~w5)[Fg:(z/w,m[log, ¥*[Z|E]]
> —H[Ep«w rle*[Z|W, E|l] — Eg«w|m[Ep-+zw,glog, ¥*[Z| E]]]
—H[¢"[Z|E]| — Eg (2 p)[log, ¥"[Z| E]
Eg+ (7 51log, ¢*|Z|E]] — E+(z5)[log, ¥*[Z| E]|
= Dxilp*[Z|E]||$*[Z|E]] .

The second equality is by linearity of expectation and the conditional independence
assumption for 9*. The inequality follows from the convexity of the negative entropy
—H[-], as a consequence of Jensen’s inequality [CT91, sec. 2.6]. The subsequent

equality follows from marginalization. The remaining steps are definitional. a

Theorem 5.10 Consider a process Q composed of L independent stochastic subpro-
cesses Qi ..., Qr,, where each subprocess Q; maps distributions over Q' to distributions
over §2], and depends only on itself. Let vy, be the mizing coefficient of Q;, and let
v = min{vyi, ..., }. Let * and ¥° be two arbitrary distributions over the joint ante-
rior state space QX ... x Q5. Let ¢” and ¥ be the corresponding ulterior distributions
induced by Q over (O} x ... x Q7. If the subspaces 2} are marginally independent in
the anterior distribution ¥ (but not necessarily in <), then the entire process obeys

the following contraction property:
Dxilp”||9"] < (1 —7) Drzle®||47] .

Proof It suffices to show the result for two independent subprocesses Qx and Qy;
the general case follows by induction on the number of subprocesses.
Let X and X” be the random variables over €25 and €)% respectively, describ-

ing the anterior and ulterior state of Qx, i.e., before and after the transition Qx.
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Similarly, let Y< and Y™ describe the anterior and ulterior state of Qy, with anal-
ogous notations. Let ¢[X< Y] and 9“[X, Y] be the given distributions over the
joint anterior state space Q5 x Q5. Let @*[ X9 Y9 X* Y] and 9*[ X<, V<, X* V"]
be the joint distributions over the anterior and ulterior spaces, as respectively in-
duced from (X< Y| and ¥ [X<, Y] by the process Q, i.e., *[ X,V X> V*] =
PIX Y ® Q[X", Y7 X Y.

Using the standard decomposition properties of relative entropy, we obtain:

Drr[p*[ X7, Y7 47 [X7, V7]
= Dru[p"[X°]|| 9" [X7]] + Eepxog [Dra[@ Y[ X" Y7 X7]] . (5.1)

By the contraction property for Qx per Theorem 5.6, the first term of Expression 5.1

is bounded as:
Dxr[p*[X°][|¢*[X"]] < (1—7)Dxr[e*[X7][|¢*[X7]] . (5.2)

To simplify the second term, we apply Lemma 5.9 to the internal component of the
expectation, substituting Y* for Z, the value of X”* for £, and X< for W. The condi-
tions of the lemma hold due to our assumptions: X< and Y are independent in 1)*,
and the subprocesses evolve independently; therefore, the pairs (X<, X*) and (Y9, Y™)
are independent in 4*; and certainly X< and Y™ are conditionally independent given
X", Tt follows that:

Eqp-(x»)[Drc[@*[Y7 [ X7 | [V X7]]]

< Egppx»)[Eg-pxapxe) [Drc[o Y7 X7, X[ 47V X7, X
= Egp-xoxe1[Drr[@*[Y7 | X[ 47V X))
= Egprxa[Dre[p" Y| X[ 4 [Y7 | X7]]

< Egepxa[(1 =) Drr[@* [V X || Y[ X (5-3)

where the second equality follows from the conditional independence assumptions,

and the last inequality follows from the contraction property of Theorem 5.6 for Qy-,
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applied to each of the pairs of distributions ¢*[Y | X< = 27| and ¥*[Y | X< = 27|, for

all possible values of % € Q%.

Putting together Expressions 5.1, 5.2, and 5.3, it follows that:

Drcr[@*[ X", Y7 ([ 97 [X7, Y7
< (1 =7) Die[@*[XF][ 9" [X7]] + (1 = ) Er x [Die [ " [Y | X || 4™ [Y | X))
= (1 =) Dre[p"[ X, VI [X5, Y]

as required. (]

Thus, for a process composed of a set of independent subprocesses, if, in addi-
tion, the chosen representation of the approximate belief state decomposes along the
same lines as the process, then the contraction of the process as a whole is no worse
than the contraction of the individual subprocesses. Since each subprocess involves an
exponentially smaller number of states than the whole process, its transition probabil-
ities are likely to be correspondingly much larger (assuming the process is reasonably
stochastic). As much better mixing coefficients are to be expected for the individual
subprocesses than for the process as a whole, the analysis of Theorem 5.10 typi-
cally provides in a much more useful contraction ratio than Lemma 5.6, when it is

applicable.

Nevertheless, the above result is not really useful in itself, because, if the subpro-
cesses were really independent, the belief state would never become correlated in the
first place, and there would be no need to approximate it. The main purpose of this

result is to lay a foundation for the general case to be studied next.

5.3.2 Conditionally independent subprocesses

The objective now is to generalize the above result to the more realistic situation

where the different subprocesses are allowed to depend on each other.
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As before, consider a process composed of L subprocesses, and assume that sub-
process | depends on subprocesses [i,...,l,. Then, the stochastic transition Q; de-
fines a conditional probability measure P[S}[Sy, ..., S} ], where S; denotes the time-
dependent random variable describing the state of subprocess [, and S and S} denote
the instantiation of S; at two consecutive times. This transition probability can be
defined as a transition matrix, albeit one whose anterior and ulterior state spaces
differ. Since the treatment introduced in Section 5.2 accounted for this possibility,
the mixing coefficient of Q, is well-defined. Thus, let 7; be the mixing coefficient of
Q,, and let v = min{~, ...,y }. We show that, as before, if the estimated belief state
decomposes along the lines of the process structure, then we can place a bound on
the contraction ratio of the entire process. This bound depends on both + and the

process structure. We first describe the basic construction for a structure composed

of two subprocesses; generalization to arbitrary structures is straightforward.

Consider the process depicted in Figure 5.3(a). This process comprises two sub-
processes Qx and Qy, in which Qx depends on Qx alone, and Qy depends on both
Qx and Qy. Our construction follows the lines of the proof of Theorem 5.6: the
new process is obtained by splitting the transition of each subprocess into two suc-
cessive phases, where the first one chooses whether or not to contract, and the second
one concludes the transition in a way that depends on whether the subprocess has
contracted. For the subprocess Qy, this involves the construction of the interme-
diate variable Y; to represent the state of Y after the first phase of the two-phase
transition, in addition to the anterior and ulterior instantiations Y< and Y* of Y,
which have their usual meaning. A subtlety is that, since Qy depends on Qx, the
variable X plays a role in both Qx and Qy; furthermore, the transitions of these
two subprocesses are conditionally independent given X <. Thus, X cannot make a
single decision to contract, and apply it in the context of both processes; rather, X
has to make two independent decisions as to whether to contract in the context of
Qx and Qy in isolation. We therefore introduce two separate intermediate variables
X;r( and X;r, to capture the state of X after the first phase, where X;r( is relevant to
Qx, and X;r, to Qy. The result of the construction is the segmented process shown
in Figure 5.3(b).
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—_—— = = = = = = = =

Figure 5.3: Principle of the construction used in Theorem 5.11: (left) Markov process
composed of two subprocesses; (right) decomposition as a two-phase segmented pro-
cess. The thin dotted contours delineate corresponding stochastic transformations
that induce the same ulterior distribution in (left) and (right), when the anterior

distribution is either @[X< Y| or #[X< Y<]. The dashed boxes emphasize that,
throughout the first stage of (right), the two subprocesses are fully independent.

The stochastic transitions of the segmented process are defined so that the two-
phase transition,
X— XL = x>,

induces the same ulterior distributions as Qx from the anterior distributions ¢<[X]
and ¥ [X°]. This construction is essentially identical to that of Theorem 5.6; in
particular, the domain of the intermediate variable X% duplicates all the states in
the domain of X, plus one additional contraction state denoted cx, . As before, the
first stage of the segmented process either preserves the state of X< or jumps to the
contraction state cx, with some probability Ax, to be specified below. Similarly, the

two-phase transition,
X< X
VA WA T

is constructed to induce the same behavior as Qy for the distributions ¢<[X<, Y] and
P*[ X7, Y], with a slight subtlety. It was explained in the proof of Theorem 5.6 that

the second phase should transition according to Q*, except when in the contraction
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state, in which case a special behavior should be invoked. In the present situation,
the transition (X}, ¥;l) — Y has two contraction substates to consider: one for X7,
and one for Y;. The prescription is that either one will do: for the purpose of this
transition, contraction is deemed in play as soon as at least one of X;r, and Y; is in
a contraction state. There is no alternative, because if even one is in the contraction
state, the process no longer has enough information to transition according to Q2.
Thus, if X< — X; contracts with probability Ax, and Y — Y; with probability
Ayy, the Y process as a whole contracts with probability 1 — (1 — Ax,.) (1 — Ay;,).

Therefore, in order to be able to construct a contraction decomposition (Q., Q%)
as in Theorem 5.6, one must select Ax,, Ax,, Ay, so as to satisfy Ax, < yo, and
1—(1-Xxy)(1=XAy) < 7g,. Assuming v such that v = vo, = 7g,, it follows
that Ax, <1—4/1—7 and Ay, <1—4/1— 7 are one legitimate set of constraints;
observe that 1 — /T — v > /2.

As for the contraction ratio of the process as a whole, it is no smaller than that
of the first stage alone, since the first and second stages form a Markov chain. Thus,
we focus on the contraction from the anterior variables X< Y< to the intermediate
variables X;f(, X;'/, Y;. This analysis uses a somewhat different process structure than
the one just used to show the correctness of the partition. Let Wx denote the joint
transition from X< to the pair (X1, X1}, and let Wy denote the transition from Y to
Y;. These two processes are independent by design; further, it has been assumed that
X< and Y* are independent in the approximated anterior distribution 4. Thus, the
conditions of Theorem 5.10 apply and the contraction of the process from (X<, Y<) to
(xt, X1, v) is the minimum of the contractions of Wy and Wy. Straightforwardly,
the contraction of Wy is Ay,,. However, Wx fully contracts, .e., loses all information
about its original state, only when both X}} and X;L, are in their contraction state.
These events are independent, hence the probability that they both occur is the
product Ax, Ax, .

It is easy to generalize how interconnectivity between the processes degrades the
contraction ratio. Consider a subprocess Q; whose mixing coefficient is 7;, and assume
that Q; depends on r subprocesses [, ..., [,. In the above construction, one would have

to place a contraction factor A\;; on each of the r first-stage transitions that lead to
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Qy, in such a way that 1 — [[_, (1 — ;) < 7, which, for equal ), is achieved
optimally by taking )\, = 1 — {/T —~;, or almost optimally by \;, = ~;/r. Thus,
the cost of inward connectivity is a linear reduction of the contraction ratio with the
number of incoming influences. The cost of outward connectivity is much higher.
Each influence of a subprocess Q; on another subprocess involves the construction of
another intermediate variable in Wx,, which contracts independently. Since the total
contraction of Wk, is the product of the individual contractions, the cost of outward
connectivity is an exponential reduction in the contraction ratio with the number
of outgoing influences. This phenomenon has an intuitive explanation: if a process
influences many others, it is much less likely that its value will be lost. This analysis

is the basis for the following theorem.

Theorem 5.11 Consider a process Q consisting of L subprocesses Qq, ..., Qr, and
assume that: each subprocess depends on at most r others; each subprocess influences
at most q others; and each transition Q; has a mixing coefficient v, > vy, for some
v > 0. Let ¢° and ¥° be distributions over the joint anterior state space of Q, and

assume that the states of the individual subprocesses are all independent in ¥°. Then:
Dxilg”||9"] < (1—17") Dxzfe®|| 4],

where

Proof The proof is based on the following construction. For the purpose of this
construction, we treat each process Q;, i = 1,..., L, as a (time-dependent) random
variable, denoted @);. Let @) and ()7 be the corresponding instantaneous anterior
and ulterior variables, respectively. Without loss of generality, assume that each of
the Q; depends on exactly r, and influences exactly ¢, subprocesses. We show how to
construct a two-phase process Q such that Q[p*] = Q[p<] and Q[v°] = O[], with
the required contraction properties.

The modified process Q is composed of two successive transitions between three
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layers of variables. The first transition, denoted QF, is defined from a set of L

anterior variables Q7 (corresponding exactly to the similarly denoted variables in
1y
0,
i,j € {1,...,L}. The second transition, denoted @2, is defined from the intermediate

the original process Q) to a maximum of L? intermediate variables denoted Q) ., for
variables Q;-"j to L ulterior variables () (again, mimicking the ulterior variables in
the original process Q). The intermediate layer is arranged in such a way that a node
Q;',j has at most a single incoming edge from ()7, and has at most a single outgoing
edge to Q7, for all 4,5 € {1,...,L}.

In order to satisfy the stated upper bounds on the in-degree and out-degree of
the variables, the out-degree of each Q7 is at most ¢, and the in-degree of each Q7 is
at most r. Therefore, at most ¢r of the L? intermediate variables actually transmit
information from the anterior to the ulterior layer; the remainder of the intermediate
variables can be safely deleted. If we denote by #{QZT,*} and #{Ql’j} the number of
remaining intermediate variables that depend on @7, and influence @7, respectively,

we have the following properties:

#{Ql,} < ¢
#{Ql,]} < T

We now have to show how to parameterize Q" and Q” so that Q as a whole
behaves like Q@ on ¢ and 9. In other words, we need to select the conditional prob-
abilities for the (non deleted) Q}L, ; and the Q7. Following the discussion preceding this
theorem, each intermediate variable Q;f,j is set to transition to an explicit contrac-

tion state denoted c; j, with probability J; ;, or to replicate the value of the anterior

£,
variable ()f, with probability 1 — A; ;. The parameters for the ulterior variables Q)
are then chosen in a way similar to that in the proof of Theorem 5.6, which is always
possible provided that the elementary contraction probabilities A;; do not force a

contraction probability greater than ~y, for any process Q;, i.e., if, Vj =1,..., L :

i:QZ,jE{QI,]‘}



5.3. STRUCTURED CONTRACTION 85

This condition can be satisfied by setting \; ; = v/r across the board.

To conclude, we note that, on the one hand, the anterior variables )7 are inde-
pendent in 97, and, on the other hand, the first-phase processes @ — (Q;r,l, s Q;-r’ )
are independent of each other. Theorem 5.10 thus applies to the first phase of O,

from which the claim follows. O

Thus, if we have a system composed of several sparsely interacting subprocesses,
each of which is fairly stochastic, and we use an approximate belief state in which
the states of the subprocesses are independent, then our process as a whole contracts
at a reasonable rate. We will soon exploit this property to devise an approximate
monitoring strategy that achieves both accuracy and efficiency.

Before moving on, one should note that the independence assumption on ¢ is a
necessary condition: in particular, relaxing it to conditional independence will not
work without additional assumptions. To see this, recall the example of N indepen-
dent subprocesses from Section 5.3, and observe that even though both distributions
@ and ¥ already satisfied all possible non-trivial conditional independence relations
(i.e., for any variables or sets of variables A, B, C, we had that A and B were indepen-
dent in ¢ and % given C' whenever C # (}), the lack of unconditional independence

in 9 was enough to give the whole process an extremely small contraction ratio.

5.3.3 Dealing with partially deterministic processes

As already mentioned in Section 5.2, contraction analyses such as the above will fail
to give any useful result if the process contains a “deterministic core”, i.e., a pair of
states that are mapped to two separate regions of the state space. This may happen
even if the process is ergodic, although in this case there is a finite number 7 of steps
after which any pair of initial states will start to blur. In this case, even if the one-step
mixing coefficient of the process is null, watching that same process at a coarser time
granularity, by agglomerating 7 elementary transitions into a macro-transition, will

guarantee that we have non-zero mixing for all pairs of starting states.

Example 5.12 Consider a HMM with four states, given by the following transition
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matrix:
1 1
5 5 00
s — 03 %+ 0
1 1
0055
1 1
z 00 3

It is easy to see that this process has a null mixing coefficient, since two instances
starting from the the 1%t and 3™ states will end up, respectively, in the 15t or 27d
state, and in the 3™ or 4" state; i.e., there can be no overlap.

By contrast, if we compose the above process with itself over two time steps, we

obtain the following transition matrix:

1 1 1
4240
1 1 1
82: 0424
1 g 11
4 4 2
1 1 1
3 1 0 1

The mixing coefficient is now equal to %

Although such agglomeration is useful to uncover the mixing properties of an
ergodic process with a deterministic core, this comes at a cost. Some dependences
between variables that only manifested themselves after a delay in the original tran-
sition will now be treated as immediate in the macro-transition. These extra de-
pendences force us to select bigger clusters than we normally would, and are also
likely to increase the connectivity between the clusters. In the structured case, these

manifestations have a negative impact on the overall mixing coefficient.

5.4 Iterated approximation

It remains to be seen how the above contraction results apply to our inference algo-

rithm. Of prime importance is the relationship between the contraction phenomenon
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and the accumulation of approximation errors over time. We thus analyze the total
error resulting from our approximation strategy, as measured by the divergence from
the current true posterior belief state o(**) to our approximation thereof 6. Intu-
itively, this error originates from two sources: the accumulated error inherited from

(t=1) and the fresh error caused by the approximation

the previous approximation o
of ) as 6.

Suppose that each such approximation introduces an error, increasing the diver-
gence from the exact belief state to our approximation thereof by e. However, the
contraction resulting from propagating the belief states through the stochastic tran-
sitions serves to drive them closer to each other, reducing the accumulated error by
a fraction 7, as per Theorem 5.11. Conditioning on the various observations moves
the two distributions even closer to each other, at least on expectation over the pos-
sible responses, in accordance with Fact 5.3. Therefore, the total expected error, as

accumulated through ¢ inference steps, would behave as,

e+(1—7)e+(1—7)2e+...+(1—-9)""e < Zdl_ﬂi _

€
ok
and would therefore be bounded independently of .

To formalize this result, we first need to quantify the incremental error resulting
from one approximation step. As the approximate belief state ™ isan approximation
of 6, most obviously, the incremental approximation error could be defined as
Dx.[6"||61)], the relative entropy from ¢ to ). This relative entropy has
the advantage of capturing the intrinsic error caused by the approximation step, in
isolation from the context of the true belief state of the process. However, the actual
error that matters in an application is measured relative to the true distribution a®*),

and not to 6. Therefore, we use the following definition.

Definition 5.13 We say that an approximation 6% to a distribution ") incurs

error € relative to the true distribution o®*, if

e = Dxi[o™ 9] — Dxrlo™ ||61] .
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We note that this definition allows the error € to be negative; this would be the
case when the approximate distribution 6@ is closer to the true distribution o(**)
than the distribution 6 it approximates.

By induction on ¢, it now follows easily that, if the assumption holds, the total

error remains bounded forever on expectation.

Theorem 5.14 Let S be a stochastic process which, together with any fized approz-
imation scheme, achieves a contraction coefficient of v. Assume that, at each time
slice t, the approximation scheme incurs error at most € relative to the true belief
state o™ . Then, for any t, it holds that:

~ €
Ep(l)..(t)[DKL[O'(t.)||0'(t)]] < ;,

where the expectation is taken with respect to the distribution pV-® of response se-

quences RY ..., R®  with the probability ascribed to them by the process S.

Proof We start by peeling off the expectations over the observed responses from
the inside out, going backward in time starting with p(*):

E

PD-® [Dxi[e®™]6®]] = Epu).¢-1) [Ep(t) [Dxr[e®™ | 6D]] .

Focusing on the inner expectation Epw|...], successively using (1) the assumed bound
on the incurred error, (2) the non-increase of expected KL divergence under condi-
tioning (observing that the distribution of p{*) stems from ¢(*?), and (3) the third is

the contraction property, we obtain:

Ep(z) [DKL[(T(t°) I 5(t)]]

IN

e+ Epo [Dxr[o™ [|60%)]]
€ + Dxi[o™? || 6]

< e+ (1—7) Dkrlo1) 60V .

IN

Proceeding likewise for the remaining time steps, from ¢ — 1 down to 0 (or, even,
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to the limit at —oo, observing convergence in the limit), we finally get:

Epo.o [Dxr[e®™]6D]] < e+(1—7)e+(1—7)2e+...+1—y) e+ ...

€
-

Y

where we have used the well-known formula for converging geometric series. a

Of course, it is not trivial to show that a particular approximation scheme will
satisfy the accuracy requirement of . The main difficulty stems from the fact that
the notion of error from Definition 5.13 depends on the true belief state o), which
is usually not known, and often unknowable. Nevertheless, it is easy to show that if
the maximum over all states of the relative error caused by approximating o) by

&® is bounded at time ¢, then so is the incurred approximation error € at time t.
Proposition 5.15 If n®) is such that:

6'(t.) [Si

6'(t) [SZ] ’

n® = max
then, necessarily:
DKL[O'(t.) I 6(t)] — DKL[O'(t.) I 6(t')] < log, [n(t)] .

Proof We have:

(t9) || 50 (1) || 5(t%) o™ A
Dxi[o"™[|6"] — Dxr[o"™ ||6] = Eges[log, ~0 — log, A(t.)]
g g
- (te)
o
= Eum[log, >
o [log, 6(t)]
St
< maxilog, T = Jog, ]

6(t) [Sz]
(]

The expression of n® above is the maximum relative error caused by the approx-

imation scheme at time ¢, a value for which it is often easy to assess an upper bound
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when executing a given approximation step.

It is important to note that Theorem 5.14 only provides a bound on the expected
error. The bounds for specific sequences of evidence are much weaker; in particular,
the error after a long burst of very unlikely responses might be subtantially larger than
the average. Nevertheless, the contraction results hold for arbitrary distributions, no
matter how far apart the approximation might be from the reference. Even if g(**)
and 6 are momentarily quite different, the error will be resorbed by the contraction

property at a geometric rate.

5.5 Choosing an approximation

Going back to the experiments of Section 4.3, we now compare how the measured
error correlates with the theoretical error bounds of this chapter. In particular, we
wish to assess how our theoretical tools predict how well each of the various approx-
imation schemes of Section 4.3 would perform, compared with each other. The two
determining factors here are the stepwise approximation error € and the overall mixing
coefficient bounded by v*. The former is directly linked to the expressiveness of the
approximation; so according to this criterion we expect the quality to decrease with
the aggressiveness of the belief state clustering. Thus, referring to the approximations
used in the BAT network experiments of Section 4.3, we should have, in decreasing
order of quality: ‘545" > ‘3+3+4’ = ‘3+2+4+1’, although, as mentioned earlier, the
actual error incurred at each step depends on the state of the system at that time.
The mixing coefficients can be asessed quantitatively, using the results of this chap-
ter. For each clustering as above, we computed the vector ¥ of mixing coefficients
for all clusters, and used it together with the connectivity characteristics ¢ and r to

calculate v* from Theorem 5.11.

e For the ‘545 clustering, ¥ = (0.00040,0.0081), » = 2, ¢ = 2, hence v* =
(Ymin/7)? = 4 x 1078,

e For the ‘3+2+4+1’ clustering, ¥ = (0.00077,0.080,0.0081,0.96), r = 3, ¢ = 2,
hence v* =7 x 1078,
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e For the ‘3+3+4’ clustering, ¥ = (0.0022,0.020,0.0034), r = 3, ¢ = 3, hence
v =4 x 10710,

Thus, for this criterion, we get, by decreasing order of quality, ‘3+2+4+1" ~ ‘5+5’ >
‘3+344’: the latter clustering is heavily penalized by the higher inter-connectivity of
its clusters, whereas the former two benefit from having boundaries that align nicely
with the natural “islands” of the process, as predicted.

