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Abstract

Probabilistic relational models (PRMs) are a language for describing
statistical models over typed relational domains. A PRM models the un-
certainty over the attributes of objects in the domain and uncertainty over
the relations between the objects. The model specifies, for each attribute of
an object, its (probabilistic) dependence on other attributes of that object
and on attributes of related objects. The dependence model is defined at
the level of classes of objects. The class dependence model is instantiated
for any object in the class, as appropriate to the particular context of the
object (i.e., the relations between this objects and others). PRMs can also
represent uncertainty over the relational structure itself, e.g., by specifying
a (class-level) probability that two objects will be related to each other.
PRMs provide a foundation for dealing with the noise and uncertainty en-
countered in most real-world domains. In this chapter, we show that the
compact and natural representation of PRMs allows them to be learned
directly from an existing relational database using well-founded statisti-
cal techniques. In this chapter, we give an introduction to PRMs and an
overview of methods for learning them. We show that PRMs provide a
new framework for relational data mining, and offer new challenges for the
endeavor of learning relational models for real-world domains.

1.1 Introduction

Relational models are the most common representation of structured data.
Enterprise business information, marketing and sales data, medical records,
and scientific datasets are all stored in relational databases. Efforts to extract
knowledge from partially structured (e.g., XML) or even raw text data also
aim to extract relational information. Recently, there has been growing inter-
est in extracting interesting statistical patterns from these huge amounts of
data. These patterns provide a deeper understanding of the domain and the
relationships in it. In addition, extracted patterns can be used for reaching
conclusions about important attributes whose values may be unobserved.
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Probabilistic graphical models, and particularly Bayesian networks , have
been shown to be a useful way of representing statistical patterns in real-
world domains. Recent work [1.5, 1.11] develops techniques for learning these
models directly from data, and shows that interesting patterns often emerge
in this learning process. However, all of these learning techniques apply only
to flat-file representations of the data, and not to the richer relational data
encountered in many applications. An obvious solution is to take a relational
database and “flatten” it, creating a flat file on which standard Bayesian
network learning algorithms can be run. As we discuss in Section 1.7, this
approach has several important shortcomings.

Probabilistic relational models (PRMs) are a recent development [1.15,
1.20, 1.23] that extend the standard attribute-based Bayesian network rep-
resentation to incorporate a much richer relational structure. These models
allow the specification of a probability model for classes of objects rather
than simple attributes; they also allow properties of an entity to depend
probabilistically on properties of other related entities. The probabilistic class
model represents a generic dependence, which is then instantiated for specific
circumstances, i.e., for particular sets of entities and relations between them.

We have developed methods for learning PRMs directly from structured
data such as relational databases. The two key tasks in the construction of
any statistical model are model selection and parameter estimation. We have
developed algorithms for each of these tasks. These algorithms are based on
the same underlying principles that govern the learning of Bayesian networks.

A learned PRM provides a statistical model that can uncover and discover
many interesting probabilistic dependencies that hold in a domain. Unlike a
set of (probabilistic) rules for classification, PRMs specify a joint distribution
over a relational domain. Thus, like Bayesian networks, they can be used for
answering queries about any aspect of the domain given any set of obser-
vations. Furthermore, rather than trying to predict one particular attribute,
the PRM learning algorithm attempts to tease out the most significant di-
rect dependencies in the data. The resulting model thus provides a high-level,
qualitative picture of the structure of the domain, in addition to the quanti-
tative information provided by the probability distribution. Thus, PRMs are
ideally suited to exploratory analysis of a domain and relational data mining.

This chapter is structured as follows. We begin by briefly surveying some
of the foundations on which PRMs are built: In the next two sections, we pro-
vide some basic background on probabilistic models and relational models.
In Section 1.4, we define PRMs and give their semantics. In Section 1.5 we
describe how to learn a PRM from an existing database. In Section 1.6 we de-
scribe experimental results for several real-world domains. We conclude with
a discussion of related work and briefly mention some promising directions
for future work.
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1.2 Probabilistic models

The traditional logic-based approach to representing knowledge is to write
down a knowledge base in the form of logical axioms about the domain.
The knowledge base restricts the set of possible worlds, or models, to those
consistent with the axioms. Additional facts — those that are true in all of
these possible worlds — are logically entailed by the knowledge base.

In a standard logical framework, we are restricted to representing only
facts that are true absolutely. Thus, this framework is unable to represent
and reason with uncertain and noisy information. This is a significant gap
in the expressive power of the framework, and a major barrier to its use in
many real-world applications. Uncertainty is unavoidable in the real world:
our information is often inaccurate and always incomplete, and only a few
of the “rules” that we use for reasoning are true in all (or even most) of the
possible cases.

This limitation, which is critical in many domains (e.g., medical diagno-
sis), has led over the last decade to the resurgence of probabilistic reasoning
in artificial intelligence. Probability theory models uncertainty by assigning a
probability to each of the states of the world that an agent considers possible.
Most commonly in probabilistic reasoning, these states are the set of possible
assignments of values to a set of attributes or random wvariables. Consider,
for example, a simple model of the performance of a student in a course.
There are six random variables: Intelligence, Difficulty (of the course), Good
Test Taker, Understands Material, Exam Grade and Homework Grade. Of
these variables, Intelligence, Good Test Taker, and Understands Material
are boolean variables, Difficulty takes values from {low, medium, high}, and
Ezam Grade and Homework Grade take values from {4, B, C, D, F}. The
possible worlds are all possible assignments of values to these variables, 600
(2 x2x2x3x5x5) in this case.