In summary, in order to apply the approximate inference algorithm of Section 4.2
to a particular problem, it is necessary to define a partition of the canonical variables
into clusters, i.e., choose a partition of the process into subprocesses. The contraction
analysis presented in this chapter can be used to evaluate the alternatives. The
tradeoffs, however, are subtle. Subprocesses with a small number of state variables
will generally allow more efficient inference; they also have a smaller transition model,
and therefore their mixing coefficient is likely to be better. On the other hand,
subprocesses need to be large enough to ensure that there are no edges crossing a
subprocess boundary within a single time slice; furthermore, making the subprocesses
larger will likely decrease the error incurred by this approximation: specifically, if two
variables are highly correlated, keeping them together will result in a much improved
incremental approximation error. The analysis of the coming chapter gives further

insight into the factors that affect the quality of an approximation.
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Chapter 6
Projection analysis

Tracking the state of a complex stochastic system, as we saw in the previous chapters,
is a delicate task, mainly due to unpredictable dynamics and partial observability.
Factored stochastic models such as DBNs provide a coherent framework for modeling
such systems, where the state of the system is often represented using a set of state
variables. Transition dynamics are represented compactly by exploiting the fact that
each variable typically interacts with only a few others. Furthermore, even though all
variables are bound to be structurally correlated with each other, only a few of these
correlations will be of any perceivable importance, while the others may be neglected

to facilitate the reasoning process.

Part of the difficulty of implementing this intuition is to weed out induced weak
correlations in the belief state in a way that does not impact the transition model
itself. For example, when considering cars on a freeway, it may be perfectly rea-
sonable to represent the instantaneous state of each car separately from the others,
using marginals instead of a joint distribution. However, the interactions between
cars should still be taken into account when updating the individual beliefs. This is
the distinction between tracking the state of the freeway using a decomposed repre-
sentation of the belief state, and treating the cars as completely independent of one
another, which would amount to neglecting all interactions. In other words, while
the induced effects of the cross interactions between variables may often be safely

neglected a posteriori, it is usually dangerous to neglect these interactions a priori.

93
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As Herbert Simon argues [Sim62],

[These] nearly decomposable systems, in which the interactions among the

subsystems are weak but not negligible [...] are far from rare.

On the contrary, systems in which each variable is linked with almost
equal strength with almost all other parts of the system are far rarer and

less typical.

In the previous chapters, we propose an algorithm that exploits this idea by mo-
mentarily ignoring the weak correlations between the states of different system compo-
nents. More precisely, the algorithm represents the belief state over the entire system
as a set of localized beliefs about its parts, even though the entire set of interactions
present in the model is used to update those beliefs. The analysis shows that the
stochasticity of the process prevents the repeated errors resulting from the projection
onto localized beliefs at every step from accumulating without bound. However, the
overall bound depends on the value of the error incurred by the individual approxi-
mation steps, which is difficult to quantify a priori. Rather, the justification is based
on the intuition that, if the subprocesses interact only weakly, the error incurred by
approximating away the induced correlations has to be small. Or, as stated by Simon
[Sim62]: “In a nearly decomposable system, the short-run behavior of each of the
component subsystems is approximately independent of the short run behavior of the
other components.”

In order to make this intuition precise, we must formally define what it means
for processes to interact weakly, and show that weak interactions allows us to bound
the error introduced by this approximation. We also analyze a new notion of sparse
interaction, where the usual mode of interaction between subprocesses is weak, al-
beit tainted by an occasional strong interaction. In this case, the weak interaction
assumption is warranted only part of the time, and so is the approximation scheme
chosen to monitor the system under that assumption; however, it would be wasteful to
uniformly relax a good approximation for the rare times when it is not applicable. To
cope with this type of processes, we propose an adaptive approximation, which keeps

the states of the interacting subprocesses momentarily coupled, following a strong
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interaction. As our analysis shows, the coupling needs to persist only shortly after
the strong interaction ceases, as the induced correlations fade at a geometric rate.
Thus, whereas the last chapter was mostly concerned with stochasticity being
instrumental to the geometric reduction of accumulated past errors, this chapter
focuses on the incremental short-term approximation errors, and how they are affected

by the process structure and the strength of the interactions.

6.1 The myth of structure revisited

In this section, we briefly review our previous results on inference in compactly rep-
resented dynamic processes, and cast them in a slightly more general setting, which
will be useful for our study of the incremental error.

A stochastic dynamic system is defined via a set of states, and a transition model
that represents the way in which one state leads to the next. In complex systems,
a state is best described using a set of random variables A4, ..., A,,. The transition
model is described via a 2-TBN B. The network contains anterior nodes A7, ..., A5
representing the previous state, and ulterior nodes A7, ..., A> representing the present
state. Each ulterior node A} has a set of parents Pa[A}]; anterior nodes A5 have
no parents. The network graph represents the qualitative structure of the transition
model, by indicating the anterior and ulterior variables that directly influence the
new value of each ulterior variable A7. The transition model is made quantitative
by associating with each ulterior variable A7 a conditional probability distribution
PA7 | Pa[ 42]].

Recall that, as the system state is not directly observable, its evolution is tracked
using a belief state o over the possible states at the current time ¢. In principle,
maintaining o® is straightforward, as described previously. Having computed o),
we propagate it forward using the transition model to obtain the expected next belief
state o(*); we then condition o(*") on the system response at time ¢ to get o(®.

In Chapter 4, we propose a scalable approximation to this procedure. Algo-
rithms 4.5 and 4.8 maintain approximate belief states that admit a factored represen-

tation. Specifically, either variant of the algorithm only considers belief states that
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fall into some restricted family of distributions =, e.g., ones where certain sets of
variables are marginally independent (in the case of Algorithm 4.5) or conditionally
independent (in the case of Algorithm 4.8). Let 9~V € = be the most recently
computed approximation to the belief state. Updating it to the next time slice would
produce a distribution 15(0 which would typically need to be projected back into Z; our
algorithm exploits the structure of the process to combine both operations, producing
9% in one step.

In this chapter, we seek to refine our analysis of the strength of the various in-
teractions and how it affects the induced correlations. Often, a complex process
is architectured as a hierarchy of simpler processes, so that interactions tend to be
stronger between the subprocesses that are part of the same substructure. To capture
this intuition, we will introduce quantitative notions of weak and sparse interactions,
which are based on a hierarchical decomposition of the processes. We will therefore
find it useful to consider the inference procedure of Algorithm 4.8, and give a hierar-
chical process interpretation to the various clusters that appear in the cluster forest
selected for the algorithm. We now review a few key aspects of the workings of that

algorithm.

Definition 6.1 Given a cluster forest F over a set of BN or DBN nodes {Ay, ..., A, }
(as defined in Definition 4.6), we define Z[F] to be the set of distributions ¢ that are
representable over F (as defined in Definition 4.7).

Algorithm 4.5 takes the approximate belief state 9V in E[F], and generates the
approximate belief state 9 in E[F], according to an idealized sequence of steps, as
follows. In the first phase, the algorithm propagates 94 1o @(t) using the transition
model. It then conditions @(t) on the time-¢ evidence, generating 19(t). Finally, it
projects '5(t) into Z[F], resulting in 9.

In order for this process to be performed correctly, we require that, if A} € Pa[A7],
i.e., A} has a parent A in its own time slice, then there must be some cluster F;
such that A} and A] are both in Fj. In other words, it is required that all intra-
time-slice edges be contained in some cluster. This assumption allows us to focus

attention on inter-time-slice influences. We therefore define the ancestry of an ulterior
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variable A} to be the set of its parents restricted to the previous time slice, namely
Pa*[A}] = Pa[A7]\ {47, ..., A }. The ancestry of an ulterior cluster or set of variables
is defined as the union of the individual ancestries, in the obvious way.

The potential problem with this approach is that the repeated approximation
at every time slice ¢ could cause errors to accumulate without bound, resulting in
a meaningless approximation. In the previous chapter, we provide conditions under
which the error remains bounded. The first condition is that the process is sufficiently
stochastic, so that the accumulated errors from the past are progressively forgotten.
The second condition is that each approximation step does not introduce an exces-
sive amount of fresh error. The rate of decay of past errors depends on the mixing

properties of the process, which are most generally characterized as follows.

Definition 6.2 Let Z” be an ulterior cluster with respect to a 2-TBN model, and
X< be Pa*[Z”]. We define the mizing coefficient of the stochastic transition X< — Z*

as:

VX = 2°] = ming, .,y min{P[Z° = 2|X° = 1], P[Z" = 2|X° = z,]} .

Letting Y and W< disjoint such that X = Y* U W<, we also define the mizring
coefficient of the conditional transition Y¢ — Z* as the minimal mixing coefficient

of the instances of that transition obtained by conditioning over all possible values of
W

VY= 27 WY = minwmjnyhmz min{ P[z|y;, w|, P|z|ys, w]|} .
z
Intuitively, the now familiar mixing coefficient is the minimal amount of mass that
two distributions over Z” are guaranteed to have in common: one is the distribution
we would get starting at 1 and the other the one starting at x,. The mixing coefficient
in the conditional transition is similar, except that the starting points are restricted
to be already in agreement about W<. From here on, we will often drop the explicit
reference to W< in the notation for mixing coefficient, in which case W< is understood

to be Pa*[Z”]\ Y. It is noted that the mixing coefficient of compound transitions can
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be easily bounded in terms of the conditional distributions of individual variables:

Proposition 6.3 Let Z° = UF_,Z%; let X7 C Pa*[Z}], and X° = U X7, Then
the minimal mizing coefficient of the compound transition X — Z° satisfies the

inequality:
k
MX* =27 = WX = 2]. (6.1)
i=1
If furthermore each X is disjoint from Pa*[Z3] for all j # i, then:
k
VX =2z > [ — 2. (6.2)

=1

Proof We first observe that, since Z; ¢ Pa*[Z]], for i # j, we have:
PZ7 = | X" = 2,27 = 5] = PlZ] = 2|X" = 1]

Regarding Equation 6.1, we then obtain, starting from Definition 6.2:

k k
VX = 27 = mingy Yy min{] [ PZ; = #|X* = 2], [[ P[Z; = 2|X* = 2']}

Z1,e092k i=1 i=1

v

k
ming Yy [[min{P[Z; = #|X* = 2], P[Z} = 2/ X* = ']}
215.a0y2p 2=1
k
= min, o | [ min{P[Z] = 2|X* = 2], P[Z} = 2|X" = 2']}

=1 2z

v

k
[[mine>  min{P[Z; = %|X* = 2], P[Z} = z|X° = ']}
=1 25

k

= [[x*— 7).

1=1

As for Equation 6.2, it follows from a simple decomposition of the process into

independent subprocesses. a
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As shown in the previous chapter, the mixing coefficient can be used to bound
the rate at which errors arising from approximations in the past are forgotten. Let
{S1, ..., S} be the finest disjoint partition of {A, ..., A, } such that each cluster F; is
fully contained in some S;; i.e., each S; is one of the connected components in the
cluster forest defined by F.

Let r be the maximum inward connectivity of the process relative to the partition,
i.e., an upper bound, over all components, on the number of components S; such that
there is an edge from one of S;”’s variables to one of S7’s variables. Similarly, let ¢ be
the maximum outward connnectivity of the process relative to the partition, i.e., an
upper bound, over all components, on the number of S7 such that there is an edge
from S5 to S%. Defining +*, the (partition dependent) overall contraction ratio of the

process,
1 q
v = (Rminlst 1)
T
we have the contraction property from Theorem 5.11,

Drzfo®[[97] < (1—+) Drrla®™D|9¢ D).

As for the fresh error introduced at every approximation step, defining ey (¢ — 9)
to be the incurred error of using 9 as an approximation of ¢, with respect to a true

distribution p,
_ 14
eu(p = v) = Eyllog, E] :

and letting ¢* be an upper bound on the incurred projection error at all times for the

process of interest,

€ S (9 10) (@(t) — 19(t)) s
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the total expected error remains bounded as follows,

E[Drxio®]|9%]] < €/y".

6.2 Intrinsic measures of interaction

Chapter 5 provides an analysis for the contraction ratio v*, allowing it to be bounded
in terms of parameters of the dynamic system. There is no similar analysis for the
implicit approximation error €*. Rather, it is hypothesized that an approximation
that places two subprocesses in different clusters does not incur an exceedingly large
incremental error, insofar as the subprocesses do not interact very strongly; indeed,
the experimental results of Section 4.3 support this prediction. Omne of the goals
of this chapter is to provide a foundation for such a justification, and relate the
approximation error to the structure of the process.

The problem with analyzing the implicit error is, as its name suggests, that it
is rather elusive: without knowing the true distribution ¢, the error incurred by
the projection of ﬁ(t) to 9 cannot be measured. Instead, we will focus on a more
manageable, albeit closely related quantity: the intrinsic error of approximating @(t)
using 9, as measured by the KL divergence DKL[ﬁ(t) |9®], which intrinsically char-
acterizes the error caused by the approximation. The foregoing analysis studies how

this intrinsic error is affected by the system structure and dynamics.

Definition 6.4 We define the intrinsic projection error, or simply, projection error,

of approximating ¢ by % as:

o= 9] = Drifp]d]

Eyp [log, %] )

We now show that the projection error ¢ can be decomposed according to the
clustering. The key aspect of this analysis is based on a close relation between the
projection error and the mutual information (see Section 2.2) between clusters in the

cluster forest F. More precisely, the decomposition relies on an auxiliary structure
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related to F, which defines a hierarchical grouping of the clusters of F in a binary

tree.

Definition 6.5 Given a cluster forest F, we say that G is a cluster hierarchy of
F, when G is a binary tree of cluster groups {G;}, or simply groups, satisfying the

following conditions:

1. the cluster groups of the leaf nodes are defined as the clusters Fi, ..., F,, of F,

exactly and uniquely one per leaf node;

2. the cluster groups of the interior nodes are defined as the union of the groups

of their two children;

3. for every pair of sibling groups, i.e., groups sharing the same parent in G, there
is at most one edge in F that connects a cluster in one group to a cluster in the

other group.

We use S¢ to denote the set of the m — 1 undirected pairs {G;, G} such that G; and
G are siblings. For {G;,G;} € S¢, we denote by G;n; the intersection G; N G, and
by G;\; the difference G; \ Gj.

Intuitively, G is a recursive partition of F, where each split divides up the clusters
of a group Gy, into a pair of complementary sub-groups G; and G, so that no more
than one edge of F crosses the partition. The crossing edge, if any, corresponds to
the intersection of two overlapping clusters in F, i.e., clusters that share some of
their variables; the intersection G;n; will thus be the set of those variables. Figure 6.1
shows one possible group hierarchy for a given cluster forest.

It is important to emphasize the distinction between the cluster forest F and the
group hierarchy G. The former has a material effect, as it defines the approximation
scheme used by the inference algorithm. On the other hand, the group hierarchy
G is merely used for the purpose of analysis, and can be chosen freely given the
constraints once F is fixed. The nature of F and G is also different: the clusters in
F may or may not be overlapping, and if they are, they must satisfy the running

intersection property; in contrast, some groups in G are necessarily overlapping, since
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Figure 6.1: Cluster forest and group hierarchy: (solid lines) a cluster forest composed
of 7 clusters F1, ..., Fy; (dotted boxes) the 13 groups Gi, Gg, G3, ... composing one of
the possible group hierarchies compatible with the cluster forest.

each group is a proper subset of its parent in the hierarchy. The key insight is that
the approximation error for using the clusters in F decomposes nicely according to

the structure of G, as we now show.

Theorem 6.6 Let U be a set of discrete random variables, F a cluster forest over
them, and G a cluster hierarchy as in Definition 6.5. Let ¢ be a probability distribution
over U, and v its projection onto F. Then, the projection error admits the following

decomposition:

dp—vy] = > GGGyl ,

{Gi,Gj}ESG

where the conditional mutual information under the summation is computed with

respect to .

Proof The theorem follows easily from an induction argument. Let Gy be any
interior node, and denote by G; and G; the children of Gj. Since Gjn; is fully

contained in some cluster F; of F, we have that ¥[Ginj] = ¢[Gin;], and, consequently,

Dir[p[Gi] || ]G]

p|lG

Y[Ginj] Y[Gi|Ginl ¥[G|Ginjl
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<P[Gk]
@[Ginjl 0lGi|Gins] 0lG|Gingl
0lGinjl 0[Gi|Ginyl
1
O Gy 091G G
¢[Ginjl (G| Ginj]
1
O G 191G, 1G]
— Eye el ¢lGi, Gyl
PGSO 1G] 91Gil Ging) @1 GGy
0[Ginj] ©[Gi|Giny]
Y[Ginj] ¥[Gi|Giny]
o ‘P[Gimj] ‘P[Gj|ij]
2 P[Ginj] ¥[G;|Giny]
= I[Gi; Gj|Giny]

+ Drc (G| 1G]] + Dice[lG] 1 91G5]

= E(P[Gk] ]Og2

+E§0[Gl]10g2

+Epia;lo

Thus, the error term restricted to the variables in GG, decomposes into a pair of
analogous error terms over the children of Gy, plus the mutual information between
those children given their intersection. The claim follows by recursion on the error
terms in G; and G, until G; and Gy, reduce to single clusters of F; indeed, since all
clusters are atomic with respect to the projection of ¢ into 1, Dxi[p[F}] ||¥[F1]] = 0,
for any cluster F;. To conclude, we note that €[p — 9] = DxL[p[Go]||¥[Go]], where
G = U is the root of the group hierarchy. (m]

The key to exploiting this decomposition is as follows. Recall that @(t) is obtained
from propagating a distribution 9=V, where the distribution 9~V is in the restricted
space =[F], i.e., it satisfies the independence assumptions defined by F. Intuitively,
there should be a limit to the number of dependencies introduced by a factored
stochastic transition on a factored distribution, which should result in bounds on each
of the mutual information terms that appear in the theorem. The coming sections
will be devoted to formalizing this intuition.

It turns out that the notion of mixing coefficient, which captures the extent to
which information is retained from a set of anterior variables X< to a set of ulterior

variables Y” through a stochastic transformation, can also be viewed as representing
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the extent to which a set of variables influences another. In particular, we are inter-
ested in the extent to which one group G; at time ¢ — 1 influences another group G;
at time ¢. We therefore introduce v;;, based on the conditional mixing coefficient of
Definition 6.2:

% = MG\ Ging) = (G5 \ Girg)l

where, as in the Definition 6.2, the dependence on other parents of G7 is implicit.

In the following sections, we study the connection between intrinsic errors and

mixing properties for the various components of the process.

6.3 Weakly interacting processes

The first simple scenario we study is that of two groups taken by the approximation to
be completely independent, i.e., groups contained in different connected components
of the cluster forest. Intuitively, the projection error in this case would be expected
to depend on the extent to which these two groups interact. In particular, if the
system is such that the variables interact only weakly across the two groups, the

error incurred by keeping their belief states independent should be small.

We first state a central lemma for this kind of analysis.

Lemma 6.7 Let P be a probability distribution over six sets of random wvariables,
denoted U, V. W XY, Z, with the following dependency structure:

i.e., such that:

PUV,W,X,Y,Z] = PIU,V,W|PX|U,V,W]P[Y|X,U|P[Z|X,V] .
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Then, writing yxy as an abbreviation for v[X — Y], etc., it holds that:

IY; ZIW] < (1 —=y) (1 —wz) U; V|W]
+(2 — vxv — 7x2z) log, [#X] ,

where the mutual informations are computed with respect to P.

The proof of this lemma makes use of the two following claims.

Claim 6.8 Let P[Y|U, X]| be a conditional probability distribution with mizing coef-
ficients y[U — Y |X| = vy, 7[X = Y|U] = vxy, and y[(U, X) = Y] = vy. Also let
lU, X] and ¥[U, X]| be two arbitrary distributions over U and X. Then, there exists
a conditional distribution Q[A,Y',Y" YU, X], defined over three additional random
variables A, Y', Y"  such that:

1. Q can be factored as follows:

QA YY" YU, X]
= QA Q[Y'|A, U] QY"|A, X] QY |V, Y"] .

2. The domain of Y' replicates the domain of U, augmented with one additional
state cy, the contraction state. Similarly, the domain of Y" replicates that of
X with one additional contraction state cx. Fach of Y' and Y" either copies
the value of its parent, or contracts to cy or cx, depending on the value of A.
A randomly takes one of four values, respectively triggering the contraction for

Y' Y" both, or none; these outcomes are distributed with probabilities:

QA= “bothY' and Y" contract”] = ~y ,
QA= “onlyY' contracts”) = (yov — ) ,
QA= ‘onlyY" contracts” = (yxv —7v),

(

Q[A = “npeither Y' norY" contracts”] = (1 —yuy —vxy +7v) -
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3. The conditional distribution Q defines a stochastic transition that maps ¢ and
1 to the same distributions of Y as P does. Formally:

elY] = Y ¢lu, 2] P[Y|u,1]

uU,T

= Z(p[u, 2] QY |u, 2] ,

PIY] = ) Plu,2] P[Y]u, 1]

U,z

= Z’I/J[U,IE] QY |u, ] .

u,T

Proof The argument is a generalization of Lemma 5.5 in Section 5.2.

Since the transition (U, X) — Y has mixing coefficient vy, at least a fraction vy
of the mass of @[Y] and [Y] is distributed identically. Let n[Y] be the measure of
this mass in agreement (it sums up to 7y, and always has a solution, which need
not be uniquely determined). Thus, @[Y] and 9[Y] both contain a contribution n[Y],
which is independent of U and X under the assumption that (U, X) is distributed per
either ¢ or 9. To capture the contribution of 7 in the new model, we let Y’ and Y”
simultaneously enter their respective contraction states cy and cx with probability
vy, and we define the distribution of {Y|Y' = ¢y, Y"” = cx} to be n[Y]/yy.

Similarly, since the conditional transformation U — Y| X has mixing coefficient
Yoy, we have that @[Y] and 4[] must agree for an additional fraction (yyy — vy) of
their mass when X is fixed. We collect this additional contribution, whose distribution
depends on X or equivalently on Y in the distributions of {Y|Y' =¢,Y" = z} for
all z € dom[X]; as for Y’, we let it enter its contraction state alone with probability
(voy — 7y)- The case where Y but not Y’ contracts is analogous.