A probabilistic model specifies a joint distribution over all possible worlds.
Thus, it specifies implicitly the probability of any event, such as an assign-
ment of values to some subset of variables. Unlike many models, such as a set
of rules used for predicting some particular attribute, a probabilistic model
is not limited to conclusions about a prespecified set of attributes, but rather
can be used to answer queries about any variable or subset of variables. Nor
does it require that the values of all other variables be given; it applies in
the presence of any evidence. For example, a probabilistic model of a stu-
dent’s performance can be used to predict the distribution over the student’s
exam grade given his intelligence. As new evidence is obtained, e.g., about
his homework grade, conditioning can be used to update this probability, so
that the probability of a high exam grade will go up if we observe good home-
work grades. The same model is used to do the predictive and the evidential
reasoning.

Furthermore, a probabilistic model can perform explaining away, a rea-
soning pattern that is very common in human reasoning, but very difficult to
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obtain in other formal frameworks. Explaining away uses evidence support-
ing one cause to decrease the probability in another, not because the two are
incompatible, but simply because the one cause explains away the evidence,
removing the support for the other cause. For example, if we observe that the
student’s exam grade is high, our belief that she is intelligent will go up. If
we then hear that the class is known to be easy, that fact provides an alter-
native explanation for the student’s high grade, reducing our belief that she
is intelligent. The same probabilistic model supports all of these reasoning
patterns, allowing it to be used in many different tasks.

The traditional objection to probabilistic models has been their compu-
tational cost. A complete joint probability distribution over a set of random
variables must specify a probability for each of the exponentially many dif-
ferent instantiations of the set. Even in our very simple example, we must
specify 600 numbers to specify the joint distribution. This type of represen-
tation is impractical both from a knowledge engineering perspective, since
it is almost impossible for a person to specify an entry in a complex joint
distribution, far less to specify an exponential number of them, and from a
reasoning perspective, since any computation requires us to enumerate an
exponential number of events.

Therefore, a naive representation of the joint distribution is infeasible for
all but the simplest domains. Bayesian networks [1.21] use the underlying
structure of the domain to overcome this problem. The key insight is the
locality of influence present in many real-world domains: each variable is di-
rectly influenced by only a few others. For example, a student’s intelligence
induces a better understanding of the material, which in turns leads to a
higher homework grade. But the effect of intelligence on homework grade is
an indirect one: if the student does not understand the material, her intelli-
gence does not help her get better grades. A Bayesian network captures this
insight graphically; it represents the distribution as a directed acyclic graph
whose nodes represent the random variables and whose edges represent direct
dependencies. Figure 1.1 shows a Bayesian network for our simple student
domain.

A Bayesian network has formal semantics in terms of probabilistic condi-
tional independence. Formally, the network asserts that each node (or rather
the random variable) is conditionally independent of its non-descendants
given values for its parents. For example, if we know that the student does
not understand the material, our distribution over her grades is no longer
influenced by information that we might have about her intelligence.

These conditional independence assumptions allow a very concise repre-
sentation of the joint probability distribution over these random variables: we
associate with each node a conditional probability distribution (CPD), which
specifies for each node X the probability distribution over the values of X
given each combination of values for its parents, denoted Pa(X). The con-
ditional independence assumptions associated with the Bayesian networks
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Fig. 1.1. A simple Bayesian network for the student performance domain, the
decomposition of the joint distribution into a product of CPDs, and the CPD for
one of the nodes in the network

imply that these numbers suffice to uniquely determine the probability dis-
tribution over these random variables. More precisely, the joint distribution
over all variables can be factorized into a product of the CPDs of all the
variables via the Chain Rule for Bayesian Networks:

n
P(X1,...,X,) = [ P(X: | Pa(Xy)).
i=1

Consider the Bayesian network for our student performance domain (Fig-
ure 1.1). In this model, the student’s performance in tests depends on her
intelligence. depends both on her intelligence and on the difficulty of the
class. Her exam grade depends on whether she is a good test taker, and on
her understanding of the material, while her homework grade depends on her
understanding of the material. The structure of the network encodes a num-
ber of conditional independence assertions. For example, the student’s exam
grade is conditionally independent of her intelligence given her test taking
ability and understanding of the material.

These independence assumptions allow us to factor the joint distribution
into a product form as shown in Figure 1.1. Each of the conditional probabili-
ties in this product form is a CPD of one of the variables. In this example, the
CPD is simply a table, such as the one shown for P(E | G,U) in the figure.
This CPD shows that if a student is a good test taker and understands the
material, then she has probability 0.7 of getting an A on the exam, whereas
if the student is a bad test taker and does not understand the material, her
probability of getting an A is only 0.05.

Bayesian networks provide a compact representation of complex joint
distributions. By modeling an entire joint distribution, Bayesian networks
implicitly specify the answer to any probability query, in particular, any
query where we want to find the probability distribution over some variables
given evidence about any others. In theory, the problem of doing inference
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in Bayesian networks is NP-hard [1.4]. However, the dependency structure
made explicit by the network representation can be exploited by inference
algorithms, allowing for efficient inference in practice, even for very large
networks.

The semantics and compact representation of Bayesian networks also al-
low effective statistical learning from data. Standard statistical parameter
estimation techniques can be used for learning the parameters of a given
network. For learning the structure of the network, typical approaches use a
score function (which is typically based on Bayesian considerations) to score
how different structures “match” the training data. The learning process
then reduces to the task of searching for the highest scoring structure [1.11].
These techniques allow a Bayesian network structure to be discovered from
data. The learned structure can often give us insight about the nature of the
connections between the variables in the domain. Furthermore, the graph
structure can sometimes be interpreted causally [1.24], allowing us to induce
cause and effect, which can be very useful for understanding our domain,
and to reach conclusions about the consequences of intervening (acting) in
the domain. Statistical learning techniques are also robust to the presence of
missing data and hidden variables. Techniques such as EM (expectation maz-
imization) can be used to deal with this issue in the context of parameter
estimation [1.16] and have recently been generalized to the harder problem
of structure selection [1.7].

Bayesian network learning has been applied successfully to data mining
applications. For example, Breese et al. [1.2] show how a Bayesian network
can be learned from data describing people’s preferences over a variety of
items. The learned dependencies correspond to correlations between a per-
son’s preference for different items. The resulting Bayesian network can be
used for collaborative filtering, and is a better predictor than the standard
approaches to this task. In addition to their predictive ability, Bayesian net-
works have the advantage that they provide a visualization of the most sig-
nificant direct correlations in the domain, clarifying the domain structure to
the user.

1.3 Relational models

Over the last decade, Bayesian networks have been used with great success
in a wide variety of real-world and research applications. However, despite
their success, Bayesian networks are often inadequate to properly model as-
pects of complex relational domains. A Bayesian network for a given domain
involves a prespecified set of random variables, whose relationship to each
other is fixed in advance. Hence, a Bayesian network cannot be used to deal
with domains where we might encounter several entities in a variety of con-
figurations. This limitation of Bayesian networks is a direct consequence of
the fact that they lack the concept of an “object” (or domain entity). Hence,
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Fig. 1.2. (a) A relational schema for a simple university domain. The underlined
attributes are reference slots of the class and the dashed lines indicate the types
of objects referenced. (b) An example instance of this schema. Here we do not
show the reference slots, we use dashed lines to indicate the relationships that hold
between objects.

they cannot represent general principles about multiple similar objects which
can then be applied in multiple contexts.

Relational logic, which has traditionally formed the basis for most large-
scale knowledge representation systems, addresses these problems. The no-
tions of “individuals”, their properties, and the relations between them pro-
vide an elegant and expressive framework for reasoning about many diverse
domains. The use of quantification allows us to compactly represent general
rules, that can be applied in many different situations. For example, when
reasoning about genetic transmission of certain properties (e.g., genetically
transmitted diseases), we can write down general rules that hold for all people
and many properties.!

Probabilistic relational models (PRMs) [1.15, 1.22] extend Bayesian net-
works with the concepts of individuals, their properties, and relations be-
tween them. In a way, they are to Bayesian networks as relational logic is
to propositional logic. Bayesian networks have a formal semantics in terms
of probability distributions over sets of propositional interpretations that are
assignments of values to attributes. PRMs have a similar formal semantics in
terms of probability distributions over sets of relational logic interpretations.

Our relational framework, on which PRMs are based, is derived from the
presentation of Friedman et al. [1.8]; it is motivated primarily by the concepts
of relational databases, although some of the notation is derived from frame-
based and object-oriented systems. However, the framework is a fully general
one, and is equivalent to the standard vocabulary and semantics of relational
logic.

! See Chapter 1 and Chapter 3 in this volume for a more extensive discussion of
the advantages of relational representations.
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A schema for a relational model describes a set of classes, ¥ = {X1,...,X,}.
Each class is associated with a set of descriptive attributes and a set of refer-
ence slots. There is a direct mapping between our representation and that of
relational databases. Each class corresponds to a single table. Our descriptive
attributes correspond to standard attributes in the table, and our reference
slots correspond to attributes that are foreign keys (key attributes of another
table).

Figure 1.2(a) shows a schema for a simple domain that we will be using
as our main running example. The domain is that of a university, and con-
tains professors, students, courses, and course registrations. The classes in
the schema are Professor, Student, Course, and Registration.

The set of descriptive attributes of a class X is denoted A(X). Attribute
A of class X is denoted X.A, and its space of values is denoted V(X.A).
We assume here that value spaces are finite. For example, the Student class
has the descriptive attributes Intelligence and Ranking. The value space for
Student. Intelligence might be {high, low}.

The set of reference slots of a class X is denoted R(X). We use a similar
notation, X.p, to denote the reference slot p of X. Each reference slot p is
typed, i.e., the schema, specifies the range type of object that may be refer-
enced. More formally, for each p in X, the domain type Dom][p] is X and the
range type Range[p] is Y for some class Y in X. For example, the class Course
has reference slot Instructor with range type Professor, and class Registration
has reference slots Course and Student. In Figure 1.2(a) the reference slots
are underlined.

For each reference slot p, we can define an inverse slot p~—*, which is
interpreted as the inverse function of p. For example, we can define an inverse
slot for the Student slot of Registration and call it Registered-In. Note that
this is not a one-to-one relation, but returns a set of Registration objects.
Finally, we define the notion of a slot chain, which allows us to compose slots,
defining functions from objects to other objects to which they are indirectly
related. More precisely, we define a slot chain py,...,pr to be a sequence
of slots (inverse or otherwise) such that for all 4, Range[p;] = Dom[p;;1]-
For example, Student.Registered-In. Course.Instructor can be used to denote
a student’s set of instructors.

An instance T of a schema is simply a standard relational logic interpreta-
tion of this vocabulary. It specifies: a set of objects z, partitioned into classes;
a value for each attribute z.A (in the appropriate domain); and a value for
each reference slot z.p, which is an object in the appropriate range type. We
use A(x) as a shorthand for A(X), where z is of class X. For each object z in
the instance and each of its attributes A, we use Z,. 4 to denote the value of
z.A in Z. For example, Figure 1.2(b) shows an instance of the schema from
our running example. In this (simple) instance there is one Professor, two
Classes, three Registrations, and two Students. The relations between them
show that the Professor is the instructor in both classes, and that one stu-

1
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dent (“Jane Doe”) is registered only for one class (“Phil101”), while the other
student is registered for both classes.