Finally, the remainder of the mass, which can be shown to be non-negative ev-
erywhere, is collected is the conditional distribution of {Y|Y’,Y"} for Y’ # ¢ and
Y" # c. O
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Claim 6.9 In the setting of Claim 6.8 above, the following contraction property holds:

Drxc[@[Y]|[$[Y]]
< (1= y) Dec[p[U]|$[U]] + (1 = 7xv) Epu[Dxe[p[X U] [XU]]] .

Proof Let Q be the transition model as constructed in Claim 6.8. We know that

Q maps ¢ and 1 respectively to @ and 1. For notational convenience, let us extend
the distributions @[Y] and 9[Y] over U, X, A, Y', Y" Y, the obvious way:

PIU, X, A YY" Y] = ¢[UX]|® QA YY" YU X],
PlUX A YY" Y] = ¢[U,X]@ QA YY" Y|U,X] .

By construction of Q, the only variables Y directly depends upon are Y’ and
Y”. Therefore, the transition (Y',Y"”) — Y is Markovian, and we get, taking all

expectations relative to ¢:

Drc[p[Y]]|%[Y]]
< Drs[[Y'][[9[Y]] + Ey/[Dxclp[Y" YT $[Y" Y]] -

For convenience, define A" and A” to be the functions of A respectively indicating
whether Y/ and Y are entering their contraction states. The first term appearing in

the above expression can be bounded as follows:

Drcz[@[Y'][|[Y"]
< Drilp[A, Y[ 4[4, Y]
= Drxi[p[A]||$[A]] + Ex[Dxr[p[Y'|A']||$[Y"|A"]]]
= 0+ Q[A' = true] Di[p[Y'|A" = true]||¥[Y'|A" = true]|
+Q[A" = false] Dxi|[@[Y'|A" = false]||¢[Y'|A" = false]|
= 040+ (1= yov) Dielg[Y'| A" = false] | Y|4’ = false]
= (1= wy) DeslglU]) | 91U]]
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where we have used the fact that Y’ = ¢ deterministically when A’ = true, and that
Y'=U when A’ = false.

Analogously, the second term inside the expectation is bounded as follows:

Dxz[p[Y"|U]||[Y"|U]]
< Dxi[p[A", Y"|U]||9[A",Y"|U]|
= Drxz[p[A"|U]||9[A"|U]] + By [Dxc[@[Y"|A", U] || $[Y"|A", U]]
= 0+ Q[A" = true] Dxi[p[Y"|A" = true, U]||¥[Y"|A" = true, U]
+Q[A" = false] Dxi[p[Y"|A" = false, U]||9[Y"|A" = false, U]]
= 040+ (1 —vxy) Dxi[p[Y"|A" = false, U]||9[Y"|A" = false, U]
= (1—7xy) Dre[@[X|U] || 9[X|U]] -

Since @[U, X] = @[U, X] and %[U, X] = 9[U, X], the claim follows easily. O

Proof of Lemma 6.7 We pose vy = y[(U, X) — Y] and v, = v[(V, X) — Z], and,
as before, ypy = y[U — Y |X], etc.Unless otherwise specified, all expectations and
mutual informations are defined with respect to the distribution P[U, V,W, XY, Z].

Intuitively, we consider a new distribution with the following structure:

Y’
AT TTe vy

33l

W —* X

e

We show that (suitable fragments of) the new distribution can be parameterized to
behave like the original distribution, in a well defined sense. We exploit this fact to
show a contraction property for the Y-transition and the Z-transition, in sequence.

We then show that, taken together, they give the desired result.
The Y-transition Our objective here is to show that:

IY;viw] <
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(1 = yuy) QU; VIW] + (1 — yxy) log, [#X] .

Fix v € dom[V] and w € dom[W], and pose, writing P[-|w] for P[-|W = w]:

elU,X] = PUX|v,w],
YU, X] = PlU, X|w].

Let Q[A, YY" Y|U, X] be the structured conditional distribution constructed as
in Claim 6.8 to emulate P[Y|U, X,v,w| for ¢ and 9. Then define the following

distributions:

PlU, X, A YY" Y] = o[U X]® QA YY" YU X],
YU, X, A Y V" Y] = 9[UX]|® QA YY" YU X].

By Claim 6.8, it holds that:
Dx.[P[Y |v, w]||P[Y|w]] = Dxe[p[Y]||9[Y]] .
And then, by Claim 6.9:

Dxi[P[Y v, w] || P[Y |w]]
< (I =ov) Drefp[U]||9[U]]
+(1 = 7xv) Egp)[Dre[p[X|U] || 9 X|U]I]

where it is noted that the above expectation is taken with respect to ¢. Replacing ¢

and 1 by their definitions wherever they appear, it follows that:

Dxir[P[Y |v,w] || P[Y |w]]
< (1 =9wy) Dxz[PlUw, w]|| P[U]w]]
+(1 - fYXY) EP[U\U,U)] [DKL[P[X|U7 v, ’U)] || P[X|U7 ’LU]]] -
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Therefore, by taking the expectation over V' and W:

Eppy,w)[Dxc[PY |V, W]||P[Y|W]]]
< (1 —wy) Erym[DxL[PUV, W[ PIUIWI]
+(1 = vxy) Ep,v,w [Drc[P[X|U, V, W] || P[X|U, W]]] .

On the other hand, the following identities are seen to hold universally:

IY; Viw]
= Eppy[Dec[PY, VW] || PIY|W] @ PIVIW]]]
= Epw[Dxc[P[V|W]||PV|W]]] + Eppw [Dxc[PY |V, W] || P[Y |W]]]
= Epy,m[Dxc[PY[V,W]||PY|W]],
Iu; v|w]
= Epy,w|[Dxc[PU|V,W]||PUW]],
10X V|U,W]
= EppywDxe[P[X|U, V,W]|| PIX|U, W]]] .

By substituting each of these in the previous result, and noticing that I[X;-|-] <
log, [#X], the first part of the claim is established.

The Z-transition Here, the objective is to show:
?
Iy; Z|w] <

(L= yvz) IIY; VIW] + (1 — yxz) log, [#X] .

The argument is essentially the same as for the Y-transition, where the variables

are substituted as follows, the role of each variable on the left-hand side below now
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being assumed by the variable on the right-hand side:

U -V A — B
V - Y Y' —» 7'
X - X Y" — 7"
w —- W, Y —» Z.

Combined transition Putting the two above intermediate results together, we

get:

1Y; Z|W]
< (T=oy) (X =w2) IU; VW]
+(1 = wz) (1 — yxy) logy [#X] + (1 — vxz) log, [#X]
< (IT=ov) (1 —wz) LU; VW]
+(2 = vxy — xz) log, [#X] ,

as required.

We are now ready to prove our theorem for weakly interacting processes.

Theorem 6.10 Let F and G be a cluster forest and group hierarchy, and G; and G;
two siblings with an empty intersection, i.e., having no cluster of F in common. Let
[ be a distribution factored according to F. Let ¢ be obtained from i by propagation

through the given transition model. Then, with respect to ¢,
NGHGI < (2= i — v5a) (logy [#Gi] log, [#G]) -

Proof Consider the transition model involving G; and G; at the anterior and ul-
terior time slices. The proof is based on the construction of a related model that
behaves equivalently on i and ¢, and that contains a “mediator” variable X through

which the cross-interaction between G; and G is funneled.
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GI—: GI Gi\—: GI
. - X
) A a

G —= G G —= 6

Specifically, the transformed model contains the original random variables G;, G7,
G7, G, and also the new mediator variable X, whose domain has the cardinality of

G; x G. X simply copies the values of G} and G, and directly influences G and

7
G’ in a way that reproduces the previous cross-dependences G — G’ and G — G}
in the original model, which no longer exist in the new model. Notice that vyx; and
vx; in the new model are respectively equal to 7y; and +;; in the original one. An

application of Lemma 6.7 to the new structure now gives:

1G3; G
< (2 = yxi — vxj) logy [#X] + c IG5 G
= (2= vxi — vxj) logy [#X] ,

where the term in I[G7; G5] vanishes as G; and G are assumed independent in the
anterior belief state fi. The claim follows, as #X = #(G; x G;) = (#G; #G;). O

Note that, as G; and G are disjoint, we have Gin; = 0. Thus, the term I[G7; G
bounded in this theorem is precisely the term I[G}; G%|G3-,;] that appears in Theo-
rem 6.6. In other words, Theorem 6.10 gives us a bound on the error introduced by
maintaining a factored belief state on two specific groups G; and G;. To get the over-
all bound on the error, we would simply add the contributions of all pairs of siblings
in the group hierarchy G, as per Theorem 6.10.

The bound for G; and G closely matches our intuition regarding their interaction
strength. Consider the term vy x for two groups X and Y that are weakly interact-
ing. In this case, Y would not have a strong influence on X, which is to say that
PIX*| X =z,Y*=y] is close to P[X"| X =z,Y =y, for any z, y;, and yo. It
follows that:

Zmin{’P[Xl> =2 X' =2, Y =y, PX° =2/ [ X =2, Y =9} S 1,
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for all =, y1, y2; hence 7y x is also close to one. If both «;; and ;; are close to one,
the error bound given by Theorem 6.10 will be close to zero.

To illustrate, consider the process composed of a number of cars on a freeway.
In normal circumstances, the cars interact weakly with each other, so we want to
place each car in a separate cluster F; in our belief state representation. We can
use the above theorem to justify this, as the weak interaction between the cars will
ensure that each v;; ~ 1 in any group hierarchy G that we choose. In fact, since
the choice of G is arbitrary given a clustering JF, we can choose G to maximize the
various 7;;. In the example of the cars on a freeway, it is reasonable to assume that
only neighboring vehicles may experience any kind of interaction. We can maximize
7i; by minimizing the number of neighboring cars belonging to any two siblings G;
and G, which corresponds to the intuition that vehicles should be grouped according
to their proximity.

It should however be noted that, contrarily to F, the choice of G does not affect the
approximation. Thus, a judicious group hierarchy will only lead to a tighter bound

on the quality of the approximation, which itself depends on the actual clusters in F.

6.4 Conditionally weak interactions

The previous section analyzed the error of approximating clusters of variables as
completely independent. However, as experimentally observed in the last chapter,
the tracking error can sometimes be substantially lowered by the use of conditionally
independent clusters. For example, it may be much more reasonable to maintain
an approximate distribution where the states of individual cars on a freeway are
conditionally independent given the overall traffic conditions, as opposed to being
fully independent. In this particular instance, the cluster forest F would be composed
of as many clusters as there are vehicles, all of which share a common random variable
describing the traffic conditions, in addition to vehicle-specific variables which are not
shared. This kind of conditional independence relation causes some overlap among
the clusters of F, and, in turn, among some pairs of siblings in the group hierarchy G.

For Theorem 6.6 to remain of any use in this situation, we therefore need to analyze
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and bound the intrinsic error for two sibling groups that need not be disjoint.

Lemma 6.11 Let o[W, X, Y, Z] be an arbitrary probability distribution over the dis-
crete variables W, X, Y, Z. Then, regardless of the dependency structure of the vari-
ables as defined by ¢,

[ IX;Y[Z] - IX;Y W] | < H[ZIW]+ HW|Z] .

Proof We start by decomposing I[X; W, Y| Z] in two different ways, giving the iden-
tity:

IIX;Y|Z|+ IIX; WY, Z] = IIX;W|Z]+ I X;Y|W, Z] .
From this equality, we successively derive:

I[X;Y|Z]+0 HW|Z] - HW|X, Z)) + I[X;Y|W, Z] ,
IX;Y[Z1+0 < (HWI|Z]-0)+1X;Y[W, 2],
IX;Y|Z] - IX;Y|W,Z] < HW|Z].

IN

~—~~~

From the same identity as before, we also derive:

IX:Y|Z] - I[X;Y|W,Z] = HWI|X,Y,Z] - HW|X, Z]
+(HW|Z] - HWY, Z]) ,
IX;Y|Z] - I[X;Y|W,Z] = HW|X,Y,Z|— HW|X,Z]+IIW;Y|Z]
IX:Y|Z] - I[X;Y|W,Z) > 0—HWI|X,Z]+0,
IX:Y|Z] - I[X;Y|W,Z] > —HW|Z|.

Putting together the results of last two derivations, we obtain:

[ IX;Y|Z] - IX;Y W, Z] | < HW|Z].
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Similarly, by simple permutation of W and Z, we also have:
XYW - IX; YW, Z] | < H[Z|W].

The claim now follows from a direct application of the triangle inequality to the two

above relations. [

Theorem 6.12 In the context of the previous definitions, let F be a cluster forest
over some set of variables, G a cluster hierarchy compatible with F, and G; and G
two sibling groups in G. Let also ¢ and pu be the exact and approximate distributions
defined as in Theorem 6.10. Then, with respect to ¢, we have:
IG7; G| Giny
< (2= v — v50) logy [#Ga; #Gji]
+H[G;; |Gyl + HIG, Gyl -
Proof The proof is based on a similar construction to that in Theorem 6.10, in-
troducing a mediator variable X to capture the cross-interactions between G;; and

Gj\i- Using Lemma 6.7, we obtain:
IG7; GGyl < (2 =i — i) logs [#Gh; #Gh\il -
Applying Lemma 6.11, we get:
IG7; GjlGiy] < IIGE; GG |Giny] + HIGR |Gl + HIGE |Gl
hence the claim. a

The following proposition offers an easy bound of the conditional entropy terms

in the case where the transition Gj,; — Gfj.; is doubly stochastic for all values of

Pa*[G7,;] \ Gip;- This assumption is likely to be met whenever the variables in Gin;

evolve slowly.
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Proposition 6.13 If a process M< — M" s doubly stochastic, i.e., such that every

row and column of the transition matriz P{M”|M<] sums to one, then:

H[M?|M)+ HIM|M"] < 2max,«HM"|M* =m]
= -2 maxmaz P[m”|m"] log, P[m”|m~] .

mbP

Proof By definition, we have:

HM|M?] = H[M| — I[M% M"]
= H[M| - HM| + HM"| M| .

Now, if M< — M" is doubly stochastic, this process is entropy-increasing toward a
limiting uniform stationary distribution [CT91, page 35|. Therefore, H{M*] < H[M"],

and we have:
H[M"|M|+ HIM*|M"] < 2H[M"|M"],
from which the claim follows. O

Let us return to the upper bound of the error provided by Theorem 6.12, and ex-
amine its expression from an intuitive standpoint. The first term was already present
in Theorem 6.10, and represents the amount of correlation introduced by the weak

interaction. The second term is new: it represents the amount by which conditioning

on Gy,; instead of G,; might change the mutual information. Intuitively, if G3,; is a
sﬂjv

make any difference. In this case, indeed, we would have both conditional entropies

faithful (deterministic) copy of G, then conditioning on one or the other should not
equal to zero. This behavior generalizes to more realistic situations, where G';n; does
evolve over time, but more slowly than the two clusters it separates. More precisely,
let us assume that G; and G interact only through G;~;, and that G;n; tends to pre-
serve its value from one step to the next. In particular, this implies that all external

influences on G;n; are weak.
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The subprocesses G; and G are conditionally independent given the entire sequence
a)

inj- Assuming that Gj; and Gj\; are mixing fast enough, th) and Gg-t) will be

approximately independent given the values of G

tNg
slowly, i.e., if H[G5;|G};] ~ 0 and H[G},;|G},;] =~ 0, then the values of G\") in

tNj
so that

in a vicinity of ¢. If G;n; evolves

the vicinity of ¢ will be approximately determined by the knowledge of Gm],
GZ@ and Gj are approximately independent given the single point Gm] The same
analysis holds if G ; and G\; do interact directly, but only weakly.

In the real world, there are many examples of processes whose primary interaction
is via some more slowly evolving process. Our freeway example is a typical one: we can
refine the model of the previous section if we consider external influences that affect
some or all cars in mostly the same way, such as road maintenance or bad weather.
A similar situation occurs in the stock market: the price trend of different stocks
is clearly correlated, but they are reasonably modeled as conditionally independent
given the current market trends. In both cases, the conditioning variables fluctuate
more slowly than the dependent subprocesses. In these examples, our approximation

model will contain a number of clusters Fi, ..., F} that all contain some variable W,

which will therefore appear in the G;~; at one or more levels in the group hierarchy.

6.5 Sparsely interacting processes

As we have argued thus far, many systems are composed of interacting subprocesses.
However, the assumption of weak interaction throughout the entire lifetime of the
system is sometimes an unwarranted idealization. In many domains, while the various
subprocesses would interact weakly, if at all, most of the time, they may have an
occasional strong interaction. In our example of cars on a freeway, the interaction of
one car with another is very weak most of the time; however, there are momentary

situations when the interaction becomes quite strong, e.g., when one car makes a
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sudden maneuver in the close vicinity of another.

The interaction structure of the system is very different in these two situations.
As long as the subprocesses interact weakly, an approximation of the belief state as
independent or conditionally independent components is justified. However, should
a strong interaction occur, this approximation would incur a large error. A naive
solution would be to keep correlated the partial belief states of any two processes
that may interact strongly. Unfortunately, in many systems, this solution greatly
reduces the effectiveness of selecting clusters of small sizes, as required to achieve
computational efficiency. In our freeway example, this is to say that any cluster of
cars that are not too far apart from each other should be tracked as a whole, in the off
chance that one of the cars suddenly interacts strongly with another. Not only does
this strategy cause a great increase in the computational effort, it is also impractical,

since cars moving at different speeds will need to be reassigned to different clusters.

An alternative solution is to adapt the approximation to the context. When two
processes have a momentary strong interaction, one should avoid decoupling them in
the belief state. In fact, care must be taken, as the strong correlation between the
two processes usually lasts for more than one time slice after the strong interaction.
However, as the system evolves, the two processes return to their standard mode of
weak interaction, allowing the correlation to decay. After some amount of time, it
will be possible again to return to an approximation that decouples the states of the
two processes.

We now proceed to extend both the inference algorithm and the analysis to account
for this type of sparse interaction. First, we define the notion of sparse interaction.
The idea is to consider two separate transition models, which will be applicable re-
spectively in the standard and exceptional mode of interaction. Concretely, if X and
Y interact sparsely, we define a binary random variable Bxy which will be a parent
of both X* and Y”, and will select their mode of interaction. We will speak of the
weak interaction model and the strong interaction model to designate the portions
of the conditional probability distributions of X and Y* that are relevant to either

value of Bxy.

The extended algorithm uses a different cluster forest F*) at each time slice ¢,
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which is constructed in terms of a given baseline cluster forest F; and associated
group hierarchy Gy. In the absence of any strong interaction or correlation between
any of the clusters at time t, F®) = F; is used for the approximation. If at time ¢
a strong interaction is detected between variables in two distinct clusters of F, the
algorithm switches to a forest F® in which those clusters are coupled; this temporary
coupling is achieved by identifying the two sibling groups of G, that each contained
one of the interacting variables, and merging them into a temporary super-cluster, to
obtain F®. If no more strong interaction subsequently occurs for some number of

time slices d, the algorithm returns to the original approximation.

More precisely, at each time ¢, we maintain a set C® C S of couplings, which
indicates which among the pairs of siblings {G;, G;} are currently coupled. The
cluster forest F® is derived from the baseline cluster forest Fy, as follows. Each
cluster F, ,St) in F® is either a cluster of F, or is the union of two siblings G; and
Gj; in other terms, each cluster F; in F; is assigned to some cluster Fk(t), in which
case F; C F, k(t). The requirement is that, if F; is assigned to F, k(t), while F; C G;, and
{Gi,G,;} € CY, then G;UG; C F.

We remark that, in general, the algorithm might not be able to observe directly
the existence of a strong correlation. In some circumstances, there may be certain
tests that are reliable indicators of such an event, e.g., a proximity radar mounted on
a car signalling that another car is dangerously close. In other domains, the strong
interaction may be due to an action taken by the very agent tracking the system, in
which case, correlations can be predicted. One general, albeit expensive, approach for
discovering strong interactions between two clusters, is to compute a rough estimate
of the error that would be incurred by taking two clusters to be independent, e.g., by
computing the statistical correlation between pairs of clusters, or similar heuristics.
The assumption that we are making here, is that the occurrence of a strong interaction
between two clusters X and Y, as signaled by the random variable Bxy can readily
be detected, even though no further information may necessarily be observed beyond
the binary value of Bxy. In fact, the only requirement is that occurrences of strong

interaction be reliably detected, even though false positives are tolerated.
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6.5.1 The independent case

We begin by analyzing the error of the adaptive filtering algorithm in the case where
the groups are disjoint. Let thus G; and G; be two siblings such that G; N G; = 0.
The question is, what does this pair of groups contribute to the projection error at
time ¢, in the decomposition of Theorem 6.67 Clearly, as long as G; and G; belong to
the same super-cluster of (), the contribution is null, as there is no approximation.
We therefore assume that G; and G, are decoupled in F® or, equivalently, that
{G;,G;} ¢ CO, which implies a regime of weak interaction at time ¢.

There are two cases of interest. If G; and G; were also decoupled at time ¢t —1, then
the local situation for the most recent transition was that of a weak interaction under
a static approximation. In this case, the analysis reduces to that of Theorem 6.10.
In the converse situation, the siblings G; and G; were coupled in F (t=1) and it was
chosen at this time slice to decouple them. This indicates that these groups have
been coupled for some number d of time slices, during which period no error has been
incurred by the pair, following a strong interaction. The following theorem provides
an estimate of the extent to which the strong correlation that was present d time
slices ago has attenuated. The bound depends only on the properties of the weak
interaction model, and makes no assumption on the strength of the correlation that

was present at time ¢t — d.

Theorem 6.14 Let G; and G be two disjoint sibling groups in G. Let also vjj =
|Gy — G';] be the mixing coefficient of the stochastic transition under the weak mode
of interaction. Then, the projection error incurred for not coupling G; and G; in the
forest F® is bounded as follows:

1. If G; and G were decoupled at time t—1, and no strong interaction has occurred

between them at time t, then,

16" ¢ <
(2 — Yij — fy;‘;) log, #(G; x G,) .

2. If G; and G; were coupled at all timest' € {t —d+1,...,t — 1}, and no strong
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interaction has occurred between them since time t — d, then,

(&), ~(®
1696 <

2—7?”.—77.”.
bg#«?xG)(O Y (1 =yt 2 )-
2 e " S i R ok R

Proof The first case follows from Theorem 6.10. The general case is obtained by
applying Lemma 6. 7 d times in sequence Where, fort =t—d+1,...,t, we map
We0,U«G" D veai Yy e«a 76", andX(—(G Gy,
We obtain:

(). ()
I[Gz an ] S

(1 =) (L =) IG5 G

d—1
+(2 = — ) logy #(Gi x Gy) D (1 — )k (1 — )k
k=0

It is noted that all the mixing coefficients above refer to the weak interaction model,
since it is assumed that no strong interaction has occurred since epoch t — d. Then,
the claim follows from the inequalities I[GY~"; G t N < min{H[G!" "], H[G;t_d)]} <
log, #(G; x G;), and the fact that, for z < 1, Zk 0zt <1/(1 —x). m)

In summary, the projection error induced by decoupling two groups with a delay
of d time slices after a strong correlation decreases exponentially with d. The theorem
also provides a way to calculate a priori how long a pair of sibling groups should be
kept coupled in order to guarantee a chosen bound on the error.