1.4 Probabilistic relational models

Probabilistic relational models are a new development that integrates the
strengths of probabilistic models and relational logic. Several approaches have
been proposed, some based on probabilistic logic programming [1.20, 1.23]
and others based on a more object-relational framework [1.15]. Our presen-
tation is based on the ideas presented by Koller and Pfeffer [1.15] and follows
the presentation of [1.8]. It also accommodates and generalizes the proba-
bilistic logic programming approaches [1.20, 1.23].

1.4.1 Basic language

PRMs provide a language for specifying a probability distribution over a set
of relational interpretations. More precisely, a PRM specifies a distribution
over a set of instances of a given schema. One might consider PRMs that
specify a distribution over all possible instances of the schema, i.e., all possible
databases over that schema. This set of databases is infinitely large, as it
includes all the possible variations over the number of objects in each class
and the possible relations between them. It is clearly very difficult to place
a distribution over this type of space, and it is not obvious that such a
general-purpose distribution is useful. On the other hand, unlike in the case
of Bayesian networks, we want PRMs to be a general model, that can apply
to a wide variety of situations. Hence, a PRM is actually a template: given
a set of ground objects, a PRM specifies a probability distribution over a
set of interpretations involving these objects (and perhaps other objects).
We begin with describing the simplest form of PRMs, where the relational
structure of the model — the set of objects and the relations between them
— is assumed to be part of the input to the template. Only the attributes of
the objects participate in the probabilistic model. In Section 1.8 we discuss
how to extend this framework to much richer settings.

A relational skeleton o of a relational schema is a partial specification of
an instance of the schema. It specifies the set of objects for each class and
the relations that hold between the objects. However, it leaves the values of
the attributes unspecified. Figure 1.3(a) shows the relational skeleton of the
instance shown in Figure 1.2(b). A PRM specifies a probability distributions
over completions T of any given skeleton. As we will show, for any skeleton
for the schema, the PRM induces a distribution over instances that complete
the skeleton.

A PRM specifies the probability distribution using the same underlying
principles used in specifying Bayesian networks. The assumption is that each
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of the random variables in the PRM — in this case the attributes x.A of
the individual objects x — is directly influenced by only a few others. The
PRM therefore defines for each z.4 a set of parents, which are the direct
influences on it, and a local probabilistic model that specifies the dependence
on these parents. However, there are two primary differences between PRMs
and Bayesian networks. First, a PRM defines the dependency model at the
class level, allowing it to be used for any object in the class. In a sense, the
class dependency model is universally quantified and instantiated for every
element in the class domain. Second, the PRM explicitly uses the relational
structure of the model, in that it allows the probabilistic model of an attribute
of an object to depend also on attributes of related objects. The specific set
of related objects can vary with the skeleton o; the PRM specifies the depen-
dency in a generic enough way that it can apply to an arbitrary relational
structure.

A PRM consists of two components: the qualitative dependency struc-
ture, S, and the set of parameters associated with it, 8s. Figure 1.3(b) shows
an example PRM structure for our school domain. The dependency structure
is defined by associating with each attribute X.A a set of parents Pa(X.A).
These correspond to formal parents; they will be instantiated in different
ways for different objects in X. Intuitively, the parents are attributes that
are “direct influences” on X.A. In Figure 1.3(b), the arrows define the de-
pendency structure.

We distinguish between two types of formal parents. The attribute X.A
can depend on another probabilistic attribute B of X. This formal depen-
dence induces a corresponding dependency for individual objects: for any
object x in of class X, z.A will depend probabilistically on z.B. For ex-
ample, in Figure 1.3(b), a professor’s Popularity depends on her Teaching
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Ability. This dependency model is duplicated for each professor in the skele-
ton. Thus, we essentially assume that the same probabilistic model applies
to all the professors in our domain.

In addition, an attribute X.A can also depend on attributes of related ob-
jects X.7.B, where 7 is a slot chain. In Figure 1.3(b), the grade of a student
in a course, Registration. Grade, depends on Registration. Student.Intelligence
and Registration. Course. Difficulty. The PRM language also allows us to use
longer slot chains, for example the dependence of Student.Satisfaction on
Registration. Course.Instructor. Teaching-Ability. Such slot chains are instan-
tiated for each object by following the references that are assigned to it
by the skeleton. Thus, for example, for the registration object #5639, Reg-
istration. Student.Intelligence references Jane-Doe.Intelligence, and the slot
Registration. Course. Difficulty references Phil101.Difficulty.

Our example PRM also contains a dependence of Student.Ranking on
Student. Registered-In. Grade. Note that a student will typically be registered
in several classes; the model specifies a dependence of the student’s ranking
on the grades that he receives in all of them. In general, x.7 represents the
set of objects that are 7-relatives of x. Except in cases where the slot chain
is guaranteed to be single-valued, we must specify the probabilistic depen-
dence of z.A on the multiset {y.B : y € z.7}. This dependence poses a
representational problem, since we need to specify the distribution of z.A
given a multiset of values of size 1, 2, 3, and so on. It is clearly impractical to
to provide a dependency model for each of the unboundedly many possible
multiset sizes.

The notion of aggregation from database theory gives us an appropriate
tool to address this issue. The dependence of x.A on z.7.B, is interpreted
as a probabilistic dependence of z.4 on some (deterministically computed)
aggregate property of this multiset. There are many natural and useful no-
tions of aggregation: the mode of the set (most frequently occurring value);
mean value of the set (if values are numerical); median, maximum, or min-
imum (if values are ordered); cardinality of the set; etc. More formally, our
language allows a notion of an aggregate ~y; v takes a multiset of values of
some ground type, and returns a summary of it. The type of the aggregate
can be the same as that of its arguments. However, we allow other types as
well, e.g., an aggregate that reports the size of the multiset. More precisely,
we allow X.A to have as a parent y(X.7.B); the semantics is that for any
z € X, z.A will depend on the value of y(z.7.B). We define V(y(X.7.B)) to
be the set of possible values of this aggregate. In our example PRM, there
are two aggregate dependencies defined, one that specifies that the ranking
of a student depends on the average of his grades and one that specifies that
the rating of a course depends on the average satisfaction of students in the
course.

As in Bayesian networks, the second component of a PRM is the param-
eters associated with the qualitative structure. A PRM contains a CPD for
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Fig. 1.4. (a) The CPD for Registration. Grade and the CPD for an aggregate depen-
dency of Student.Rank on Student.Registered-In.Grade. (b) The dependency graph
for the school PRM.

each attribute of each class. As for the dependencies, we assume that the
parameters are shared by each object in the class. We associate with each
attribute X.A a conditional probability distribution P(X.A | Pa(X.A)). Fig-
ure 1.4(a) shows two CPDs, one for a dependency on a single-valued chain
and one for an aggregate dependency. More precisely, let U be the set of
parents Pa(X.A). Each of these parents U; — whether a simple attribute or
an aggregate — has a set of values V(U;) in some ground type. For each tuple
of values u € V(U), we specify a distribution P(X.A | u) over V(X.A). We
use Ox. 4y to denote the parameters of this distribution. The entire set of
these parameters, for all X.A and all u, comprises 8s.

Definition 1: A probabilistic relational model (PRM) II for a relational
schema R is defined as follows. For each class X € X and each descriptive
attribute A € A(X), we have:

— a set of parents Pa(X.A) = {Uy,...,U;}, where each U; has the form X.B
or v(X.7.B), where 7 is a slot chain;

— a conditional probability distribution (CPD) that represents Pr(X.A |
Pa(X.A4)). 1

1.4.2 PRM semantics

Given any skeleton, we have a set of random variables of interest: the at-
tributes z.A of the objects in the skeleton. Formally, let 07 (X) denote the
set of objects in skeleton o whose class in X. The set of random variables for
o is the set of attributes of the form z.A where z € 0°(X;) and A € A(X;)
for some class X;. The PRM specifies a probability distribution over the pos-
sible joint assignments of values to these random variables. As with Bayesian
networks, the joint distribution over these assignments can be factored. That
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is, we take the product, over all z.A, of the probability in the CPD of the spe-
cific value assigned by the instance to the attribute given the values assigned
to its parents. Formally, this is written as follows:

PI|0,S,6s) =[] I PZe.alZrawa)
r€o AcA(z)

= H H H P(Zy.4 | Tra(z.4)) (1.1)

Xi A€ A(X;) z€07(X;)

This expression is very similar to the chain rule for Bayesian networks. There
are two primary differences. First, our random variables are the attributes
of a set of objects. Second, the set of parents of a random variable can vary
according to the relational context of the object — the set of objects to which
it is related.

As in any definition of this type, we have to take care that the resulting
function from instances to numbers does indeed define a coherent probability
distribution, i.e., where the sum of the probability of all instances is 1 . In
Bayesian networks, where the joint probability is also a product of CPDs,
this requirement is satisfied if the dependency graph is acyclic: a variable is
not an ancestor of itself. A similar condition is sufficient to ensure coherence
in PRMs as well. We want to ensure that our probabilistic dependencies are
acyclic, so that a random variable does not depend, directly or indirectly, on
its own value. To do so, we can consider the graph of dependencies among
attributes of objects in the skeleton. Consider the parents of an attribute
X.A. When X.B is a parent of X.A, we define an edge z.B —, z.A4; when
v(X.7.B) is a parent of X.A and y € z.7, we define an edge y.B —, z.4. We
say that a dependency structure S is acyclic relative to a skeleton o if the
directed graph defined by —, over the variables z.A4 is acyclic. In this case,
we are guaranteed that the PRM defines a coherent probabilistic model over
complete instantiations Z consistent with o.

This procedure allows us to check whether a dependency structure S is
acyclic relative to a fixed skeleton o. However, we often want stronger guar-
antees: we want to ensure that our dependency structure is acyclic for any
skeleton that we are likely to encounter. How do we guarantee this property
based only on the class-level PRM? To do so, we consider potential depen-
dencies at the class level. More precisely, we define a class dependency graph,
which reflects these dependencies [1.15, 1.8]. This class dependency graph has
an edge from Y.B to X.A if either: X =Y and X.B is a parent of X.A; or
v(X.7.B) is a parent of X.A and Range[X.7] = Y. Figure 1.4(b) shows the
dependency graph for our school domain.

The most obvious approach for using the class dependency graph is to
simply require that it be acyclic. This requirement is equivalent to assuming
a stratification among the attributes of the different classes, and requiring
that the parents of an attribute precede it in the stratification ordering. It is
clear that if the class dependency graph is acyclic, we can never have that z.A
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Fig. 1.5. (a) A simple PRM for the genetics domain. (b) the corresponding depen-
dency graph. Dashed edges correspond to “guaranteed acyclic” dependencies.
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depends (directly or indirectly) on itself. For example, if we examine the PRM
of Figure 1.3(b), we can easily convince ourselves that we cannot create a cy-
cle in any instance. Indeed, as we saw in Figure 1.4(b), the class dependency
graph is acyclic. Note, however, that if we introduce additional dependen-
cies we can create cycles. For example, if we make Professor. Teaching- Ability
depend on the rating of courses she teaches (e.g., if high teaching ratings
increase her motivation), then the resulting class dependency graph is cyclic,
and there is no stratification order that is consistent with the PRM struc-
ture. An inability to stratify the class dependency graph implies that there
are skeletons for which the PRM will induce a distribution with cyclic de-
pendencies. In general, however, a cycle in the class dependency graph does
not imply that all skeletons induce cyclic dependencies.