To see how this theorem can be used, let us go back to the freeway example, and
assume that we observe a strong interaction between two vehicles at time ¢, such as
one cutting in front of the other. In response to this observation, the algorithm would
then couple the sibling groups G; and G; to which these vehicles belong, which results
in the creation of a super-cluster of all the variables in G; and G;. This coupling goes
on for a certain number of time slices, until it can be guaranteed that the correlation

induced by the strong interaction has sufficiently decayed, so that the groups can
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be decoupled without incurring too much error. Theorem 6.14 guarantees that this

eventually happens, and gives an upper bound on the delay until it does.

6.5.2 The conditionally independent case

The following theorem states the general result for sparsely interacting overlapping

clusters.

Theorem 6.15 Let G; and G be two sibling groups in G, and Gin; their intersection.
Then, the projection error incurred for not coupling G; and G in the forest FO s

bounded as follows:

1. If G; and G were decoupled at time t—1, and no strong interaction has occurred

between them at time t, then,

I[Gz(t)’ G |Gm]
(2 =72 —72) log, #(G; U Gy) + HIG V|G + HIG, GV

] <

2. If G; and G were coupled at all timest' € {t —d+1,...,t — 1}, and no strong

interaction has occurred between them since time t — d, then,

16,6V 61 <

inNjl =

h&#@mU@WU—ﬁVG—%V

(2 = — 7j2) logy #(Gaj U Giji)
+Z 1_711 1_’7].]) (—i—H[Gé k— ]_]|G ]+HE (t— l;:7|G(t k— 1)] .
ing ing Zﬂ] ing

Proof The proof is analogous to that of Theorem 6.14, making use of d sequential

applications of Lemma 6.7, where, for t' = t —d + 1,...,t, we map W <« szjj_l ,
UG ve iy« 6l ZerﬂMXeﬁﬁlﬂyw. o
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6.6 Toward devising approximation heuristics

The results in this chapter provide a useful set of rules for understanding how the inter-
action structure affects how the information propagates within a complex stochastic
process. Naturally, the same results may also serve as a basis for operational tools
for deciding on a suitable approximation scheme for a particular process, whether

statically ahead of time, or even adaptively as the observation data pour in.

The rules that govern the construction of a good approximation can be inferred
from the various results in this chapter. One of the difficulties faced by any algorith-
mic determination of an optimal approximation strategy, i.e., in the form of a static
or adaptive clustering scheme, is that there is no absolute optimality criterion. At
one end of the spectrum, the optimal accuracy is achieved by not doing any approx-
imation whatsoever; at the other end, the most efficient clustering is one that places
each variable in its own cluster. Between these extremes, the space of possibilities
is typically much too large to afford an exhaustive search. However, a number of
heuristics can be used in order to devise adequate approximations for a particular set

of requirements driven by the application domain.

Non-overlapping clusterings, i.e., approximations in which the connectivity of the
cluster forest F is equal to the number of clusters it contains, are relatively straight-
foward to assemble algorithmically. One idea is to construct a group hierarchy G from
the bottom up, starting from the individual variables, in a greedy fashion similar to
hierarchical agglomerative clustering. Each variable is first assigned to a group of its
own. Then, for as long as more than one group remains, the algorithm selects two
groups from the current pool, and combines them into a new group—the parent in
the emerging hierarchy. Let thus G’ be the resulting binary hierarchy. The cluster
forest F is constructed as a collection of groups, elements of G', that perfectly cover

all the variables without overlap.

In the above, the two decision points that require heuristics are: (1) the selection
of the pair of groups to be combined during the elaboration of G’, and (2) the selection
of the groups from G’ that are to constitute the clusters of F. In both cases the goal

is to maximize some local objective function, which balances the computational cost
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of trading two sibling groups for their parent, against the expected reduction in error
caused by such a trade, which can be estimated, e.g., using the results of Section 6.3.

Similar greedy heuristics can be used in the overlapping case, i.e., where it is
desired that the cluster count of F be larger than its connectivity. For this, the greedy
construction of G’ needs to be modified in order to allow sibling groups to overlap, in
conjunction with an objective function based on the notions from Section 6.4.

All these ideas also fit nicely with the insights from Section 6.5 regarding dynamic
approximations. In this case, it is assumed that the aggressive, efficient default ap-
proximation used for inference under ordinary circumstances, is ready to be converted
into a more conservative approximation at the onset of a strong interaction between
variables in multiple clusters. To facilitate the conversion, the approximation-devising
algorithm could be instructed to keep in relative proximity any set of variables likely

to experience an occasional strong interaction.
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Chapter 7
Learning under uncertainty

The techniques presented in the previous chapters provide an effective way of reason-
ing about the evolution of a stochastic process, provided that a model of the system is
available. When the only available information is a stream of historical observations
of the process behavior, it becomes necessary to estimate the system itself, in addition
to its current state. This is commonly referred to as the learning task.

Sometimes, there may be some information available about the system dynamics,
although not enough to conduct inference and tracking using the techniques previously
described. For example, in the case of structured systems, a qualitative description of
the dependency structure may be at hand, albeit without any quantitative probability
model. In other cases, the nature of the state variables may be known, without even
a qualitative interaction model. In extreme situations, there is simply no information
beyond the observed variables themselves, so that even the mere existence of hidden
state variables has to be inferred.

Recent works have contributed significant progress on various aspects of learning
Bayesian networks from partially observed data; these include Heckerman’s analysis
on BN learning from a mathematical perspective [Hec99], and the efficient Structural-
EM algorithm of Friedman [Fri97] which extends to structural learning Lauritzen’s
parametric EM algorithm for BN [Lau95], itself a particularization of the celebrated
EM algorithm [DLR77]. Other works have addressed the problem of learning DBNs
per se; Friedman et al. [FMR98] provide a detailed description of how BN learning

127
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can be applied to DBNs for fully observed data.

The general approach for learning stochastic models from partial data uses a
hill climbing strategy, whereby an initial candidate model is iteratively refined and
improved, using the observation data. The particulars vary according to which of
the above situations is faced: for example, if the qualitative structure is known, all
the information contained in the data may be used to refine the qualitative model
parameters, based on statistics about the process trajectory. In all cases, probabilistic
inference plays the key role in estimating those statistics from the noisy data provided
by the stream of partial observations.

This chapter reviews the state-of-the-art techniques involved in learning the pa-
rameters and the structure of partially observable stochastic process models from
data, with an emphasis on structured models such as DBNs. As those techniques
are best understood relatively to the fully observable case, we shall make a short

digression on this simpler problem.

7.1 Learning from time series

Recall from Section 3.5 that a DBN represented by a 2-TBN over a set of variables
U defines a distribution over infinite trajectories of states defined by U. In practice,
we reason only about a finite time interval 0,...,7. To do this reasoning, we can
notionally unroll the DBN structure into a long BN over U® .. U@ where the
conditional probability distributions are duplicated from the 2-TBN, except for the
variables in time slice 0, which must be assigned an initial state distribution. We will
denote the entire DBN model by B, = (B, B_,), where By is the initial distribution
over U, and B, = (G,0) is a 2-TBN with graphical structure G and numeri-
cal parameterization ©, that represents the conditional probability model P[U”|U<],
which, for all t > 0, defines a stochastic transition from U1 to U®. Thus, a DBN
B, = (By, B_,) over the variables U represents, for any T, the the joint distribution
over UQ UM given by:

B,[u®, ... u®)]
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T
= Bo[u(o)] H B_}[UD — u(t) |U<l — u(t_l)] ‘

t=1

We now consider the task of learning the transition model B_, of a DBN from
data. For simplicity of notation, we assume that our data set D is a single finite-
length trajectory d@, ..., d™ through the system; in this section, we assume that this
trajectory is fully observable. For simplicity, we also ignore the task of learning the
prior network Bgy. Given a training sequence, the learning task is to find the network
B_, that provides a best match, or best explanation, for D. The notion of best match
is defined using a scoring function. Several different scoring functions have been
proposed in the literature. The most frequently used score functions are the Bayesian
information criterion (BIC) [Sch78] and the Bayesian score (BDe) [HGC95]. Both
of these scores combine a measure of fit to data with some penalty relating to the

complexity of the network. For ease of presentation, we will focus on the BIC score.

In the BIC score, the term that represents the fit of B_, to the data D is the log-
likelihood function, defined as ¢[B, : D] = log, P[D|B,]. This function measures the
extent to which the data set is likely given a candidate model B,; it is thus an estimate
of how well a given candidate model fits the empirical data. The log-likelihood can
be computed from the sufficient statistics, which summarize the observed frequen-
cies of the relevant events in the data. The BDe score contains a similar marginal
log-likelihood term, which can also be efficiently computed from sufficient statistics

summarizing the data.

Definition 7.1 Let E denote any event over the anterior and ulterior variables
(U°, U®) in the transition model, i.e., E C dom[(U%,U")]. Let E® denote the
event over (U~ U®) obtained by fixing the anterior and ulterior time slices of
FE to correspond to times ¢ — 1 and t respectively. Let also ([E®)|D] be an indicator
function which takes on the value 1 if the event E over (U“, U”) holds for the joint

instantiation U¢ = d® and U> = d®Y, and 0 otherwise. Then, the cumulative
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frequency of event E in a data stream D = {d©®, ..., d™}, is defined as:
T
Np = Y JEYD].

t=1

Letting Uy, ..., U, be the n variables composing U, the log-likelihood can now be

characterized as:
BDl =Y Y Y Newlmnus,
=1 wredomvr] xedom[Paju?]]

where ©,»x = B_,|u?|x| denotes the parameters of B_,. The BIC score is simply the
q i

log-likelihood plus a penalty term for network complexity:

log, T

sgic/Bs] = ¢B. :D]— dimB,] ,

where dim[B_,] is the dimension of B_,, which in the case of complete data is simply
the number of independent, real-valued parameters in the conditional probability
distributions of B_,.

The goal is to find the network that maximizes this score. For a fixed structure, the
parameters that maximize the score are exactly the maximum likelihood parameters,

which simply mirror the frequencies in the data:

A Nyix
Ouix = NL

This is particularly easy, as the only statistics /N, needed are the frequencies over the
various families in the network structure G, where a family is the set composed of a

node and all its parents.

Finding the highest scoring network structure is NP-hard [CGH95]. In practice,
one usually resorts to greedy local search procedures [Bun91, HGC95] that gradually
improve a candidate structure by applying local structural transformation: adding,
deleting, or reversing an edge. These transformations are usually applied in a greedy

fashion, with occasional random steps to deal with local maxima and plateaux. Two
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crucial properties of the BIC score greatly facilitate this procedure. First, the score
of a network can be written as a sum of terms, where each term determines the score
of a particular choice of parents for a particular variable. Thus, a local change to one
family U}, Pa[U}], such as the addition or removal of an arc, affects only one of these
terms. As a consequence, the incremental value of any change to another family in
the network remains unchanged. Hence, to determine the values of all local changes
to the current network structure, it is only necessary to re-evaluate changes to the
family of U?. Second, the term that evaluates the family of X} is a function only of the
sufficient statistics for X} and its parents Pa[U}]. These sufficient statistics are the
only aspects of the data about which statistics need to be collected. However, as the
families {U} } U Pa|U;] will likely differ for the various candidate models considered at
any iteration, it is necessary to collect statistics on a subtantially larger set of events
than was needed for parametric learning only. In general, evaluation of local changes
in the network topology usually involves the computation of new sufficient statistics,
followed by an evaluation of the score of the new models using those statistics.

The Bayesian score is somewhat more complex, and involves taking a prior dis-
tribution over model structures and parameters into account. Without delving into
much detail, we note that for suitable choices of priors, such as the BDe priors of
[HGC95], the two key features above are preserved: the score decomposes in to a sum
of terms, and depends only on the sufficient statistics collected from data. Although
the Bayesian score and the Bayesian information criterion are asymptotically equiv-
alent, for small sample sizes the Bayesian score often performs better, at the expense

of requiring a prior distribution over both structures and parameters.

7.2 The Expectation-Maximization algorithm

The main difficulty with learning from partial observations is that some of the counts
in the data are not available, preventing the computation of sufficient statistics from
which a model can be inferred. One way around this is to estimate the missing data
from the current model and the data we have, and use the completed data to ob-

tain the sufficient statistics. However, since statistics computed this way depend on
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the learned model itself, a circular dependency arises between learned model and esti-
mated data. A related difficulty is that neither the BIC nor the BDe score of a learned
model given incomplete data decomposes into separate components corresponding to
individual families.

The most common solution to the missing data estimation problem is provided by
the FEzpectation-Mazimization (EM) algorithm [DLR77, Lau95]. The EM algorithm
is an iterative procedure that searches for a parameter vector ©* which is a local
maximum of the likelihood function. It starts with some initial, usually random,
parameter vector ©, and then repeatedly executes a two-phase procedure, composed
of the E-step and the M-step. In the E-step, the current parameters are used to
complete the data by estimating unobserved values using their expected values given
the available data and the current parameters. In the M-step, the completed data set
is used as if it were real, to update the model parameters in a maximum likelihood

estimation step similar to the complete case. Both steps are detailed below.

E-step In the expectation step, the algorithm computes the expected sufficient
statistics (ESS) for the data D, relative to the current model structure G and pa-
rameters ©. The ESS take the form of expected cumulative event frequencies, for any

event of interest, which are obtained as follows:

N = Ege)Ne]

T
= ) EgellE" D]
t=1

= i PEY|D, (G,0)] . (7.1)

M-step In the maximization step, the new set of parameters ©' are estimated as
in the case of parametric learning from complete data, except that the ESS N, are

used in place of the unobserved actual frequencies Nj:

! _ i|x
G)y”x = —=.
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The alternation of the E and M steps repeats until some convergence criterion has
been met, at which point the last computed parameterization—or, as usual in machine
learning, the parameterization that attained the best score on a separate validation
data set sampled from the same distribution as D—is retained. Termination may be
triggered, e.g., by detecting that the rate of improvement of the likelihood function
has fallen below some absolute or relative threshold.

The algorithm’s effectiveness rests on a fundamental theorem which states that
each EM cycle is guaranteed not to degrade the likelihood of the data D given the
model (G, ©). In other words, the trajectory of the model parameters ©, as updated
by the EM algorithm, is guaranteed to converge to a local extremum of the likelihood
function, for any given data sequence D and fixed model structure G. In general,

however, there are no guarantees regarding global convergence properties.

7.3 The Structural-EM algorithm

EM has been traditionally viewed as a method for adjusting the parameters of a
fixed model structure. Friedman’s Structural EM (SEM) algorithm [Fri97] extends it
to the task of structure learning. The SEM algorithm has the same E-step as EM,
completing the data by computing expected counts based on the current structure
and parameters. In addition to re-estimating the parameters, the M-step of SEM
uses the ESS, computed according to the current structure, to score other candidate
structures. Essentially, the algorithm uses the current network structure to compute
ESS not only on the current families (as would be required for merely updating the
parameters), but also on supersets of those families. The algorithm then conducts
a greedy structure search in the vicinity of the current structure, as in the complete
data case, using those ESS. The structure search stops after some number of steps,
at which point the process repeats using the current candidate network.

Friedman [Fri98] shows that, for a large family of scoring rules, the network re-
sulting from this inner loop must have a higher score than the original. This is true
even though the ESS used in evaluating the new candidate structures are computed

using the structure from the previous step. More precisely, Friedman defines a notion



134 CHAPTER 7. LEARNING UNDER UNCERTAINTY

of expected score, which is the expectation of the score for different completions D™
of the data D, where the probability of a completion DT is P[D*|D, B,]. For a large
class of scores, such as BIC or BDe, it can be shown that if a change is made to
the network structure that increases the expected score, then the true score increases
by at least as much. The crucial property of the expected score is that, like the
actual score in the case of complete data, it decomposes into a sum of local terms. In
particular, the expected BIC score is simply the BIC score applied to the expected
sufficient statistics. This property reinstates both of the key requirements previously
encountered in the case of structure search for complete data: the ability to evalu-
ate a structural change by considering only the families affected by the change, and
the ability to summarize an arbitrarily large data sequence into expected sufficient
statistics of predetermined size, for the purpose of computing the score.

We now give a succinct overview of the innards of the SEM algorithm; see [Fri97,
Fri98] for a complete description. The process is iterative, and consists of an alterna-
tion of an E-step and a M-step, updating the current model structure and parameters
in each round, until some convergence criterion is satisfied. The E-step and M-step

are described next.

7.3.1 The E-step

As in the regular EM algorithm, the purpose of the estimation step in SEM is to
obtain a set of expected sufficient statistics. First, the missing data is completed by
computing its expectation given the current model and the available data. Then, the
completed data is summarized into ESS (which simply consist of frequency counts for

all events of interest, and are thus trivial to obtain from the completed data).

Candidate determination

The main difference with regular (parametric) EM, is that we need more ESS in
order to evaluate different candidate structures in the M-step. Precisely, a number
of candidate structures are (implicitly) generated by considering a number of small

modifications to the current model, such as the addition and deletion of a few edges,
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according to some suitability criterion involving, among other things, the cost of ob-
taining ESS for the various candidates. Since the ESS are defined differently in the
various structures, the algorithm needs to ensure that it will collect enough informa-
tion during the inference step, in order to later compute all the ESS it needs. Thus,
in SEM, there is an extra step taking place before inference in the E-step, in which

the algorithm creates a list of clusters of variables over which to gather statistics.

Statistics collection

Once the list of needed statistics is created, probabilistic inference is used to com-
pute the expected values of the missing data. During this step, marginals over all
required clusters of variables are computed, using an inference algorithm such as
that of Section 3.4; these marginals directly translate into expected frequency counts.
It is emphasized that all statistics are computed with respect to the current model

structure.

7.3.2 The M-step

In the M-step, the implicit class of candidate structures considered in the E-step is
searched for a model structure (and corresponding parameters) that maximizes the

score.

Greedy search and scoring

The search proceeds in a greedy fashion, starting from the current model, by evalu-
ating one-step structure changes in each family, using the best set of parameters as
determined by the relevant ESS in each case. The local score gain or loss is evaluated
for all the changes, and the best option is selected. Since the BIC and BDe scores
decompose nicely according to the families of variables in the network; only the local

contribution to the total score needs to be recomputed for each local change.
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Termination criterion

At some point, when the greedy search reaches the boundary of the available ESS,
the M-step terminates, leading to a new iteration unless the algorithm deems that
the convergence criterion is satisfied, such as, among other things, the stagnation of

the scoring metric for a number of interations.

7.4 The Forward-Backward algorithm

Whereas the EM algorithm provides an effective method for dealing with incomplete
data, as encountered when learning partially observable processes, the main difficulty
consists in computing various expected sufficient statistics Eqg,ey[E|D] from the par-
tially observed data sequence D, in the E-step of the algorithm. This computation,
as shown in Equation 7.1, is done using probabilistic inference for all instantiations
E® of any event E of interest. In general, such inference has to be conducted on the
entire trajectory D, since the distribution of any event E® involving hidden state
variables is generally going to depend on all observations, whether they occurred in
the past or in the future of E). A fortiori, the generic event F, as integrated over
the entire sequence, is also going to depend on the entire data set.

The classical forward-backward algorithm for HMMs [Bau72, RJ86] performs this
operation in an elegant and efficient way, by allowing all expected sufficient statistics
of interest to be computed using only a single traversal of the data sequence. As
usual, this algorithm is based on Astrom’s principle that, at any point in time, the
belief state of a Markovian process captures all the information that connects the
past history and its future evolution of the process [Ast65].

At a high level, the algorithm propagates forward messages a*) from the start of
the sequence forward, gathering evidence along the way; it uses a similar process to
propagate backward messages B in the reverse direction. Let S® and R® denote the
random variables for the state and the response of the process at time ¢, respectively.
Let also v, ..., 7 be the observed sequence of responses in the data. With respect

to B, the forward and backward messages at time ¢ are defined as the measures over
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dom[S™®] obtained from the following conditional distributions:

a(t)[s(t)] = Py [S(t)|7‘(1),...,7’(t)]
ﬁ(t)[s(t)] — PB*[T(H—I),...,T‘(T)|S(t)].

It is also useful to define a decomposition of B_, into a Markovian state transition

model § and an instantaneous observation model R, such that:
BL[S”, R°|SY] = S[S"|SYIR[R|S7] .
Then, the update rules for the @ and B8 messages are easily obtained:

a¥)[s]
= kY S a®V[E]BL[RO = 10,50 = 5|50 = ]
s'edom[s(t-1)]
= kD Z a1 S[SY = 5|SE D = ¢ R[RY = r®? SO = 4] ,
s'edom[st-1]

B3]

= kg Y BUISIBLRUD =0 50 = 150 =
s'edomy(s)

= KY YD USRI = SO = S RISED = SO = ]
s'edomys)

where the constants k(&) and kg) are chosen so that a® and B are normalized to

sum to one. From there, the posterior distribution u®[S®] = Pg, [S®|D] over the

states at time ¢ given the entire data sequence is now simply given by:
pOls) o alls] B0Ls)

where the proportionality relation o hides a normalization constant, as above. Sim-

ilarly, the joint posterior pt+D[SE-D SO = Py [SE-D SO |D] over any pair of
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states at consecutive times £ — 1 and ¢, is:

/J,(t_l’t) [84, SD]

x o Vs BY[s" | BL[RY =), SO = 57|51 = 5] . (7.2)

In summary, the forward-backward algorithm' works by propagating a pair of
messages « and B from either end of the data sequence, computing the intermediate
messages a® and B for each ¢ along the way. These messages are cached in mem-
ory; when the propagation passes are complete, the messages are merged as above,
to obtain the posteriors p®**[S¢=1 S®] from which the probability of the various
instantaneous events E(*) can be easily computed by marginalization, and accumu-
lated into the desired expected sufficient statistics £. In practice, only one message
sequence needs to be pre-cached, say «, as the computation of the various p® 1%
may immediately follow that of the corresponding B fort=1,..T.

This procedure offers an effective way to compute all the desired ESS in only two
inference passes over the data, one going forward, the other going backward, and

is the implementation of choice of the E-step of the parametric and structural EM

algorithm for dynamic systems.

IFor the sake of completeness, it should be noted that the foregoing description differs some-
what from the usual formalization of the algorithm. In the traditional descriptions of Baum and
Welch [Bau72] and Rabiner and Juang [RJ86], the forward message is defined as the joint distri-
bution P[S®,r(1) ... r(®)] instead of the conditional Pg, [S®|r™),....7®], which we will find more
convenient for our purpose. The two definitions lead to slightly different but equivalent algorithms.