While this simple approach clearly ensures acyclicity, it is too limited to
cover many important cases. Consider, for example, a simple genetic model
of the inheritance of a single gene that determines a person’s blood type,
shown in Figure 1.5(a). Each person has two copies of the chromosome con-
taining this gene, one inherited from her mother, and one inherited from her
father. There is also a possibly contaminated test that attempts to recog-
nize the person’s blood type. Our schema contains two classes Person and
BloodTest. Class Person has reference slots Mother and Father and descrip-
tive attributes Gender, P-Chromosome (the chromosome inherited from the
father), and M-Chromosome (inherited from the mother). BloodTest has a
reference slot Test-Of that points to the owner of the test, and descriptive
attributes Contaminated and Result.

In our genetic model, the genotype of a person depends on the genotype
of his parents; thus, at the class level, we have Person.P-Chromosome de-
pending directly on Person.P-Chromosome. As we can see in Figure 1.5(b),
this dependency results in a cycle that clearly violates the requirements of
our simple approach. However, it is clear to us that the dependencies in this
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model are not actually cyclic for any skeleton that we will encounter in this
domain. The reason is that, in “legitimate” skeletons for this schema, a per-
son cannot be his own ancestor, which disallows the situation of the person’s
genotype depending (directly or indirectly) on itself. In other words, although
the model appears to be cyclic at the class level, we know that this cyclicity
is always resolved at the level of individual objects.

Our ability to guarantee that the cyclicity is resolved relies on some prior
knowledge that we have about the domain. We want to allow the user to give
us information such as this, so that we can make stronger guarantees about
acyclicity. The user can specify that certain slots are guaranteed acyclic. In our
genetics example, Father and Mother are guaranteed acyclic; cycles involving
these attributes may in fact be legal. In fact, they are mutually guaranteed
acyclic, so that compositions of the slots are also guaranteed acyclic. Fig-
ure 1.5(b) shows the class dependency graph for the genetics domain, with
guaranteed acyclic edges shown as dashed edges. It turns out that because
all of the cycles in this graph contain mutually guaranteed acyclic relations,
the structure is legal. In [1.8], we give an algorithm for checking the legality
of structures that contain guaranteed acyclic slots and slot chains.

1.5 Learning PRMs

In the previous sections, we defined the PRM language and its semantics. We
now move to the task of learning a PRM from data. In the learning problem,
our input contains a relational schema, that specifies the basic vocabulary in
the domain — the set of classes, the attributes associated with the different
classes, and the possible types of relations between objects in the different
classes (which simply specifies the mapping between a foreign key in one
table and the associated primary key). Our training data consists of a fully
specified instance of that schema. We assume that this instance is given in
the form of a relational database. Although our approach would also work
with other representations (e.g., a set of ground facts completed using the
closed world assumption), the efficient querying ability of relational databases
is particularly helpful in our framework, and makes it possible to apply our
algorithms to large datasets.

There are two variants of the learning task: parameter estimation and
structure learning. In the parameter estimation task, we assume that the
qualitative dependency structure of the PRM is known; i.e., the input consists
of the schema and training database (as above), as well as a qualitative
dependency structure S. The learning task is only to fill in the parameters
that define the CPDs of the attributes. In the structure learning task, there
is no additional required input (although the user can, if available, provide
prior knowledge about the structure, e.g., in the form of constraints). The
goal is to extract an entire PRM, structure as well as parameters, from the
training database alone. We discuss each of these problems in turn.
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1.5.1 Parameter Estimation

We begin with the parameter estimation task for a PRM where the depen-
dency structure is known. In other words, we are given the structure S that
determines the set of parents for each attribute, and our task is to learn the
parameters fs that define the CPDs for this structure. While this task is
relatively straightforward, it is of interest in and of itself. Experience in the
setting of Bayesian networks shows that the qualitative dependency struc-
ture can be fairly easy to elicit from human experts, in cases where such
experts are available. In addition, the parameter estimation task is a crucial
component in the structure learning algorithm described in the next section.

The key ingredient in parameter estimation is the likelihood function, the
probability of the data given the model. This function measures the extent to
which the parameters provide a good explanation of the data. Intuitively, the
higher the probability of the data given the model, the better the ability of the
model to predict the data. The likelihood of a parameter set is defined to be
the probability of the data given the model: L(0s | Z,0,8) = P(Z | 0,S,65s).
As in many cases, it is more convenient to work with the logarithm of this
function:

l(05 |Z7U7S) = IOgP(Z | 078705)

:Z Z Z log P(Zy.4 | Ipa(z.a)) | - (1.2)

X; ACA(X;) |zeo7(X;)

The key insight is that this equation is very similar to the log-likelihood
of data given a Bayesian network [1.11]. In fact, it is the likelihood function
of the Bayesian network induced by the structure given the skeleton: the
network with a random variable for each attribute of each object x.A, and
the dependency model induced by S and o, as discussed in Section 1.4.2. The
only difference from standard Bayesian network parameter estimation is that
parameters for different nodes in the network — those corresponding to the
z.A for different objects 2 from the same class — are forced to be identical.
This similarity allows us to use the well-understood theory of learning from
Bayesian networks.

Consider the task of performing mazimum likelihood parameter estima-
tion. Here, our goal is to find the parameter setting s that maximizes the
likelihood L(fs | Z,0,S) for a given Z, o and S. Thus, the maximum likeli-
hood model is the model that best predicts the training data. This estimation
is simplified by the decomposition of log-likelihood function into a summation
of terms corresponding to the various attributes of the different classes. Each
of the terms in the square brackets in (1.2) can be maximized independently
of the rest. Hence, maximum likelihood estimation reduces to independent
maximization problems, one for each CPD. In fact, a little further work re-
duces Eq. (1.2) even further, to a sum of terms, one for each multinomial
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distribution 6x_ 4|u- Furthermore, there is a closed form solution for the pa-
rameter estimates. In addition, while we do not describe the details here, we
can take a Bayesian approach to parameter estimation by incorporating pa-
rameter priors. For an appropriate form of the prior and by making standard
assumptions, we can also get a closed form solution for the estimates.

1.5.2 Structure Learning

We now move to the more challenging problem of learning a dependency
structure automatically, as opposed to having it given by the user. The main
problem here is finding a good dependency structure among the potentially
infinitely many possible ones. As in most learning algorithms, there are three
important issues that need to be addressed in this setting:

— hypothesis space: specifies which structures are candidate hypotheses
that our learning algorithm can return;

— scoring function: evaluates the “goodness” of different candidate hy-
potheses relative to the data;

— search algorithm: a procedure that searches the hypothesis space for a
structure with a high score.

We discuss each of these in turn.

Hypothesis Space. Fundamentally, our hypothesis space is determined by
our representation language: a hypothesis specifies a set of parents for each
attribute X.A. Note that this hypothesis space is infinite. Even in a very sim-
ple schema, there may be infinitely many possible structures. In our genetics
example, a person’s genotype can depend on the genotype of his parents, or
of his grandparents, or of his great-grandparents, etc. While we could impose
a bound on the maximal length of the slot chain in the model, this solution
is quite brittle, and one that is very limiting in domains where we do not
have much prior knowledge. Rather, we choose to leave open the possibility
of arbitrarily long slot chains, leaving the search algorithm to decide how far
to follow each one.

We must, however, restrict our hypothesis space to ensure that the struc-
ture we are learning is a legal one. Recall that we are learning our model
based on one training database, but would like to apply it in other settings,
with potentially very different relational structure. We want to ensure that
the structure we are learning will generate a consistent probability model for
any skeleton we are likely to see. As we discussed in Section 1.4.2, we can test
this condition using the class dependency graph for the candidate PRM. It
is straightforward to maintain the graph during learning, and consider only
models whose dependency structure passes the appropriate test.

Scoring Structures. The second key component is the ability to evaluate
different structures in order to pick one that fits the data well. We adapt
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Bayesian model selection methods to our framework. Bayesian model selec-
tion utilizes a probabilistic scoring function. In line with the Bayesian phi-
losophy, it ascribes a prior probability distribution over any aspect of the
model about which we are uncertain. In this case, we have a prior P(S) over
structures, and a prior P(6s | S) over the parameters given each possible
structure. The Bayesian score of a structure S is defined as the posterior
probability of the structure given the data Z. Formally, using Bayes rule, we
have that:

P(S|Z,0) x P(Z|S,a)P(S | o)

where the denominator, which is the marginal probability P(Z | o) is a nor-
malizing constant that does not change the relative rankings of different struc-
tures.

This score is composed of two main parts: the prior probability of the
structure, and the probability of the data given that structure. It turns out
that the marginal likelihood is a crucial component, which has the effect
of penalizing models with a large number of parameters. Thus, this score
automatically balances the complexity of the structure with its fit to the data.
In the case where 7 is a complete assignment, and we make certain reasonable
assumptions about the structure prior, there is a closed form solution for the
score.

Structure Search. Now that we have a hypothesis space and a scoring func-
tion that allows us to evaluate different hypotheses, we need only provide a
procedure for finding a high-scoring hypothesis in our space. For Bayesian
networks, we know that the task of finding the highest scoring network is
NP-hard [1.3]. As PRM learning is at least as hard as Bayesian network
learning (a Bayesian network is simply a PRM with one class and no rela-
tions), we cannot hope to find an efficient procedure that always finds the
highest scoring structure. Thus, we must resort to heuristic search.

The simplest heuristic search algorithm is greedy hill-climbing search,
using our score as a metric. We maintain our current candidate structure
and iteratively improve it. At each iteration, we consider a set of simple local
transformations to that structure, score all of them, and pick the one with
highest score. As in the case of Bayesian networks, we restrict attention to
simple transformations such as adding or deleting an edge. We can show
that, as in Bayesian network learning, each of these local changes requires
that we recompute only the contribution to the score for the portion of the
structure that has changed in this step; this has a significant impact on the
computational efficiency of the search algorithm. We deal with local maxima
using random restarts, i.e., when a local maximum is reached in the search, we
take a number of random steps, and the,n continue the greedy hill-climbing
process.

There are two problems with this simple approach. First, as discussed
in the previous section, we have infinitely many possible structures. Second,
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even the atomic steps of the search are expensive; the process of computing
the statistics necessary for parameter estimation requires expensive database
operations. Even if we restrict the set of candidate structures at each step of
the search, we cannot afford to do all the database operations necessary to
evaluate all of them.

We propose a heuristic search algorithm that addresses both these issues.
At a high level, the algorithm proceeds in phases. At each phase k, we have
a set of potential parents Poty(X.A) for each attribute X.A. We then do a
standard structure search restricted to the space of structures in which the
parents of each X.A are in Poty(X.A). We structure the phased search so
that it first explores dependencies within objects, then between objects that
are directly related, then between objects that are two links apart, etc. This
approach allows us to gradually explore larger and larger fragments of the
infinitely large space, giving priority to dependencies between objects that
are more closely related. The second advantage of this approach is that we
can precompute the database view corresponding to X.A, Potj(X.A); most
of the expensive computations — the joins and the aggregation required in
the definition of the parents — are precomputed in these views. The sufficient
statistics for any subset of potential parents can easily be derived from this
view. The above construction, together with the decomposability of the score,
allows the steps of the search (say, greedy hill-climbing) to be done very
efficiently.