Chapter 8
Efficient learning

One major difficulty of the learning procedure outlined in the previous chapter, is
its dependence on the lengthy statistics estimation procedure in the case of partially
observable systems; indeed, this procedure typically needs to be carried out not once
but during several iterations of the EM algorithm, each iteration requiring a complete
forward and backward pass over the entire data sequence. This is expensive on two
counts. As should be obvious from Section 7.4, the forward and backward message
propagation is nothing other than probabilistic inference on a Markov chain, which,
as we have seen in Section 4.1, is almost invariably intractable for large complex
systems, such as Markovian DBNs with many state variables. The second source of
inefficiency is not nearly as dramatic, although its scope is slightly more subtle to
analyze. The complexity of a single iteration of EM is seen to increase linearly with
the size of the learning sequence, which may be a problem for voluminous data sets.
As a mitigating factor, one would hope that the more accurate statistics resulting
from a massive data set would lead to more effective M-steps, thereby reducing the
total number of iterations of EM until convergence. Unfortunately, this is not quite
the case, as an abundance of data typically does not help much until the very last

few iterations, when it allows fine-tuning a model that has already almost converged.

The main focus of this chapter is to study how the contraction phenomenon in

stochastic systems provides the key to overcoming both sources of inefficiency, and

139
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achieving efficient learning of structured stochastic processes—either by approximat-
ing the costly inference procedure itself, or by neglecting some of the data when

warranted, or both.

8.1 Approximate parametric learning

A natural approach to the problem of the E-step intractability is to substitute our
approximate inference algorithm for the propagation of the forward and backward
messages. As described in Chapter 4, this algorithm avoids the problem of explicitly
maintaining distributions over large spaces, by maintaining approximate belief states

from a class of compactly representable probability distributions.

8.1.1 Approximate forward-backward propagation

The applicability of approximate inference to forward message propagation is im-
mediate: similarly to the forward propagation principle, our approximate inference
algorithm propagates a time-(¢ — 1) approximate distribution through the transition
model, and conditions it on the evidence at time ¢; the resulting time-t distribution is
approximated to produce a compactly representable time-t approximate distribution,
allowing the algorithm to continue. In the case of DBNs, the approximation at each
step consists of a simple projection onto a set of selected marginals or clusters, which
determine a factored representation of the approximate belief state.

Forward propagation is easy. As previously detailed in Section 4.2, the approx-
imate propagation algorithm can be implemented efficiently using the junction tree
algorithm [LS88]. To compute a® from &* V), a junction tree over these two time
slices is generated from the current DBN model, ensuring that each selected approx-
imation cluster at time ¢ — 1 and time ¢t appears as a subset of some clique in the

1) ig incorporated into the tree, simply by

1)

junction tree. The previous message !
multiplying the relevant cliques by the clusters of @' The next message &
is then easily obtained by calibrating the tree and reading off the relevant marginals

from the appropriate cliques of the tree, @ being implicitly defined as their product.
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This algorithm is directly applicable to the learning task, as the belief state used for
inference corresponds exactly to the forward message used in the forward-backward
algorithm. In turn, the contraction theorems give us confidence that the approximate

forward messages will indefinitely stay close to the true forward messages.

The case of backward propagation is slightly more subtle. In itself, the above
technique does not completely resolve the computational problems associated with
the E-step, as the backward propagation is as expensive as the forward one. Fortu-
nately, the computation of backward messages can be approximated similarly to that
of forward messages, and carries the same computational benefits. It is also straight-
forward to adapt the approximate (forward) inference mechanism of Algorithm 4.5
or 4.8 to backward propagation, literally by taking the mirror image, substituting the

anterior time slice for the ulterior one, and wvice versa.

Specifically, to compute the backward message ® from B(Hl), we first construct a
junction tree Y from the current DBN model, giving indices ¢ and ¢+ 1 to the anterior
and ulterior sides of T, respectively. The tree Y is constructed so that each cluster
of B(t) and ,B(Hl) is fully contained in at least one clique of the tree. (For details, see
the description of Algorithms 4.5 and 4.8 in Chapter 4, where an analogous condition
appears). The second operation consists of incorporating the incoming message B(t+1)
into the ulterior (¢ + 1) side of T, to give T;. For non-overlapping clusters, this is
simply done by multiplying each cluster of B(Hl) into any compatible clique of T. For
overlapping clusters, the procedure must also deal with the sepset potentials present
n B(t+1)
the resulting tree T, is calibrated. Finally, the desired approximate backward message

10
B

, and is in all respects analogous to that described in Algorithm 4.8. Then,

is obtained in factored form simply by extracting the relevant marginals of Y.

To reiterate, the only difference with the forward case is that, for backward prop-
agation, the input and output sides of the junction tree are reversed. Considering
a transition model with an anterior and an ulterior time slice, whereas in forward
propagation we multiply out the transition model with the previous message on the
anterior side, and read out the new message from the ulterior side, in backward prop-
agation we multiply out the incoming message into the ulterior side of the transition

model, calibrate the junction tree, and read out the new message from the anterior
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side by marginalization.

8.1.2 Bidirectional contraction

Extending the contraction analysis is not as immediate. It is not completely straight-
forward to apply the techniques of Chapter 5 to obtain relative entropy bounds for
the backward message, which is not defined as a conditional distribution. Further-
more, even if bounds on relative entropy error were available for both the forward
and backward messages, error bounds for the combined approximate posterior z®
would not necessarily follow. In fact, counterexamples may be found, in which the
relative entropy error of the approximate forward and backward messages may be as
low as we wish, and still combine into an approximate posterior that has arbitrarily

large error with respect to its exact counterpart.

Example 8.1 Consider a process with state space S = {sg, 1, s2}, and let the true

and approximate forward and backward messages be as follows:

a® = [0,1—¢ ¢ BY = [0,e,1—¢

at = [, 1—e—é, e, B~ = [, 1—e—¢.
The relative entropy error in the forward and backward case is, respectively:
Dxrfa®]|a®] ~ €, Dxi[gY ||.B(t)] ~ €.

Now, if we merge the forward and backward messages, we obtain, after normalization:

11

® — -z
p (0,5 5]
Y~ 1€ .

The relative entropy error that results amounts to:
0 || 5 1
Drclp™ [|27] = logy [—] -

In conclusion, the arbitrarily small forward and backward error has turned into an
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arbitrarily large one for the combined belief state.

The above phenomenon occurs because the combination operation, as described
in Section 7.4, is akin to Bayesian conditioning; and, while relative entropy will not
increase on expectation under Bayesian conditioning, nothing can be said a prior:
when conditioning on arbitrary events. In spite of this, the posterior distribution
resulting from the forward-backward procedure is still subject to useful contraction
properties, albeit not nearly as strong ones as those associated with filtering.

The key to analyzing this form of contraction turns out to be found in an alter-
native notion of error, called projective distance, which combines additively under

Bayesian updating, and is defined as follows.

Definition 8.2 Let ¢ and ¥ be two measures over the same discrete space 2. Their

projective distance is defined as:

plwi] - Plw]

Dorojlp|| 9] = maxy, u;eq log .
e 9] 18 o]l

Projective distance bears some resemblance to relative entropy, with the main
difference of having a worst-case semantics attached to it, which contrasts with the

average-case flavor of relative entropy. We also note the following facts.

Fact 8.3 For any two distributions @ and ¥ over the same discrete space §):
Dxzlp||$] > Deroilp||9] -
Fact 8.4 Projective distance is scale-invariant, i.e., Vx > 0,y > 0 :
Diroj[z @[ly 9] = Dirojlep| 9] -

As previously mentioned, projective distance combines additively under Bayesian

conditioning, leading to the following lemma.
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Lemma 8.5 For forward, backward, and combined messages and belief states as pre-
viously defined:

) ) A(0)
Dyroi[ g | 5] < Dprosla® |&P] + Dpros[ 89| B7] .

Proof The result follows easily from the definition of projective distance; in extenso:

i1 ~ pAQ)
Doroi[p® (| 3] = Dprojla® @ B9 |&¥ @ B
a®[w] .ﬂ(t)[
a®fw;] - B

- a0w,] - BV [w)

w] - &0 wy] - B[]

(S

= max,, ., log,

®T.1. B, ®r, 1. a0,
S man. 1] ‘logZ 2 [WZ] ‘i! w]] + man. wi .log2 ﬂ [wj] é [wZ]
Rt} (t) . (t) . iyWyj (t) (t)
aWlw;] - &' |w] B w;] - B [wi]
~ ~(t
< Dproj[a(t) ||a(t)] _,_mej[ﬁ(t) ||,3( )] .

Based on the results of [AL95], we show that the projective distance contracts
under message propagation through the stochastic transition as above in either direc-
tion. In other words, the accumulated error, quantified as a projective distance to the
exact message, undergoes an exponential decay. The contraction ratio depends on
the minimal ergodicity properties of the stochastic transition matrix & representing

the entire transition model, as follows.

Lemma 8.6 [AL95, Theorem 2.1]
Let § be a stochastic transition matriz each of whose columns has at least one

non-zero element. Define:

where

ko= mfﬂ{z‘,j,z",j':&,jSu,j/;«éO}\/ (Sij Sirj)/(Sig Siji) -
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Then, for o and BY as previously defined:
Dproj[a(t) || &(t)] < (1 - /fS) Dproj[a(t_l) || d(t_l)] )

and

~(t+1)

Doroi[ B BY] < (1= kis) Doros |84V B

Proof The lemma is a restatement of [AL95, Theorem 2.1]. O

We can now combine Lemmas 8.5 and 8.6 with the facts that the projective
distance obeys the triangle inequality and does not increase under Bayesian condi-
tioning, to show that, if our approximations do not introduce too large an error, then

the expected sufficient statistics will remain close to their correct values.

Theorem 8.7 Let N and N be the expected sufficient statistics as respectively com-
puted using exact and approximate forward and backward propagation, on the same
model and with the same data. If each forward and backward approrimation step is

gquaranteed to increase the projective error by, respectively, at most eq and € B then:
_ ~ € + Gﬂ
Dproj[N||N] < —F.

Proof Applying an argument similar to the proof of Theorem 5.14 to Lemma 8.6,
using the fact that the projective error does not increase under Bayesian conditioning
on observation, it is easy to see that the total projective error for the forward and

backward messages is indefinitely bounded by, respectively:

Diroia® ||a¥] < <@
Ks

~(t) €
Dol 3" < 2.
Ks

Combining the above results as per Lemma 8.5, the claim follows easily. a
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Since the projective distance is an upper bound on relative entropy, the next

corollary follows easily.

Corollary 8.8 Under the above assumptions, and further assuming that N and N
are normalized to form wvalid distributions:
. €t € B
Dki[N||N] < Ths

It is emphasized that the above results should be interpreted carefully. First,
the contraction ratio for the forward-backward procedure is not nearly as strong as
the one obtained in Chapter 5 for the filtering task. As already noted, this is due
to the fact that the error is measured as a projective distance, which captures the
largest discrepancy between all states, even if the probability of reaching those states
is minute. This worst-case behavior is needed to cope with the bidirectional nature of
the forward-backward procedure, which may amplify the probability of some states
by an arbitrary amount, as we have seen in Example 8.1. It should also be noted
that the KL divergence bound given in Corollary 8.8, being numerically equal to the
projective distance bound of Theorem 8.7, is actually less useful. Second, the ESS
guarantee of accuracy as provided by Theorem 8.7 does not necessarily translate to
a similar guarantee of accuracy for the entire learning process. Indeed, even small
fluctuations in the sufficient statistics can potentially cause the EM algorithm to
reach a substantially different local maximum, for better or for worse. For all those
reasons, the above results should be interpreted as a justification of principle for our
approximate learning algorithm, as opposed to an analytical characterization of its

quality.

8.1.3 Experimental resutls

Two series of experiments were conducted to assess the effectiveness of learning using
approximate inference. In a first set of experiments, we provide a more qualitative
comparison between approximate and exact inference, and show that, even though

the former approach is orders of magnitude faster, the learning curves are almost
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identical in both cases. In a second set of experiments, we further strengthen the
statistical significance of the conclusions herein, using results from a larger pool of

learning instances.

In this first series of experiments, we evaluated our algorithm on the task of
learning the parameters of the previously encountered BAT network [FHKR95], shown
in Figure 4.2. The task was to learn the parameters of the network, given the correct
network structure and a sequence of synthetic data composed of observations sampled
from the correct network. The training set was a fixed sequence of 1000 time slices,
sampled from the correct model. An independent sequence of 50 time slices was
also generated for the test set. Our evaluation metric was defined as the average

log-likelihood of the test sequence, per time slice, with respect to the learned model.

The objective of the experiments was to evaluate various kinds of structural ap-
proximation schemes for forward-backward message propagation, in comparison with
the standard exact algorithm. As in our previous inference experiments with the
BAT network from Section4.3, we selected four different structural approximations,
as shown in Figure 4.2: (i) one single cluster corresponding to exact propagation; (ii)
a b+5 clustering of the ten state variables; (iii) a 3424441 clustering of the state
variables; (iv) each state variable in a separate cluster, corresponding to the most
aggressive approximation. For each approximation, we learned the parameters of the
transition model given the correct network structure and the same learning sequence,
by applying the EM algorithm until perceived convergence. To mitigate the impact
of the sensitivity of EM to initial conditions, three different sets of random starting
values were generated, on which each of the four experiments was then conducted.
For each approximation, the quality of the learned parameters was evaluated after
each iteration of the EM algorithm. The resulting learning curves, for one of the three

sets of initial parameters, are plotted in Figure 8.1.

As can be observed from Figure 8.1, the learning curves for exact learning and the
various approximations are almost identical; even severe structural approximation is
seen to have negligible impact on learning accuracy. Qualitatively similar learning
curves were obtained for the other two sets of starting parameters. In all cases,

the various approximations tracked the exact algorithm very closely, and the largest
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Figure 8.1: Compared quality of various structural approximations for parametric
learning with EM. The horizontal line represents the quality of the original model
used for sampling the data.

difference in the peak log-likelihood was much smaller than 0.1 bit per slice. This
phenomenon is rather remarkable, especially in view of the substantial savings due
to the approximations: in our implementation, a 23-fold speedup over exact learning
was achieved using the 5+5 clustering, and over 27-fold with the other two, more

aggressive approximations.

In the second series of experiments, we conducted a large number of automated
learning tests for various approximation schemes, and differing random data sets

and starting model parameters. We conducted two such sets of experiments, one
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with the now familiar BAT network, and another with the WATER network modified
for partial observability as in Section 4.3. For both BAT and WATER, we randomly
generated between 10 and 20 learning instances. Each instance was composed of
a set of starting model parameters, and three independent data sequences sampled
from the reference BAT and WATER networks: namely, a 1000-point training set, a
100-point validation set, and a 100-point independent test set. The training set was
used for learning, using the previously described algorithm, for up to 50 iterations of
EM. At the end of each iteration, the quality of the then-current model was evaluated
using the validation set. At the end of the learning process, all models produced at
the end of the various EM iterations were evaluated on the validation set, and the
best model selected. The best model was then evaluated using the independent test
data set, producing a single “figure of merit” for that learning instance. This was
done for all approximation schemes using the same data sets and starting parameters.
The process was then repeated for all learning instances.

Table 8.1 details the results of our experiments with 20 independent learning in-
stances for the BAT network, using 7 different approximation configurations. In each
case, a sequence of models is learned from a first training set; the best model is
determined using a second validation set; the accuracy is then evaluated on a third
independent test set. Each learning instance corresponds to a different collection of
random starting parameters, and independently sampled data sets using the origi-
nal network parameters. Referring to Figure 4.2 in Section 4.3, the approximation

schemes used in the present experiments are as follows:

e One exact inference scheme, denoted “Exact”: this case is obtained by requiring

all 10 state variables to belong to a single cluster;

e Three approximate schemes with non-overlapping clusters: these are the ‘545’
and ‘3+2+4+1’ clusters represented on Figure 4.2, and the trivial ‘1+1+4...+1’

clustering which places each state variable in a cluster of its own;
e Three approximate schemes with overlapping clusters, as follows:

— ‘747 has two overlapping clusters of 7 variables each, namely:
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Table 8.1: Fitness of learned BAT models on independent test data, for various com-
binations of approximation schemes and data sets. The numbers reported are the
negative log-likelihood in bits/time slice (lower is better), along with the iteration

number of the model selected by the algorithm.

CHAPTER 8. EFFICIENT LEARNING

BAT network

Approximate inference clustering scheme

Exact Overlapping clusters Non-overlapping clusters
Instance 10 +7  T+64+1 645 5+5  3+..+1 1+..41
#1 0.752 0.750 0.756 0.753  0.758 0.746 0.746
@ 17 @ 17 @ 17 @ 17 @ 17 @ 17 @ 17

#2 1.164 1.220 1.220 1.221 1.220 1.223 1.083
@ 49 @ 20 @ 20 @ 20 @ 20 @ 20 @ 41

#3 0.363 0.370 0.365 0.370  0.370 0.365 0.376
@19 @ 19 @ 19 @ 19 @ 19 @ 19 @ 19

#4 0.122 0.129 0.132 0.125 0.128 0.135 0.156
@ 26 @ 26 Q@ 26 @ 26 Q@ 26 @ 27 @ 27

#5 0.336 0.322 0.321 0.319  0.321 0.309 0.323
@ 28 @ 29 @ 29 @ 29 @ 29 @ 31 @ 31

#6 0.168 0.170 0.170 0.165 0.168 0.168 0.172
@ 16 @ 15 @ 15 @ 16 @ 15 @ 15 @ 14

H7 0.384  0.281 0.253 0.369  0.250 0.288 0.378
@ 50 @ 35 @ 27 @ 50 Q@ 26 @ 24 @ 39

#38 0.732 0.732 0.743 0.710  0.710 0.713 0.713
@ 25 @ 25 @ 26 @ 22 @ 22 @ 22 @ 23

#9 0.667  0.586 0.726 0.694  0.616 0.833 1.224
@ 50 @ 50 @ 50 @ 50 @ 50 @ 50 @ 50

#10 0.343 0.337  0.343 0.347  0.340 0.370 0.369
@ 29 Q@ 26 Q@ 26 @ 28 Q@ 26 @ 27 @ 27

#11 0.809 0.858 0.858 0.809  0.858 0.817 0.825
@13 @ 12 @ 12 @13 @ 12 @13 @13

#12 0.137  0.137  0.130 0.126  0.209 0.079 0.117
@ 28 @ 29 @ 28 @ 28 @ 39 @ 28 @ 29

#13 0.987 1.018 1.007  0.984  0.979 0.830 0.860
@ 35 @ 36 @ 35 @ 34 @ 34 @ 27 @ 30

#14 0.733 0.734 0.734 0.734  0.733 0.723 0.721
@ 23 @ 23 @ 23 @ 23 @ 23 @ 23 @ 22

#15 0.676 0.680 0.681 0.676  0.680 0.691 0.683
@ 15 @ 15 @ 15 @ 15 @ 15 @ 14 @ 15

#16 0.595 0.594 0.594 0.596  0.593 0.575 0.568
@ 25 @ 25 @ 25 @ 25 @ 24 @ 25 @ 25
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Table 8.2: Summary statistics for the results of Table 8.1. For each approximation,
aggregates are computed over all instances, using the difference between the negative
log-likelihoods for the approximation and the exact method, for matching instances.
(Negative averages indicate better-performing approximations.)

BAT network Approximate inference clustering scheme
Exact Overlapping clusters Non-overlapping clusters
Instance 10 7+7  7T+6+1 645 545  3+4..4+1 1+..41
actual pairwise differences
data A(approximate — exact)

average 0.5605 | -0.0031 0.0041 0.0019 -0.0022 -0.0064 0.0216
std. dev. | 0.3080 | 0.0399 0.0423 0.0185 0.0463 0.0685  0.1482

(LeftClr-RightClr-Lat Action-Xdot-InLane-FwdAction-Ydot), and
(Xdot-InLane-FwdAction—Ydot—Stopped-EngStatus—FrontBackStatus);

— ‘74641’ has three clusters, including two that overlap:
(LeftClr-RightClr-Lat Action-Xdot-InLane-FwdAction-Ydot),
(Xdot-InLane-FwdAction—Ydot—Stopped-EngStatus), and
(FrontBackStatus);

— ‘6+5’ has two clusters with a one-variable overlap:
(LeftClr-RightClr-Lat Action—Xdot-InLane-FrontBackStatus), and
(FwdAction—Ydot-Stopped-EngStatus—FrontBackStatus).

Summary statistics for the results shown in Table 8.1 are provided in Table 8.2.
The ‘Exact’ column shows the mean and (sample) standard deviation of the negative
log-likelihood for learning using exact inference. The other columns show the means
and standard deviations of the differences between the each approximation case and
the exact case; a negative value of the average difference in a given column indicates
that the corresponding approximation produced models more acccurate than the ex-
act learner, on independent test data. A first observation is that all approximation
methods, with the possible exception of the ‘14+1+...41’ clustering, produce models
that are almost exactly as accurate as the exact method. The ‘14+1+...4+1’ clustering

appears to behave slightly less predictably. Although the magnitude of the average
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Table 8.3: Fitness of learned WATER models on independent test data, for various
combinations of approximation schemes and data sets. The numbers reported are the
negative log-likelihood in bits/time slice, and the iteration number of the model se-
lected by the algorithm. (Experiments using the extremely expensive exact inference
were only conducted on a subset of the learning instances.)

WATER network Approximate inference clustering scheme

Instance (seed / data sets) Exact 2+4+42 2424242 1414..41
#1 0.426 @ 18 0.650 @ 46 0.633 @ 45 (0.478 @ 49
#2 0.555 @19 0.536 @ 50 0.565 @ 50 0.492 @ 50
#3 0324 @17 0.313 @50 0.224 @50 0.194 @ 50
#4 0.214 @22 0.216 @ 50 0.205 @ 48 0.167 @ 50
#5 0.291 @18 0.360 @ 50 0.1563 @50 0.174 @ 50
#6 0.191 @17 0.369 @ 50 0.100 @ 50 0.161 @ 50
#7 0.706 @ 14 0.764 @ 14 0.762 @ 14 0.766 @ 14
#8 1.164 @19 1.032@ 17 1.045 @17 1.019 @ 16
#9 0.417 @28 0.467 @ 50 0.602 @ 50 0.563 @ 50
#10 0.409 @ 27 0.215 @ 35 0.191 @ 50 0.234 @ 49
#11 n/a 0.633 @50 0.511 @ 50 0.504 @ 50
#12 n/a 0.781 @22 0.817 @19 0.801 @ 19
#13 n/a 0.337 @50 0.322 @50 0.264 @ 50
#14 n/a 0922 @16 0.845 @16 0.853 @ 15
#15 n/a 0.793 @50 0.534 @ 50 0.491 @ 50
#16 n/a 0.258 @ 50 0.271 @ 50 0.252 @ 50
#17 n/a 0.286 @50 0.276 @ 50 0.286 @ 50
#18 n/a 0.772@20 0.763 @21 0.789 @ 23
#19 0.574 @22 0.681 @19 0.817 @15 0.843 @ 15
#20 0.606 @ 20 0.435 @ 27 0.584 @ 41 0.626 @ 40

difference in accuracy with respect to the exact method remains small compared to
its own standard deviation, a close inspection of Table 8.1 reveals that 2 out of the 16
cases are outliers: in case #2, the ‘1+1+...41" appears to perform somewhat better
than the competition, but fares significantly worse in case #39.

Table 8.3 shows our experimental results for the WATER network, on 20 inde-
pendent learning instances; Table 8.4 gives a succinct summary of those results. As
before, the model parameters are learned from a first training set; the best model

is determined using a second validation set; the reported accuracy is then evaluated
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Table 8.4: Summary statistics for the results of Table 8.3. For each approximation,
aggregates are computed over all instances, using the difference between the negative
log-likelihoods for the approximation and the exact method, for matching instances.
(Negative averages indicate better-performing approximations.)

WATER network Approximate inference clustering scheme
Instance (seed / data sets) Exact 2+4+2 2424242 141+...41
actual pairwise differences
data A(approximate — exact)
average 0.4898 0.0134 0.0003 -0.0133
standard deviation 0.2653 0.1302 0.1474 0.1306

on a third independent test set. For this network, the approximation schemes are as

follows:

e One exact scheme, denoted ‘Exact’, where all 8 state variables to belong to a
single cluster (A-B-C-D-E-F-G-H);

e Three approximate schemes with non-overlapping clusters:

— ‘24442’ corresponds to the three clusters (A-B) (C-D-E-F) (G-H);

— ‘2424242’ corresponds to the four clusters (A-B) (C-D) (E-F) (G-H), as

represented on Figure 4.3;

— ‘141+...41’ corresponds to the maximal approximation where each state

variable is in its own cluster.

It is noted that, due to their computational cost, no overlapping cluster approximation
experiments were conducted on this network, and exact inference experiments were
restricted to a smaller number of learning instances.

Summary statistics for the results of Table 8.3 are given in Table 8.2. As with
the BAT network, we observe that all three approximations seem to closely match the
performance of the exact learner. In addition, the standard deviations of the accu-
racy differences with the exact methods are significantly smaller than the standard

deviation of the exact method’s own accuracy.
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In conclusion, even though the test accuracies are not strictly equivalent across
the board in response to a change of clustering, the fluctuations are small and appear
non-systematic. In particular, the fluctuations caused by the clustering are completely
dwarfed by the fluctuations caused by the randomization of the data sets, even though
these are fairly large and sampled from the same distributions. This lends further

credibility to the proposed approach.

8.2 Online learning

In addition to the subtantial computational gains already provided by approximate
message propagation, our contraction analysis also gives us the tools to address an-
other important problem with learning dynamic models: the need to reason about

the entire temporal sequence at once.

8.2.1 Forgetting the distant future

From a computational perspective, reasoning with a large sequence of observations
poses a number of problems. If the sequence is too large to keep in main memory, the
execution of the forward-backward process can become seriously impaired. More im-
portantly, in an online setting, the data set takes the form of a stream of observations
as the process unfolds, so that at no point is the entire sequence ever available.
There have been several attempts to deal with either or both of these problems.
Binder et al. [BMR97] address the memory problem with the help of a time-space
tradeoff: some of the messages are cached, while the others are recomputed as needed.
This approach, however, still requires a forward-backward propagation over the entire
sequence, making it inapplicable to the online learning task. Neal and Hinton [NH98]
address the online learning problem with an incremental update procedure for the
sufficient statistics and to the model parameters. However, their solution applies
only to independent data sets, where the inference step can be carried out separately
on each independent data set, as it becomes available. This technique is very suited

to learning static models from a large number of independent observations; however,
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when learning temporal models from a single ongoing data stream, the entire sequence
would still be required for the E-step. In this section, we build on the intuition arising
from our contraction analysis, to offer an approach that addresses both difficulties.
One consequence of the contraction phenomenon is that the error incurred by
using approximations far away in the sequence decays exponentially with the time
difference, whether in the past or in the future; in particular, the impact of an ap-
proximation which completely ignores all data far away in the future is also limited.
Consequently, applying the forward-backward procedure to compute a posterior dis-
tribution at time ¢ using only a small subset of the data sequence in the vicinity
of ¢, should still provide fairly accurate results. More precisely, assume that we are
considering a window of size w on both sides of the target time slice. A very bad
approximation of the backward message at time ¢ 4+ w that ignores all data beyond
t + w, is given by the uniform message; however, as we propagate this approximate
message backward from ¢ + w to ¢, the initial error decays exponentially in the width
of the window w, and so will its impact on the posterior at time ¢. This observa-
tion, supported by our previous results, leads to a simple yet effective class of online

learning algorithms for stochastic processes.

8.2.2 Incremental updates

An efficient approach to online learning is based on the incremental EM method of
Neal and Hinton [NH98], in which the ESS are not recomputed tabula rasa during
the E-step, but merely updated with the new data. Various strategies may be used
for the update, one of the simplest and most effective being the exponential decay
schedule, in which the new data are blended in fixed proportion with the previous
ESS to yield updated ESS at each iteration. The M-step is unchanged; the model
parameters are recomputed from the ESS by the usual formula, either at every time
step, or, to save time, at larger intervals.

The main problem with frequent parameter updates in an online setting is that
they require a recomputation of old messages each time the model parameters are

updated. For long sequences, the computational cost of such recomputations would
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be prohibitive. Even with the windowed approach, recomputing 2 w messages for
each incremental ESS update remains costly.

Our algorithms use a more aggressive strategy to avoid unnecessary message com-
putations. In essence, assuming a window width w, we maintain the “present” ap-

=11 50 that it lags the received evidence by a delay of up to w.

proximate posterior fi
That is, we may postpone the computation of &~ until the evidence at time ¢ +w
is observed. This allows us to employ efficient caching techniques in order to avoid
recomputing too many messages at each time step. This is especially important for

backward messages, as they cannot easily be updated when new evidence pours in.

8.2.3 Smart message caching

We now describe the strategies we employ to reduce the amortized number of message
propagations per time slice, in order to speed up the learning process.

Forward messages are computed once and for all, and are never recomputed, even
when the model parameters are updated. Instead, forward message propagation is
performed lazily using a just-in-time strategy, so that the most recent parameters are

used to obtain p(f) from p,(tfl)

, itself computed one step earlier using the then-current
parameters, and so on. This approach is justified by the contraction phenomenon and
the slow parameter evolution from one step of incremental EM to the next, which
together tend to ensure that the total error on forward messages remains bounded
under this approximation.

Backward messages require a slightly different approach, since it is not possible
to update a message B(t) propagated backward from time ¢ 4+ w — 1, to account for a
new observation at time ¢ + w. However, some savings can be made, provided that
the window w is sufficiently large, and the rate of change in the model parameters
sufficiently slow. Let ' be such that t < ¢ < ¢t + w, and assume that a sequence
of backward messages B(') from time ¢ + w down to time ¢ was computed when the
time- (¢ 4+ w) observation became available. Under the above assumptions, the time-#'
message B(tl) from this sequence still reasonably approximates the optimal backward

message at time t', which suggests that a backward sequence, even when restricted
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to a window of limited size, does not have to be recomputed every single time a new
observation is obtained. We experimented with two types of caching strategies, as

follows.

Static backward message cache

The static caching strategy is fairly straightforward; for a window size w, we call
it static-w. The principle is to maintain a cache of up to w backward messages,
which is initially empty. When the cache is found empty at the beginning of an
EM iteration, the algorithm pauses to compute all backward messages from up to w
steps ahead of the current time, using the w evidence points in the lookahead buffer.
This precomputation is done periodically, at any time 7 such that 7 =0 (mod w),
using the current learned model at time 7. Then, during the E-step at any time t,
the forward message is propagated normally from the time-(¢ — 1) message, using the
latest model. However, the backward message is not recomputed; instead, it is simply
pulled from the cache.

The main advantage of the static strategy is that, similar to the computation
of forward messages, it only requires one backward propagation step on average per
time slice of data. Its main drawback is that most backward messages will no longer
correspond to a fresh model when they are actually used, in incremental EM. This is
especially true for time indices ¢ such that ¢ mod w > 0. A second difficulty is that
the few farthest messages in the cache (those at times ¢t & 7 4+ w in a series from 7 to
7 4+ w) will be inaccurate, being based on very little evidence data. Unlike the first
problem, the latter is more of an issue with small window sizes.

In our experiments with static caching, we used w € {0,1000} with regular (non-
incremental) EM, and w € {0,100, 1000} with incremental EM as in Section 8.2.2.

Dynamic backward message cache

The dynamic caching strategy is an attempt to cure both shortcomings of the static
cache, without resorting to recomputing w backward messages every time the model

is updated in incremental EM. The general idea is to maintain a logw-sized cache of
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backward messages, containing cached messages at geometrically increasing distances
ahead of the current time, computed using models that are geometrically increasingly
older—i.e., the closer the cached message is with respect to the present time, the
more recently it will have been computed. Thus, the invariant of the cache is that,
at any time ¢, the cache contains cached messages for the times ¢; = 2! [¢/2%], for
i = 0,...,|logw|. Then, at every step ¢ of incremental EM, the cached message
closest to t is retrieved from the cache (i.e., this is the message at time t; > ¢
for the smallest available i), and is propagated backward using the current model
parameters in order to obtain the needed backward message at time ¢. During this
process, the cache is also updated to satisfy the invariant. In addition to the above,
we introduce a supplemental “hold-off” parameter g, and require that only messages
satifying t; > ¢t + g be pulled from the cache. This is in order to guard against the
few occasions where an ancient message (i.e., for one of the larger values of i) would
be pulled from the cache at a time ¢; uncomfortably close to the current time ¢t. In
case the model parameters are only updated every f steps in incremental EM, the
selection criterion becomes t; > t+ ¢+ f, and only needs to be satisfied at the update
times.

It is easy to see that this strategy incurs an amortized cost of about 1 + 1/f
backward propagations per time slice, where f is the number of time slices between
each model update in incremental EM. With the hold-off parameter, the cost factor
becomes 1+(1+g¢)/f. On the upside, this rather complex strategy combines efficiency
with accuracy, and is a realistic alternative to a full update of backward messages at
every step of incremental EM.

In our experiments with the dynamic caching strategy, we used the values f =
g =4 and w € {4, 40}, with incremental EM.

8.2.4 Experimental results

The purpose of our first set of experiments is to get a sense of how the various up-
date strategies described in Section 8.2.3 stack against each other for online learning.

Here, we are equally interested in true online learning, in which each data point of a
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potentially unbounded sequence is seen at most once, as in what we refer to as offline
learning, in which multiple passes are made over a given finite sequence, in a data
stream fashion. Such a hybrid of online and offline algorithm is considered in, e.g.,
[GMMOO00].

We compare the following instances of the update strategies: batch EM, or basic
EM without incremental update, as used in the experiments of Section 8.1.3; dynamic-
1000, as our most careful approximation of a full update of the backward messages at
every step, being both accurate and adaptive; static-1000, as an accurate but not very
responsive backward message approximation; static-4, as the reciprocal embodiment
of a moderately accurate but very responsive approximation; and finally, static-0,
in which no lookahead is used at all, effectively disabling any future evidence in the

computation of the joint posteriors.

In the world of Kalman filtering, the latter approach corresponds to pure real-time
filtering, and is often used for the online learning of process parameters with Kalman
filters. The other approaches use some amount of lookahead data, and implement
some sort of smoothing, in the Kalman filtering terminology. By slightly delaying the
estimator in order to permit a peek into its future, smoothing is known to enhance
the accuracy of state estimates in Kalman filters, and has been used as a heuristic in

many applications of Kalman filters, including parameter estimation [WH89, CC91].

To minimize the computational burden, all tests were conducted using the 5+5
structural approximation, which has been previously seen as providing an extremely
close approximation to exact EM. In those conditions, The compared running times
for the various algorithms are: 0.4s per slice for batch EM; 1.4s for dynamic-1000; 0.5s
for static-1000; 0.5s for static-4; and 0.3s for static-0. We evaluated these temporal
approximations in an offline and an online setting.

The purpose of the offline learning experiments was to provide a benchmark in
which our various online approximations could be adequately compared to standard
EM with full forward-backward. We used the same sampled sequence of 1000 data
points as in Section 8.1.3; for the online algorithms, an endless stream of data is
simulated by repetitively looping the sequence onto itself. The results are shown in

Figure 8.2. We see that the dynamic-1000 algorithm reaches the same quality model
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Figure 8.2: Compared quality of various temporal approximations for offline param-
eter learning.

as standard batch EM, but converges sooner. As observed with incremental EM in
atemporal settings [NH98]|, the accelerated convergence is due to the frequent update

of the sufficient statistics based on more accurate parameters.

More interestingly, we see that the static-4 algorithm, which uses a lookahead
window of only 4 time slices, also reaches the same accuracy. These results illustrate
the adequacy of our strategy of ignoring evidence far in the future, even for a very
weak notion of “far”. By contrast, we see that the quality reached by the static-
0 approach remains significantly lower, presumably because the expected sufficient

statistics made available to the M-step are consistently worse, as they ignore all future
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Figure 8.3: Compared quality of various temporal approximations for online param-
eter learning.

evidence. Thus, for this network structure and data, a lookahead is indispensable,
yet even a very short one of 4 time slices performs as well as a full forward-backward

update.

Our online learning experiments used a single long sequence of 40000 slices sampled
from the reference network, which was more than long enough to reach a plateau
in the learning curves of all the considered algorithms. The results are shown in
Figure 8.3. Again, we see that the static-4 approach is almost indistinguishable in
terms of accuracy from the dynamic-1000 approach. Both converge more rapidly than

the static-1000 algorithm, in accordance with our expectations. This illustrates the
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superiority of frequent updates of short windows over infrequent updates of longer
windows. Finally, we note that the static-0 algorithm converges to a hypothesis of
significantly lower quality, compared to all the other algorithms. As in the offline
setting, the presence of a lookahead window appears to be a necessity, even if a short
one will often suffice, in accordance with the theory.

To complement the above observations, we conducted a large number of additional
experiments to further support our claims on the temporal approximation, both in an
offline data stream setting and in a true online setting. Each set of experiments was
conducted on both the BAT and the WATER networks, using 16 and 20 independent
data sets respectively, in each case a 1000-point training set, a 100-point validation
set, and a 100-point independent test set, all sampled from the reference networks.
To save computing time, a fixed approximation clustering was used to speed up
inference: the ‘5+5’ clustering from Section 4.3 was used for BAT, while the ‘2+4+2’
clustering was retained for WATER. The following temporal approximation strategies

are compared:
e Strategies based on regular (non-incremental) EM:
— No backward messages, i.e., no lookahead, or ‘nolook’: only the forward

messages are used for learning;

— Static-1000 backward message pre-caching, or ‘stat1000’: a 1000-point win-
dow of backward messages is statically pre-cached, and updated only when
it is completely exhausted, as explained in Section 8.2.3 (in the case of a
1000-point offline training set, this strategy boils down to regular batch

EM; this strategy was not tested for online learning);
e Strategies based on incremental EM with exponential decay [NH98]:

— Learning without lookahead (‘nolook’);
— Static-1000 backward message pre-caching, or ‘stat1000’;
— Static-100 backward message pre-caching, or ‘stat100’;

— Static-4 backward message pre-caching, or ‘statd’;
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— Dynamic-4 backward message pre-caching, or ‘dyna4’: a 4-point window of
backward messages is pre-cached, and periodically updated using a sched-

ule as explained in Section 8.2.3;

— Dynamic-40 backward message pre-caching, or ‘dyna40’;

Tables 8.5 and 8.6 gather the results of the offline experiments for the BAT and
WATER networks, respectively. The results of the online experiments using the same
networks are detailed in Tables 8.7 and 8.8.

The test accuracy of the various learned models is observed to fluctuate somewhat
as a function of the random data sets and starting model parameters (e.g., instance
#15 in Table 8.8 presents an unusually high loss for all approximation schemes, com-
pared with other instances). In spite of this, it is readily apparent from these tables
that all flavors of lookahead enable the learning of high-quality models. Interest-
ingly, the approximations without lookahead appear to perform consistently worse,
whether one uses a regular EM update stragegy (as tested in the offline case only),
or one based on incremental EM; this seems to confirm our previous observations.
Similarly to what we previously observed, the individual results of the various exper-
iments seem to fluctuate much more due to the mere randomization of the data sets

than as a result of the approximations.
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Table 8.5: Offline learning loss for various approximations on independent test data,
for the BAT model using the ‘545’ clustering.

Temporal approximation method (offline case)
regular EM exponential-decay incremental EM
nolook statl000 nolook statl000 statl00 stat4 dynad4 dynad0

BAT network (using the ‘5+5’ clustering)

#1 0.773 0.758 0.575 0.726 0.543  0.537 0.542 0.544
#2 1.203 1.220 1.229 0.998 1.076 1.087  1.002 1.074
#3 0.479 0.369 0.671 0.406 0.381 0.382  0.380  0.379
#4 0.487 0.128 0.522 0.200 0.175  0.170  0.170  0.176
#5 0.502 0.321 0.480 0.300 0.294  0.308 0.303 0.294
#6 0.523 0.168 0.559 0.183 0.174  0.181 0.174  0.173
#7 0.408 0.250 0.392 0.253 0.241 0.248 0.243  0.245
#8 0.564 0.710 0.534 0.471 0.456  0.460 0.462  0.461
#9 0.814 0.616 0.742 0.965 0.823 1.346  0.763  0.778
#10  0.454 0.340 0.474 0.487 0.427 0477 0417 0425
#11  0.940 0.858 0.884 0.851 0.808 0.804 0.808  0.808
#12  0.404 0.209 0.424 0.240 0.221 0.298 0.211 0.223
#13  0.405 0.979 0.549 0.836 0.796  0.771 0.744  0.804
#14  0.844 0.733 0.840 0.747 0.736  0.758 0.743  0.737
#15  0.764 0.680 0.475 0.314 0.333  0.299 0303 0.304
#16  0.697 0.593 0.725 0.674 0.681 0.667 0.674  0.687
Summary statistics

avg. 0.6413 0.5583  0.6297 0.5407  0.5103 0.5496 0.4962 0.5070
dev. 0.2313 0.3175 0.2154 0.2852  0.2776 0.3358 0.2622 0.2760
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Table 8.6: Offline learning loss for various approximations on independent test data,
for the WATER model using the ‘2+442’ clustering.

Temporal approximation method (offline case)

regular EM exponential-decay incremental EM

nolook stat1000 nolook stat1000 statl00 stat4d dynad dynad0
WATER network (using the ‘2+4+2’ clustering)
#1 0.391 0.408 0.292 0.347 0.378 0.372 0.372  0.378
#2 0.789 0.907 0.909 0.742 0.711 0.694 0.734  0.712
#3 0.453 0.379 0.360 0.351 0.360 0.337 0.347  0.363
#4 0.431 0.364 0.488 0.409 0.510 0.382 0.354  0.573
#5 0.481 0.412 0.437 0.455 0.434 0.381 0.431 0.481
#6 0.780 0.657 0.790 0.787 0.708 0.719 0.681 0.705
#7 0.634 0.570 0.617 0.490 0.471 0.530 0.467  0.469
#8 0.489 0.304 0.454 0.286 0.299 0.263  0.297  0.300
#9 0.613 0.648 0.733 0.868 0.474  0.681 0.525  0.468
#10  0.392 0.202 0.463 0.205 0.287 0.317 0.260 0.170
#11 0.697 0.801 0.584 0.612 0.682 0.564 0.666 0.679
#12  0.315 0.211 0.307 0.228 0.157  0.117 0.234 0.184
#13  0.581 0.367 0.598 0.336 0.367  0.399 0.373  0.368
#14  0.516 0.473 0.618 0.515 0.509 0.521 0.536  0.509
#15 1.629 1.550 1.489 1.317 1.315 0.959 1.057  1.077
#16  0.637 0.407 0.515 0.401 0.369 0.367 0.372  0.370
#17  0.681 0.595 0.904 0.756 0.751 0.737 0.755  0.754
#18  0.298 0.217 0.271 0.359 0.310 0.282 0.310  0.309
#19  0.553 0.571 0.616 0.566 0.639 0.592 0.655  0.648
#20  0.311 0.299 0.293 0.285 0.237 0.268 0.237  0.237
Summary statistics
avg. 0.5836  0.5171 0.5869 0.5158  0.4984 0.4741 0.4832 0.4877
dev. 0.2874 0.3100 0.2863 0.2702  0.2566 0.2080 0.2158 0.2254
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Table 8.7: Online learning loss for various approximations on independent test data,
for the BAT model using the ‘545’ clustering.

Temporal approximation method (online case)
regular EM  exponential-decay incremental EM
nolookahead nolook statl000 statl00 stat4 dynad dynad0

BAT network (using the ‘5+5’ clustering)

#1 1.167 0.793 0.854 0.831 0.832 0.829  0.830
#2 1.344 1.165 1.037 1.112 1.122  1.112 1.112
#3 0.467 0.456 0.347 0.343 0344 0.342  0.352
#4 0.467 0.471 0.105 0.088  0.089 0.087  0.088
#5 0.368 0.342 0.258 0.248  0.249 0.248  0.248
#6 0.564 0.368 0.061 0.065  0.068 0.067  0.065
#7 0.377 0.389 0.165 0.157  0.177 0.170  0.158
#8 0.697 0.389 0.282 0.335 0.328 0.336  0.333
#9 0.403 0.337 0.244 0.242  0.236 0.242  0.188
#10 0.414 0.347 0.217 0.210 0.214 0.210 0.210
#11 0.853 0.811 0.352 0.332 0.296 0.345  0.333
#12 0.281 0.199 0.037 0.029  0.088 0.029  0.029
#13 0.100 0.388 0.710 0.709  0.632 0.633  0.709
#14 0.968 1.034 0.706 0.708  0.762 0.707  0.708
#15 0.290 0.271 0.164 0.164 0.165 0.164 0.164
#16 0.576 0.572 0.475 0.473 0470 0473 0473
Summary statistics

avg. 0.5835 0.5208 0.3759  0.3779 0.3759 0.3746 0.3750

dev. 0.3407 0.2809  0.2988  0.3097 0.3059 0.3038 0.3114
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Table 8.8: Online learning loss for various approximations on independent test data,
for the WATER model using the ‘2+442’ clustering.

Temporal approximation method (online case)
regular EM  exponential-decay incremental EM

nolookahead nolook stat1000 statl00 stat4d dynad dyna40
WATER network (using the ‘2+4+2’ clustering)
#1 0.238 0.227 0.184 0.126  0.137 0.125  0.126
#2 0.573 0.521 0.567 0.469  0.467 0.458  0.467
#3 0.074 0.035 0.069 0.066  0.063 0.061  0.065
#4 0.503 0.415 0.208 0.224 0.160 0.223  0.219
#5 0.195 0.238 0.223 0.209  0.119 0.205  0.205
#6 0.791 0.785 0.600 0.601 0.617  0.598  0.601
#7 0.449 0.416 0.386 0.395 0.356 0.375  0.396
#8 0.097 0.091 0.096 0.096 0.115 0.093  0.096
#9 0.585 0.522 1.004 0.990 0.628 0.985  0.993
#10 0.266 0.205 0.092 0.076  0.059 0.070  0.077
#11 0.282 0.345 0.111 0.294 0.102 0.104 0.265
#12 0.318 0.241 0.042 0.068  0.050 0.038  0.069
#13 0.444 0.390 0.356 0.352  0.157 0.356  0.353
#14 0.520 0.497 0.449 0.386  0.396 0.395  0.389
#15 2.007 1.926 1.438 1.853 1.659 1.850  1.853
#16 0.441 0.429 0.294 0.269  0.283 0.277  0.270
#17 0.559 0.600 0.512 0.491 0.409  0.491  0.491
#18 0.086 0.078 0.158 0.162 0.113 0.164 0.162
#19 0.162 0.123 0.137 0.194 0.123 0.195 0.193
#20 0.302 0.278 0.104 0.155  0.113 0.138  0.153
Summary statistics
avg. 0.4446 0.4181 0.3515  0.3738 0.3063 0.3601 0.3722
dev. 0.4159 0.4037 0.3502 04136 0.3669 0.4186 0.4144
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Chapter 9
Toward structure discovery

The usefulness of parameter learning from data given a fixed model structure is di-
rectly dependent on the availability of an accurate qualitative description of the inter-
actions taking place among the system variables. Many situations of practical interest
do not strike such a middle ground: sometimes a complete quantitative model of the
system is available from the onset, in which case no learning is necessary; at other
times very little reliable prior knowledge is assumed, and both the model structure
and parameters must be learned from the observations alone.

In this chapter, we discuss some of the problems encountered in the task of learning
the structure of an unknown process. We suggest a possible approach, supported by

a few preliminary experiments.

9.1 Approximate expected sufficient statistics

The approximate message propagation algorithm provides an efficient way of inferring
statistics from partial data in large systems. As shown in the previous chapter, this
algorithm offers an appropriate solution for parametric learning of Markovian pro-
cesses of given structure, where the set of needed statistics is known and invariable,
and their complexity is directly commensurate with that of the model template. The
situation becomes more delicate when the model structure is not known and has to be

learned together with the model parameters. As outlined in Section 7.3, this situation

169
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often calls for a local structure search, which cannot be executed without an expanded
set, of statistics. Contrarily to the parametric learning case, where the statistics are
directly patterned on a fixed model structure, here the expanded statistics merely
reflect speculations on what portion of the space of structures should be available for
exploration during the upcoming search step. Not only are such expanded statistics
not as straightforward to compute given the current model structure, their collec-
tion from partially observed data would require expensive inference operations on a

potentially very large number of different candidate structures.

9.1.1 Methods and limitations

Recall from Chapter 7 that ESS are derived from the joint marginals over sets of state
variables, as in Equation 7.1. Given a fixed structure B_,, computing ESS is easy:
the only required statistics are the ones over the families of the individual variables
in B_,, and the approximate forward-backward message propagation of Section 8.1.1
can be readily used for their estimation. Based on Algorithm 4.5, the method of
Section 8.1.1 uses a junction tree Y, derived from the transition model, to propagate
messages in either direction, as well as to combine forward and backward messages into
posterior distributions, as required by Equation 7.2. In order to learn the parameters
of a fixed structure B_,, those posteriors, and the ESS which derive from them,
must be detailed enough to cover each variable family in the transition model; i.e.,
for each ulterior variable X®, a set of statistics N[X”|Pa[X"]] should be available.
For a fixed structure, the junction tree is guaranteed to have this property: the
construction outlined in Algorithm 4.5 ensures that each family is contained in full in
some clique of Y. Furthermore, not only can Y be directly used to combine a forward
message a® " and a backward message B(t) to produce the full approximated joint

=11 as above, but g~ directly admits a compact representation as the

posterior ﬂ(
calibrated junction tree Y itself (where YT instantiates T to cover the transition
from ¢t —1 and t). It is then easy to extract the needed marginals from the appropriate
cliques and integrate them over the entire sequence to obtain the required ESS, as

detailed earlier.
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For structure learning, this easy solution is no longer applicable, since the current
structure B_, is used to compute statistics for a variety of other candidate structures:
in general, a tree T constructed from B_, will not spontaneously cover the families of
the other candidate structures. Forcing such coverage for all the families involved is
not an option either, as this will almost invariably result in the degenerate tree where
all the variables belong to a single, intractably large clique. Thus, the main challenge
amounts to estimating a large set of complex statistics, without resorting to doing
full inference for each of them, either separately (using many small tailored junction
trees), or all at once (using a huge degenerate junction tree).!

Let Y be a set of variables for which joint statistics are desired; e.g., Y® could
be the family of Y® in a potential candidate structure. The problem is to compute
ESS over Y when Y is not contained in full in any clique of Y. A naive approach
to this problem is to compute the necessary posterior Pg_[Y®|D] by performing a
special-purpose inference step over Y. tailored to Y. Unfortunately, this operation
can be very expensive as Y contains variables which are “distant” in the current
structure. It also needs to be performed a great many times every time slice: once
for each family of statistics of interest. Finally, this approach is almost invariably
intractable for seeking statistics of higher Markovian order, i.e., where Y spans the
time slices from ¢ — d to t, with d > 1. Although they are not conventionally used in
structure learning, the availability of such statistics will soon prove to be the key to

discovering hidden variables, see Section 9.2.

9.1.2 Scalable approximation

Since the determination of the required statistics is intractable in most cases of in-
terest, we propose an approximate solution, in the same spirit as the decomposed
message propagation introduced in the previous chapters, and related to the varia-

tional approximation of [GJ96]. Instead of computing the joint distribution P[Y®)],

Tt is noted that the difficulty of collecting joint statistics over “distant” variables does not arise
in the work of Friedman et al. [FMR98], as they essentially rely on a degenerate junction tree to
provide access to all possible ESS in models that are small enough to allow it. It is our requirement
to provide a more flexible representation and finer grained decomposition of the junction tree, for
the sake of scalability, that brings up the issue.
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we approximate it as a product of independent marginals over the individual variables
(or sets thereof) of Y.

Let Y; be an instantaneous variable in Y. Since Y® may span several time slices
from t — d to ¢, the notation Yi(t") is used to indicate that the actual time slice at

which Y; is evaluated in Y® is t; € {t — d, ...,t}. Then, our approximation scheme
assesses Pp_ [Y(®|D] as:

Ps [Y?D] ~ [[Ps.[;"'D],

where, for each Y, the posterior PB_>[Y;-(“)|D] is computed by marginalizing some
clique of Y) in which Y;.(ti) is present. The various junction trees Y(*) used for this
operation result from the approximate forward-backward propagation, at almost no
additional cost. From there, the approximate ESS Ny are computed as in Equa-

tion 7.1, by accumulating the individual posteriors over ¢.

The whole process requires a pass over the junction tree to perform the marginal-
ization, and then a simple aggregation of the marginals into accumulators, which

requires linear time in the number of sufficient statistics that we are maintaining.?

As implied by the above description, this approach readily applies to the task

of computing ESS for events Y that span several time slices: all that is needed is

) from more than one junction tree, as

needed. For example, joint ESS over an event Y = (Xg),

mated by extracting P[X"] from T® and P[X"5?] from T2, and multiplying the

i1

to extract the marginals over the various Yi(ti

Xi(;_m ) could be approxi-

two marginals. The ESS for the event are obtained by repeating this operation for
each ¢, and adding up the results.
At first glance, one might think that this approximation discards all correlations

between the various variables or variable clusters of Y. In general, however, this is not

2We note that we could have used a more refined computation that would have taken advantage
of the co-occurrence of some subsets of Y within a single clique in order to avoid approximating
them as independent. However, this extension would require that we marginalize the cliques in a
potentially different way for every statistic that we need to compute. Our experiments (see below)
suggest that the error introduced by this approximation is probably not large enough to be worth
the significant computational overhead.



9.1. APPROXIMATE EXPECTED SUFFICIENT STATISTICS 173

Table 9.1: Comparison of parametric EM based on exact and approximate ESS:
negative log-likelihood on test data for parametric EM, for different starting points
(results expressed in bits/time slice).

BAT network Seed #1 Seed #2 Seed #3
Gold standard (reference model) 22,1860 22.1860 22.1860
Model learned without ESS approximation 22.4026 22.2801 22.3269
Model learned with ESS approximation 22.2633  22.2676  22.2782

the case, since the ESS for Y are constructed by accumulating posterior distributions
of Y® given different configurations of evidence. Consider, for example, the situation
where the event of interest Y is composed of two binary variables A, B € Y, which
belong to different cliques. If, over the course of time, it appears from the data that
A and B are either both probably true or both probably false, depending on the
evidence, then at each step the product distribution P[A®] @ P[B®] will display
a larger probability mass at either (0,0) or (1,1), revealing the correlation between
A and B in the ESS of Y. In other words, this approximation is able to learn
the Exclusive-OR function. Of course, there are cases where this approximation
would lose correlations. For example, if A® and B® are both marginally uniformly
distributed, yet are correlated via higher order moments, the approximate sufficient
statistics would not reveal such a correlation.

In general, if the evidence does not exhibit any information about skews in the
marginal distribution of a variable, but only about the correlations between the differ-
ent variables, our approximate ESS will fail to reveal the correlation. In response, we
argue that such models are hard to learn in general, with or without our approxima-
tion. Indeed, if the evidence does not provide information about the value of a hidden
variable, the prospects of learning something meaningful about its distribution are

very limited.

9.1.3 Preliminary results

Even though the ultimate goal of ESS approximation is to support structural learning

in large systems, we first tested the approximation on the better understood problem
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of parametric estimation. The validation test involved learning the model parameters
given the correct model structure, from synthetic data sampled from the reference
model. We used the BAT network, as first described in Section 4.3. The learning
set was composed of a single long sequence of 20000 synthetic data points. We then
attempted to estimate the parameters back from the data, given the correct structure,
and measured the fitness of the resulting model on an independent synthetic test
sequence, as before. We ran two versions of this experiment, the first one using the
approximate forward-backward message-passing algorithm previously described but

without the ESS approximation, the other using both approximations.

As can be seen in Table 9.1, the approximation does not degrade the learning accu-
racy. On the contrary, the approximation even seems to be slightly beneficial, which
could speculatively be explained as a regularization effect, caused by the reduced ef-
fective dimensionality of the approximated ESS. The ensuing smoothing effect helped

produce better models by reducing numerical overfitting.

9.2 Structure discovery

In the previous section, we suggested a method for efficiently computing expected
sufficient statistics, to be used, for instance, during the E-step of SEM. Since SEM
search in the M-step requires ESS for each family that may potentially be changed,
this raises the question of what strategy should be used to decide on which statistics

to compute.

Moreover, SEM and other local search methods are inapplicable unless some basic
knowledge of the system is at hand; at the very least, knowledge of all hidden state
variables is a requirement. Since we often face situations where even that much is
unknown before techniques like SEM can be applied, this begs the question of how

hidden state variables can be uncovered in the first place.
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9.2.1 Efficient structure search

Although the SEM algorithm is unable to discover the existence of unknown variables,
it is rather capable at fitting dependency structures over specified sets of (observed
and hidden variables). Since our method uses SEM as a subroutine, we now focus on
the problem of supplying SEM with an adequate collection of sufficient statistics.

A first approach is to compute in advance all the expected sufficient statistics
the search might need. However, since the number of statistics grows exponentially
with the size of the network, this solution is impractical. When the indegree of each
variable is restricted, the number of statistics is polynomial, but still unrealistically
large.

A second approach, which was used by Friedman et al. [FMR9S8], is to lazily
compute sufficient statistics on demand, so that the statistics for a family Y are
computed only when the search needs to evaluate a structure with this family. To
avoid unnecessary computations, computed statistics are stored in a cache, relegating
the actual ESS computation for statistics that have not yet been required during this
particular search phase. Unfortunately, this approach does not scale appropriately for
long data sequences, since each ESS computation requires a traversal over the entire
sequence, using the forward-backward algorithm. This could be partially avoided by
storing all the junction trees Y® computed during the forward-backward propagation,
or, at least, the posterior of each variable at each point in time, but this would only
place the burden on the storage needed for all that information.

These two solutions are at the extreme ends of a spectrum. Friedman et al.
[FPNO9] present an intermediate search method, which is more appropriate for our
purpose. The search procedure works in stages. At the beginning of each stage the
search procedure posts the statistics it will require for that stage. These are selected
in an informed way, based on the current state of the search; for example, the search
method may choose to include all families that result from at most a fixed number
of local structure modifications. The requested statistics are then computed in one
batch in the E-step, using a single inference phase for all of them at once.

More specifically, at the beginning of the E-step, the algorithm finds for each

variable Y; a set Pa[Y;] of candidate parents, based on the current network structure.
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During the M-step, the search is restricted to consider only operations that involve
adding edges X — Y; for X € Pa[Y;], or removing current arcs. The number of ESS
required for these operations is fairly small, and can be collected and accumulated
at once, in a single execution of forward-backward. The algorithm uses heuristics
to focus the attention of the search procedure on plausible candidate parents, as
described by Friedman et al. [FPN99]; the algorithm therefore requires relatively few
statistics in each stage. The restricted search phase is deemed complete when no
further progress can be made using the available statistics. This can happen either
because further progress would require additional statistics, or because the modified
structure is deemed optimal according to the last set of statistics. In either case, the
M-step terminates, and a new EM iteration is initiated, based on the new structure.

The process is iterated until convergence of the scoring function.

9.2.2 Discovering hidden variables

Beyond learning structural dependencies between known random variables, a funda-
mental problem remains when learning dynamic systems from real data: the discovery
of hidden variables. In financial domains, for example, the stock price of companies
in the same industry are typically correlated. This correlation is most often caused
by hidden variables, such as news bulletins concerning the industry and the subjec-
tive perception thereof by investors. Those variables are hidden, and sometimes even
difficult to quantify, but nonetheless have a real impact on the observable variables.
Unless the learner realizes that observed correlations are caused by hidden variables,
the induced model is likely to poorly reflect the reality.

The task of discovering new hidden variables is notoriously difficult. In tempo-
ral sequences, however, there are some cues that can indicate the presence of such
variables. In particular, if a hidden variable is missing from a learned model, this
often will be revealed as a non-Markovian correlation in the data with respect to the
model, i.e., a correlation that ties variables at times ¢t —¢§; and ¢+ 0d- given all variables
in the model at time . The non-Markovian correlations are induced by the loss of

information as the hidden variable is forgotten from step to step; in other words, the
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model is unable to statistically explain the observed values of the variables, because
it does not track the hidden dependence that causes those values. This phenomenon
can be used to identify missing hidden variables in the current model. Practically,
the learner can search for observed non-Markovian correlations, and use them as an
indication that the model needs additional memory about the past to explain the
present. The goal of this operation is to determine the existence of hidden variables,

and to seed their initial location.

More concretely, suppose that we discover that we can predict X® using X(¢~-1
and Y#=2) for example. Then we might consider creating a new hidden variable H
such that H< is a parent of X* and Y is a parent of H”. Thus, we will have that
Y #=2) influences H*1 via the Y9 — H" edge, and that H*=V) in turn influences
X® via the H® — X" edge. In other words, the variable H behaves as the memory

of Y with a one-time-slice delay.

In general, we propose the following algorithm. We start by learning the edges
among variables in £ time slices, arranged as a k-TBN, for some fixed time window
k. When some of the variables are unobserved, we use structural EM and our ap-
proximation methods to estimate the ESS of the variables in these £ consecutive time
slices. The sufficient statistics are computed once, and then used for an extended
search phase over structures. This strategy, combined with our approach to comput-
ing ESS for variables that are far apart in the network, allows us to estimate the ESS

for the k-TBN without ever doing inference on such a large structure.

After having learned such a network, we eliminate the non-Markovian arcs by
creating new hidden variables to carry forward the value of those variables that par-
ticipate as parents in non-Markovian correlations. Any variable X in time slice ¢t — d
which directly influences a variable Y at time ¢ requires d — 1 new hidden variables,
denoted X1, ..., X~9*!: at time t — 1, the 4-th introduced variable X % has the same
value that X had at time slice ¢ — 7. This operation transforms the learned k-TBN
into a more conventional Markovian 2-TBN.

Before optimizing the parameters of the new network structure, a few more modi-
fications are in order. We endow each newly created hidden variable with persistence

arcs, or arcs from the anterior to the ulterior instantiation of the same variable; this
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allows the hidden variables to depend on longer term past. We also initialize the
parameters of the newly introduced hidden variables to be noisy CPDs biased toward
a combination of acquiring the value of the variables they close, and retaining their
previous value through the persistence arc. The intent is to encourage the structural

search to construct variables that remember global phenomena.

Having transformed the learned £-TBN into a 2-TBN using the above heuristics,
the iteration is completed by running parametric EM in order to optimize the pa-
rameters. If convergence has not been reached, the process resumes with the three
steps of the next iteration: structure learning, introduction of hidden variables, and

parametric optimization.

9.2.3 Preliminary results

We tried our hidden variable discovery algorithm on four different domains: three of
them involve real-world data, while the fourth is based on synthetic data sampled
from a reference DBN. The experimental procedure involved running our structure
learning and variable discovery algorithm for several iterations, assessing the fitness
of the learned network at key milestones along the way. The first iteration starts with
the collection of approximate ESS in the E-step, followed by a structure search phase
in the M-step, allowing non-Markovian edges as described above. The result is a non-
Markovian learned network involving only the initially known variables; its fitness
is measured on test data. Next in order are the transformation of non-Markovian
edges into hidden variables and the subsequent parameter tuning, which complete
the first iteration; the fitness of the network on test data is measured at this point.
The subsequent iterations are similar, except that all currently known variables are
used in the inference and search phases, and the network fitness on test data is
measured at the end of each iteration only. As previously described, the inference
phase involves the collection of a reasonably large number of sets of approximate
ESS, and is followed by a matching extensive search phase. For structure search,
we experimented with both the Bayesian (BDe) score and the BIC score, and with

both flat and tree-structured conditional probability distributions for the nodes of
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the learned model. We report the results for the BDe score with trees; the results for
the other cases are somewhat different, but exhibit the same general trends. Since a
single training set was used, the results of those experiments are to be regarded as
merely suggestive.

As points of comparison, we also learned two other types of structure: standard
Markovian DBN structures over the observable variables, as learned by a standard BN
structure learning algorithm, and Factorial HMM (FHMM) structures with various
numbers of hidden variables [GJ96], as tuned by parametric EM, using our approx-
imate message passing algorithm of Section 8.1.1 to keep the computational effort
to reasonable levels. We recall from Section 3.6 that an FHMM is best viewed as a
DBN with some number A of hidden variables, each of which evolves independently
of the others; each observable variable depends on all of the hidden variables within
its time slice. FHMMs have been shown to be a good candidate for modeling several
interacting processes evolving in parallel, such as the multiple articulatory mecha-
nisms involved in the formation of speech. We attempted to include FHMMs with
2, 4, and 6 binary hidden variables in our experiments, except in the case of data
sets with only a small number of observables, in which we tried FHMMs with fewer
hidden variables.

The various data sets and experiments conducted on them are detailed in the

following sections; all the results are summarized in Table 9.2.

Bach Chorales data set

The Bach Chorales data set was proposed as part of the 1991 Santa Fe competition
for learning time series [WG90]; it encodes the melodic line of 100 chorales attributed
to J.S. Bach. The model has five discrete attributes, labeled: Key signature, Pitch,
Duration, Fermata, and Time signature; the first two attributes are melodic, while
the last three capture temporal aspects of the piece. On average, each chorale is about
50 notes long. For our experiments, we partitioned the set into a training set and a
test set. The training set consisted of 71 randomly chosen chorales, amounting to a
total of 3212 training transitions; the test set consisted of the remaining 29 chorales,

for a total of 1379 test transitions. The experiments consisted of learning a transition
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Table 9.2: Fitness of learned models on test data for various learning algorithms and
application domains (expressed as the negative log-likelihood in bits/time slice).

Bach Apnea Stock  BAT

Gold standard n/a  n/a n/a  22.147
Parametric EM n/a  n/a n/a  22.873
2 hid vars 8.486 3.635 24.268 23.957

FHMM 4 hid vars 5.623 — 24.302 23.562
6 hid vars — — 23.213 23.773

fully observable only 4.538 1.892 20.834 22.693
1st iteration 4.503 1.704 20.759 22.418

SEM 2nd iteration 4.513 1.713 20.819 22.434
3rd iteration 4.537 1.710 20.710 22.388

e e e

dicet-1 dicet dicet+1

Figure 9.1: Learned 2-TBN model for the Bach Chorales data set. Observable vari-
ables are denoted by their names and represented by shaded nodes; hidden variables
are labeled alphabetically. The 2-TBN model is unrolled for a few time slices to
highlight long-range dependences, as represented by the thicker arcs.

model from the training chorales using the various contending methods listed above,

and measuring their accuracy on the test set.
The first column of Table 9.2 shows the results for this data set. It can be seen that

all instances of the DBN learning algorithm perform significantly better than any in-

stance of the FHMM algorithm. In addition, the introduction of non-Markovian edges
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and hidden variables helps significantly with respect to standard structure search over
the observables. The final network with hidden variables is shown on Figure 9.1.
Somewhat disappointingly, the introduction of hidden variables per se does not im-
prove the log-likelihood over the initial structure search for this data set, even though
the learned network with hidden variables seems reasonable; this could be attributed

to numerical overfitting.

Inspection of the learned structure of Figure 9.1 reveals that our algorithm de-
tected the correlations between the three tempo attributes, but chose to keep the
two melodic attributes decoupled from them. All variables have persistence arcs, ex-
cept the Fermata variable, which represents a momentary event corresponding to the
end of a segment. The algorithm introduced several hidden variables that capture
the non-Markovian nature of the observable variables. Most interestingly, one of the
hidden variables models a short non-Markovian dependence of two time slices on the
Duration variable; on the other hand, the hidden variables introduced for the Time
sitgnature variable model longer-range dependences, which is quite natural since Time

signature typically represents a longer-term aspect of a musical piece.

Sleep Apnea data set

The Sleep Apnea data set was also proposed as part of the Santa Fe competition
[WG90]. It was obtained by monitoring the evolution of three medical parameters on
a patient suffering from sleep apnea. The data set contains 34000 points, collected
in a single run of several hours. The sequence is highly non-stationary, due to the
various sleep phases and the condition of the patient. Following the suggestion of
Dagum and Galper [DG93], each continuously-valued variable was discretized into
seven buckets. For the experiments, the sequence was partitioned into four training
subsequences, for a total of 19994 transitions, and one test sequence comprising the

remaining 13999 transitions.

The relative measured fitness of the various learned models bears strong simi-

larities to the previous data set, with our algorithm performing significantly better
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(c)

ChestVolume

BloodOxygen BloodOxygen

dicet-2 dicet-1 dicet dicet+l

Figure 9.2: Learned 2-TBN model for the Sleep Apnea data set. Observable variables
are denoted by their names and represented by shaded nodes; hidden variables are
labeled alphabetically. The 2-TBN model is unrolled for a few time slices to highlight
long-range dependences, as represented by the thicker arcs.

than all instances of FHMMs. Notably, for this data set, the introduction of hid-
den variables improves the measured fitness. The learned model is shown on Fig-
ure 9.2. Arguably, the network offers intuitive clues as to the significance of the data.
For instance, the structure reveals a strong correlation between BloodOzygen and
HeartRate, as well as between HeartRate and ChestVolume, but not directly between
BloodOzxygen and ChestVolume, as would be expected. As in the previous case, the

algorithm discovered a number of non-Markovian correlations.

Stock Market data set

The Stock Market data set is a construction of ours, and was assembled from the
daily closing prices of securities of 20 companies in a handful of industries: computer
hardware, computer software, semiconductors, internet, U.S. car manufacturers, and
Japanese car manufacturers. Since trends are typically more revealing of correlations
than absolute prices, only the daily trend of each stock is recorded, as being “up”
or “down” from the previous trading day, or “n/a” if the stock was not traded for
some reason. The period covered extends from February 1992 to February 1999, for
a total of 1768 trading days. It is noted that several of the tracked companies were

not publicly traded during the earlier part of the period. For the experiments, we
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Figure 9.3: Learned 2-TBN model for the Stock Market data set. Observable variables
are denoted by their names and represented by shaded nodes; hidden variables are
labeled alphabetically.

partitioned the data into a training and a test subsequence, as usual, giving 1195
training transitions and 567 test transitions.

As before, the log-likelihood results are summarized in Table 9.2. For this data
set, the introduction of the hidden variables shows a small improvement over the
basic structural learning. The shape of the learned network, shown in Figure 9.3,
is somewhat different from the case of the previous two domains, mainly due to the
fact that most of the correlations appear within a single time slice. This phenomenon
is quite natural, as the trading climate can differ significantly from one trading day

to the next, although related stocks tend to move in concert within a given day.
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Figure 9.4: Reference BAT network used for comparison and synthetic data genera-
tion.

Accordingly, as our algorithm is geared to detecting correlations that induce temporal
dependencies, it did not introduce many hidden variables. However, the correlations
discovered by the algorithm appear to make sense, in that the induced arcs tend to
accumulate between companies in the same industry, or between companies sharing

similar characteristics.?

BAT synthetic data set

The BAT data set is a synthetic data set generated from the BAT network already
encountered in previous chapters, which was originally devised for tracking the motion
of a car on a freeway [FHKR95|. The synthetic data set was generated by sampling
a single long trajectory from the reference network with its original parameters. The
network is reproduced in Figure 9.4; it has 10 state variables and 10 observable

variables; the former are expunged from the final sampled sequence, so that only the

3The behavior of our algorithm on such data begs the question of introducing hidden variables,
not as a model of the memory of a process, but as a summary of a large group of similar correlations.
Discovering hidden variables in this setting would require a complementary approach, such as one
based on the common intuition of looking for “almost cliques” in the learned network [SGS93]. See
[ELFKOO] for recent work in this direction.
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Figure 9.5: Learned 2-TBN model for the synthetic BAT data set. Observable vari-
ables are denoted by their names and represented by shaded nodes; hidden variables
are labeled alphabetically.

latter are known to the learner. For the experiments, the sampled trajectory was
segmented into four training and five test subsequences, for a total of 4992 training
transitions, and 5029 test transitions. Only the observable variables were recorded
from the trajectory, and the algorithm received no prior knowledge whatsoever about
the correct structure.

For this domain, since the data are synthetic and a reference model is available,
additional experiments are possible. One of them is to compare the fitness of the
learned models to that of the reference network, giving us a “gold standard”. Another
experiment involves learning the parameters of the model only, given the correct
structure of the reference network. All the results are reported in Table 9.2, as usual.

The performance on test data of the model learned by our algorithm is fairly close
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to the gold standard; it is also much better than parametric EM applied to the correct
structure, probably because the large number of parameters in the correct structure
cause numerical overfitting. The performance is also significantly better than the
FHMM results, or the structure learning restricted to the observable variables. Thus,
for this domain, the introduction of hidden variables actually helps to a nontrivial
extent. However, the learned structures are rather complex and not very compelling,
particularly when compared to the true network. For clarity, we have chosen to
represent in Figure 9.5 the somewhat simpler structure learned after only a single
iteration of SEM, due to the fairly high complexity of the later structures. We can
see that the algorithm does discover a few interesting correlations, such as one between
TurnSignal and sensed lateral movement XdotSens, as one would expect looking at

the original model.
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Chapter 10

Related work

A number of interesting approaches to learning and reasoning about probabilistic
systems, and stochastic processes in particular, can be found in the literature. Among
those, we now briefly introduce the ones most germane to the focus of this dissertation,

and discuss how they relate to our own contribution.

10.1 Inference

10.1.1 Variational inference

In recent years, the variational approach for Bayesian inference has quickly emerged
as one of the most prevalent approximation techniques for inference in large Bayesian
networks [JGJS99]. It has been applied in a large number of contexts, including that
of dynamic Bayesian networks for learning purposes [Gha98|.

The basic idea behind variational inference is to successively simplify the network
at hand by removing dependences between variables, up to a point where the in-
ference task at hand becomes manageable [SJ95]. The key to this approach is that
dependences are removed, their average effects on the network are captured as a set
of variational parameters. After the (regular) inference step has been carried out
on the simplified network, we are left with a result parameterized by the variational

parameters. The last step consists in optimizing the inference result for some quality
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criterion, eliminating the variational parameters as one would Lagrange coeflicients.

This technique was originally inspired by the statistical physics method of mean
field approximation, whereby a large number of concurrent interactions are approx-
imated as a single mean interaction, in an application of the central limit theorem
[Dur95, chap. 2].

One of the consequences of the connection to the central limit theorem is that
the variational approximation tends to work best in circumstances where many small
influences are simultaneously exerted, as opposed to a few strong ones. In this case,
the central limit theorem suggests that the many influences will average out nicely,
enabling their removal and approximation as a variational parameter. Thus, the
whole class of variational methods for approximate inference shines best in heavily
connected graphs, i.e., graph with little structure in the sense used throughout this
thesis. This is another difference with the inference approach we propose in Chapter 4,
whose operation benefits from, and, indeed, relies on the structural features of the

model.

It also turns out, from the mathematics of the variational optimization, that the
criterion being minimized when eliminating the Lagrange coefficients, in essentially
all flavors of variational inference, is the “reversed” KL divergence between the true
distribution of interest P and its variational approximation @) (i.e., to be clear, the
KL divergence between the two, where ) occupies the place of the true distribution

in the expression of the KL divergence):
Q" = argmingDxkL[Q]| P] .

In view of this distinction, and given the central role played by the decomposability
assumption on the second argument of the KL divergence (see, e.g., Theorem 5.11),
it is not unsurprising that variational methods should tend to benefit from different

structural features than our methods do.

The reversal in the KL divergence coefficients and the ensuing disparity in the

semantics of approximation errors highlight one of the most fundamental differences
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between the analysis of variational methods and the approximation paradigm sug-

gested in the present work.

10.1.2 Particle filtering

An important class of inference methods for Bayesian networks is based on sampling
or stochastic simulation, and is commonly referred to as particle filtering in this field.
The idea is as simple as it is powerful: samples are generated and transmitted from
one node to the next, in topological order, in such a way that the parent values are
used to condition the sampling of the child, according to the conditional probability
distributions in the model. A number of trajectories are obtained this way, and
used to estimate the distribution of any variable of interest. Various methods exist
to deal with evidence data, from the basic approach of discarding of any trajectory
found incompatible with the conditioning data, to more sophisticated ones where the
observed variables are not sampled, but used to weight the trajectories according to
their posterior probability given the data [GSS93, DGAO00]. The latter approach has
been suggested for DBNs in [KKR95].

Improvements over basic particle filtering have been proposed in recent years,
including a sampling-learning hybrid method for DBN inference due to Koller and
Fratkina [KF98]. The difference with plain particle filtering is that the samples are
not propagated as such, but, rather, are used to learn conditional distributions over

the individual variables. The learned distributions are then used for further sampling.

The Rao-Blackwellization method provides another interesting compromize be-
tween sampling-based and message-based propagation. In essence, the Rao-Blackwell
theorem is used to construct a lower-variance estimator of a variable of interest by
selectively marginalizing out some of the variables. We refer the reader to [CR96,
DGAO0] for details.

In general, sequential Monte Carlo methods such as these have simplicity as one
of their major advantages, the other one being that they may often be used in situ-

ations when all other approaches fail. Some drawbacks include the lack of absolute
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guarantees on the final result, and the often-made observation that analytical meth-
ods, when applicable, also tend to be more efficient. Due to statistical significance
considerations, sampling based methods work best when the amount of information
to be estimated is small. In other words, sampling will give much better results at es-
timating the marginal distribution of one variable of interest in a BN than a marginal

over a fairly large number of them.

10.1.3 Accelerated exact inference

An approach to speeding up inference in DBNs without sacrificing to any approxima-
tion has been proposed by Kjaerulff [Kj=92]. It is based on the observation that, even
though a DBN may contain many variables, in some cases the information is fun-
neled from one state to the next through a “bottleneck” consisting of only a few state
variables. Kjerulff’s algorithm is a clever optimization of the junction tree inference
algorithm for models featuring the bottleneck property.

The main appeal of this algorithm is, of course, that it provides exact results.
However, its applicability remains confined to small networks with that particular

topology.

10.1.4 Opportunistic approximation and mini-buckets

An approximate inference method bearing some resemblance to ours is the mini-
bucket approach of Dechter and Rish [DR97].

This approach is a variant of the junction tree algorithm of [LS88], in which
inference is conducted normally provided that all cliques in the junction tree are
small. Should some clique exceed some threshold size, the computation of the clique
potential will be approximated as a collection of projections over subsets of the clique,
called mini-buckets. This decomposition is performed opportunistically as needed, in
a greedy fashion.

Except for the fact that mini-buckets are defined for static BNs, the method bears
some superficial similarity to our approximation, in that exceedingly large clusters are

broken down into smaller ones. A first additional distinction is that, in our approach,
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inference is in fact carried out exactly; it is the result that is projected down to a
specified set of clusters, in preparation for the next time slice. The inference process
is accelerated ipso facto, for the reason that smaller output clusters typically imply
smaller cliques in the junction tree. By contrast, the mini-bucket approach will ap-
proximate every large clique it encounters during the inference process itself. A second
distinction is that, being exact until the final projection, our approximation algorithm
affords many reassuring properties, such as the optimality of the result accuracy for a
given representation structure (see Theorem 4.9), the contraction properties seen in
Chapter 5, and the projection error results of Chapter 6. Mini-buckets offer different
guarantees. A third distinction has to do with the very nature of the projection. In
the mini-bucket algorithm, projections need not be confined within individual cliques
of the junction tree; rather, the factors that intervene in the conputation of a large
clique potential are partitioned prior to the operation, and each partition is multiplied

out separately to produce a factor.

These differences emphasize that, ultimately, the two approaches were designed

with rather different purposes in mind.

10.1.5 The factored frontier algorithm

The factored frontier algorithm recently due to Murphy and Weiss [MWO01] is very

closely related to our approximation approach.

In essence, the factored frontier defines a similar approximation as the one that
places each variable in its individual cluster, referring to our algorithms of Chap-
ter 4. However, instead of carrying out the approximate update as a conventional
junction tree calibration followed by a projection, the inference step is implemented
as “loopy belief propagation” [MWJ99|, using factored distributions at all stages of

the computation.

One benefit of this approach is that it remains applicable in models where even the
fully factored version of our approximation would lead to impractically large cliques

in the junction tree.
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10.2 Learning

10.2.1 Variational learning

Variational learning [JJ00] is a class of algorithms for learning under conditions of
partial observability, ¢.e., when some of the parameters of the model to be learned
pertain to hidden variables. Variational learning is closely related to the EM algo-
rithm, which it generalizes. Both techniques approach the learning problem as an
iterative two-phase optimization problem, in which the model parameters # and a set
of auxilliary parameters A are iteratively improved by optimizing one while the other
is kept constant; the auxilliary parameters A are computed in the E-step, while the

model parameters f are optimized in the M-step.

The main differences with EM lie in the constraints placed on the auxilliary pa-
rameters, and on the optimization criterion. On the one hand, whereas the auxilliary
parameters \ in EM are always the expected values of the missing data (or, equiva-
lently, the expected sufficient statistics derived from them), in variational learning the
A are variational parameters indexing a probability distribution ), from an unspec-
ified family of distributions over the unobserved data. On the other hand, while the
optimization criterion in EM is a measure of fitness of the model to the (completed)
data, in variational learning the optimization is always connected to the minimization
of the KL divergence between (), and the true distribution P over the unobserved
data, Dkc[@, || P]. (Note that the arguments are reversed from their natural order,

as in the case of variational inference; see Section 10.1.1.)

Variational learning is thus very similar to EM in spirit, but presents the advantage
of the added flexibility in the choice of the (), family. It also offers guarantees of

optimality in terms of KL divergence to the true distribution.

The principles of variational learning have been used in a number of applications,
including HMMs [Mac98], and DBNs [Att99].



10.3. DECISION-THEORETIC PLANNING 195

10.2.2 Structure-based learning

In Chapter 9, we suggested one possible approach for discovering hidden variables
while learning a dynamic model. Our approach was based on the detection of vi-
olations of the Markov property as hints of the existence of a hidden variable not
captured by the current model.

Complementary approaches to discovering hidden variables from data have been
proposed recently, such as those found in the work of Elidan et al. [ELFKO00, EF01].
Similarly to our proposal of Section 9.2, these techniques attempt to infer the existence
of hidden variables from structural patterns in models learned over oversable data.
Specifically, these approaches are based on the observation that the dependencies
induced by a hidden variable on the other variables of its family can no longer easily
be represented, in the usual language of graphical models, if the hidden variable
is removed. In other words, for most probability distributions P[A, B, C, D, H| that
have a sparse BN representation, it is not the case that, summing out H, the resulting
marginal P[A, B,C, D] will itself admit a BN representation over the variables that
remain, other than a full clique. This suggests that any heavily connected subset
of variables that appears in a learned model might in fact be subject to a common
hidden influence.

The general idea behind structure-based discovery of hidden variables, thus, is to
learn the structure over the known variables (whether observed or hidden) using a
standard algorithm such as SEM [Fri97], then identify the full or almost full cliques
in the learned network, replace their edges, and introduce new hidden variables. This
idea is developed in [ELFKO00], which also presents a greedy heuristic for finding

almost full cliques of maximal size.

10.3 Decision-theoretic planning

Even though this dissertation is not directly concerned with the issue of controlling
stochastic processes, the problems one faces in this task are not unrelated to the

ones we have studied. Indeed, the field of decision-theoretic planning shares many of
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the challenges encountered with probabilistic inference and learning, with the added
difficulty of accounting for the ramifications of the agent’s own actions. We refer the
reader to [BDH99| for a survey of the issues that arise when reasoning with partially
observable Markov decision processes (POMDPs).

Among these challenges, the problem of compactly representating large structured
state spaces in a form amenable to efficient decision making has recently received
renewed attention. We mention the work of Poupart and Boutilier [PB00], in which

they present a structured approximation scheme for tracking the state of POMDPs.



Chapter 11
Conclusion

The recent focus in AI on real-life systems has prompted the need for robust and
efficient reasoning mechanisms. These reasoning mechanisms must accomodate our
ignorance as well as the inherent uncertainty of the world’s dynamics, and must
provide a way to learn appropriate models from observed data. In addition, for an
artificial agent to interact with the system, it must be able to use these models to
decide on a proper course of action.

The probabilistic reasoning method is well suited to this endeavor. Besides a
plethora of theoretical arguments for the soundness and robustness of the approach,
the recent development of Bayesian Networks as efficient representations that af-
ford an effective inference theory [Pea88, LS88| has generated a considerable amount
of interest in the probabilistic method for reasoning about complex systems. Un-
fortunately, the time dimension still presents a difficult challenge for most of these
techniques, which has typically restricted BNs to static or steady state applications.
Clearly, the temporal aspect cannot be neglected in many applications, particularly

those involving real-life systems that interact with each other and their environment.

11.1 Inference in complex stochastic systems

Temporal probabilistic inference deals with several important tasks, such as tracking

the state of the system as it evolves, predicting its future behavior, explaining a
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sequence of observations, or deciding upon an appropriate course of action. These
tasks and many others have at their core the problem of reasoning with a belief
state (i.e., a distribution over all possible states of the system at a given point in
time). This reasoning paradigm has been widely successful for reasoning with flat
representations of processes, such as hidden Markov models, as long as the state
spaces are not too large [EAM95]. For more complex and structured processes, such
as those represented by Dynamic Bayesian Networks, the need to maintain a belief

state makes the reasoning task inescapably intractable.

In this context, a natural idea is to adopt a compact, factored representation
of the belief state, and perform the temporal inference using such an approximate
representation. We propose the first efficient such approach, in which a compactly
represented belief state is maintained by first applying Bayesian updating using the
model dynamics and observations, then projecting the result back into the class of
compactly representable beliefs. Since these operations can be performed without ever
expanding out the full state distribution explicitly, we only need to maintain compact

belief states in memory, and therefore greatly reduce the computational complexity.

One immediate difficulty is that errors might accumulate beyond control due to
the repetitive projections into the approximation class at each step of the reasoning
process. We first show that this does not happen: Based on a novel contraction analy-
sis for relative entropy, we show that the very stochasticity of the process causes such
a rapid decay of all accumulated errors from the past, that the expected error at any
time of the reasoning process remains bounded. We show that the rate at which these
errors decay depends directly on the amount of interaction between the subprocesses
according to which the belief state is factored. This analysis gives a principled way
of dealing with large and structured stochastic processes: for example, as cars on a
highway tend to interact only with their current neighbors, it is legitimate to (dynam-
ically) reason about the entire highway in terms of small clusters of neighboring cars.
Leveraging this theoretical analysis, we propose a very simple and practical inference
algorithm for DBNs with well characterized accuracy and efficiency properties. Our
inference algorithm is shown experimentally to track the state of a partially observed

process with very high accuracy, at a fraction of the cost of the exact method. As
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the computational complexity remains polynomial for nicely structured processes (as
many real-life systems are), our algorithm arguably offers the first viable approach to
reasoning probabilistically about complex systems, by exploiting their structure.

We further refine our error propagation analysis to account for the richer struc-
tural features found in real-life systems. Realistic processes are composed of many
sub-processes of similar structure, which may themselves be further decomposed in
a hierarchical fashion. Interactions across processes are weaker and/or sparser than
within a process, and usually take place through a limited number of channels, typ-
ically via the parent process in a hierarchical structure. We show how to exploit
this wealth of structural information to guide the reasoning. Based on information-
theoretic analyses, we provide a quantitative measure of the strength of interaction
between subprocesses, and show how it captures intuitive notions such as weak and
sparse interactions between processes. In turn, the theoretical framework gives a
sound underpinning to one’s intuition with regard to how such familiar notions can

be exploited in a reasoning task.

11.2 Learning structured dynamic models

A frequent problem faced in the deployment of automated reasoning systems, is the
acquisition of accurate system models. Complementary to the knowledge engineering
approach, machine learning seeks to induce these models directly from observed data
(which are usually inaccurate and incomplete). This task is a very difficult one, as it
amounts to searching a very large space of possible models for those that adequately
explain the observations. One of the best performing methods for parameter learning,
known as the Expectation-Maximization algorithm, uses a bootstrapping approach:
starting from some initial model, it uses a reasoning engine to estimate the state of
the system, then uses this estimate to refine the model parameters; the process is
repeated iteratively until convergence to a local optimum. Unfortunately, the cost of
probabilistic inference, further compounded by its repeated iterative application, is
an obstacle to the usability of EM in practical settings.

We show how to use our approximate inference algorithm as a substitute for the
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inference component in EM. The theoretical justification is based on a extension of
our contraction results to the case of bidirectional messages used in EM. We offer
ample experimental evidence that the resulting algorithm is able to learn structured
DBN parameters with good accuracy. Compared to the standard EM algorithm, the
cost of learning is reduced dramatically with almost imperceptible degradation of the

model quality.

We also consider the issue of online learning, in which the model parameters are
to be adapted in real time as the process evolves. This mode of operation poses an
additional difficulty for regular EM, which requires the entire sequence of observa-
tions in order to re-estimate the model parameters at each iteration. Learning based
on real-time filtering approaches that only take the past observations into account
is another possibility, but discarding all data from the future typically leads to less
accurate models. The median approach is to base learning on smoothing, in which
a short window of future “lookahead” observations is considered in addition to the
past ones. Smoothing is known to enhance the accuracy of state estimates in Kalman
filters, and has been used heuristically in other settings [WH89, CC91]. We lever-
age our contraction analysis to give a theoretical justification to smoothing with a
limited window: essentially, we show that all future observations beyond a window
of reasonable size can be safely ignored. This also justifies an online modification of
EM, in which parameter re-estimation is performed incrementally using small win-
dows of observations around the present time. We demonstrate the effectiveness of
this approach by learning the parameters of a medium-size DBN online using a short
lookahead, without loss of accuracy with respect to the impractical full EM. By com-
bining this partial smoothing with the approximate representation of belief states
described above, we are able to learn structured DBNs orders of magnitude faster

than was previously possible, at a comparable level of accuracy.

Finally, beyond merely learning DBN parameters in a fixed network structure,
we present a preliminary investigation of the general problem of learning an entire
dynamic model from minimally processed, partially observed data. We first propose

a method to efficiently search and learn DBN network structures, which combines
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existing structural search techniques using EM [Fri97, FMR98| with our understand-
ing of richly structured processes as we previously studied, in order to improve upon
learning efficiency. We also suggest a way not only to learn a dependency graph be-
tween the variables that appear in the data set, but also to discover the existence of
hidden state variables which are a prior: unknown, based on observed violations of
the Markovian property that such hidden variables would cause. For this problem,
we offer a few preliminary experiments whereby entire DBNs are induced from raw

time series data.

11.3 Future research directions

A particularly intriguing idea regarding the theoretical analysis lies in the unification
of the contraction results of Chapter 5 and the projection error bounds of Chapter 6.
As we mentioned earlier, the current fit between the two kinds of analyses is not as
natural as one might have hoped, in spite of their profound mathematical similarity.
It appears that the difficulty might reside in the virtual decomposition of the elemen-
tary update into a pure stochastic transition followed by a mere conditioning. If the
imaginary meeting point could be dispensed with, the hope is that one might obtain
stronger bounds for both aspects of the error at once. Such a unification is suggested
to us from the study of sparsely interacting processes in Section 6.5, where ideas bor-
rowed from the contraction analysis blend nicely into a decidedly projection-oriented
error bound to produce a hybrid result over several time slices, in what could be a
sneak preview of what a unified analysis might reveal.

One important aspect of reasoning under uncertainty that we have deliberately
not covered in this work, is that of decision-theoretic planning and control. The same
representation issues we are facing in inference and learning remain very much present
indeed when the agent not only observes and learns, but is also allowed to act. It is
our opinion that the study of factored approximations in such context would be of

great interest.
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