1.6 Experimental results

We have tested our learning algorithm in several domains, both real and
synthetic. We now describe experimental results on one synthetic dataset
and two real ones.

1.6.1 Genetics Domain

We begin by presenting our results on a synthetic dataset generated by the
genetics example used in this chapter. The goal of these experiments is to
test the learning algorithm, showing that it can reconstruct the dependency
structure if it is clearly present in the distribution.

The datasets here were generated by a PRM that has the structure shown
in Figure 1.5(a). We generated various training sets, of size from 200 to 800,
with 10 training sets of each size. We also generated an independent test
database of size 10,000. A data set of size n consists of a family tree containing
n people, with an average of 0.6 blood tests per person. For each training set,
we learned a PRM using the algorithm described in the previous section, and
then tested how well the learned PRM predicts the test data. For measuring
the predictive ability, we used the log-likelihood of the test data, the standard
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Fig. 1.6. Learning curve showing the generalization performance of PRMs learned
in the genetic domain. The z-axis shows the training set size; the y-axis shows
log-likelihood of a test set of size 10,000. For each sample size, we show learning
experiments on ten different independent training sets of that size. The curve shows
median log-likelihood of the models as a function of the sample size.

measure for evaluating density estimation procedures. Figure 1.6 shows the
results for the different training sets. The straight line at the top is the log-
likelihood of the test data given the “true” model used to generate the data.
The data is presented is in the form of a scatter plot, showing the accuracy for
each of the training sets, as well as the median log-likelihood of the learned
models for each size. We can see that the median is quite reasonable, but
there are a few outliers. In most cases, our algorithm learned a model with
the correct structure, and scored well; the difference in score is due to the
parameter estimation, which is inherently noisy given limited data. However,
in a small minority of cases, the algorithm got stuck in local maxima, learning
a model with incorrect structure that scored quite poorly.

1.6.2 Tuberculosis Patient Domain

We also applied the algorithm to various real-world domains. The first of
these is drawn from a database of epidemiological data for 1300 patients
from the San Francisco tuberculosis (TB) clinic, and their 2300 contacts [1.1,
1.26]. For the Patient class, the schema contains demographic attributes such
as age, gender, ethnicity, and place of birth, as well as medical attributes
such as HIV status, disease site (for TB), X-ray result, etc. In addition,
a sputum sample is taken from each patient, and subsequently undergoes
genetic marker analysis. This allows us to determine which strain of TB
a patient has, and thereby create a Strain class, with a relation between
patients and strains. Each patient is also asked for a list of people with
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Fig. 1.7. The PRM structure for the TB domain.

whom he has been in contact; the Contact class has attributes that specify
the type of contact (sibling, coworker, etc.) contact age, whether the contact
is a household member, etc.; in addition, the type of diagnostic procedure that
the contact undergoes (Care) and the result of the diagnosis (Result) are also
reported. In cases where the contact later becomes a patient in the clinic, we
have additional information. We introduce a new class Subcase to represent
contacts that subsequently became patients; in this case, we also have an
attribute Transmitted which indicates whether the disease was transmitted
from one patient to the other, i.e., whether the patient and subcase have the
same TB strain.

The structure of the learned PRM is shown in Figure 1.7. We see that
we learn a rich dependency structure both within classes and between at-
tributes in different classes. We showed this model to our domain experts
who developed the database, and they found the model quite interesting.
They found many of the dependencies to be quite reasonable, for exam-
ple: the dependence of age at diagnosis (ageatdz) on HIV status (hivres) —
typically, HIV-positive patients are younger, and are infected with TB as a
result of AIDS; the dependence of the contact’s age on the type of contact
— contacts who are coworkers are likely to be younger than contacts who
are parents and older than those who are school friends; or the dependence
of HIV status on ethnicity — Asian patients are rarely HIV positive whereas
white patients are much more likely to be HIV positive, as they often get
TB as a result of having AIDS. In addition, there were a number of depen-
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dencies that they found interesting, and worthy of further investigation. For
example, the dependence between close contact (closecont) and disease site
was novel and potentially interesting. There are also dependencies that seem
to indicate a bias in the contact investigation procedure or in the treatment
of TB; for example, contacts who were screened at the TB clinic were much
more likely to be diagnosed with TB and receive treatment than contacts
who were screened by their private medical doctor. Our domain experts were
quite interested to identify these and use them as a guide to develop better
investigation guidelines.

We also discovered dependencies that are clearly relational, and that
would have been difficult to detect using a non-relational learning algorithm.
For example, there is a dependence between the patient’s HIV result and
whether he transmits the disease to a contact: HIV positive patients are much
more likely to transmit the disease. There are several possible explanations
for this dependency: for example, perhaps HIV-positive patients are more
likely to be involved with other HIV-positive patients, who are more likely
to be infected; alternatively, it is also possible that the subcase is actually
the infector, and original HIV-positive patient was infected by the subcase
and simply manifested the disease earlier because of his immune-suppressed
status. Another interesting relational dependency is the correlation between
the ethnicity of the patient and the number of patients infected by the strain.
Patients who are Asian are more likely to be infected with a strain which is
unique in the population, whereas other ethnicities are more likely to have
strains that recur in several patients. The reason is that Asian patients are
more often immigrants, who immigrate to the U.S. with a new strain of TB,
whereas other ethnicities are often infected locally.

1.6.3 Company Domain

The second domain we present is a dataset of company and company officers
obtained from Security and Exchange Commission (SEC) data.? The data
set includes information, gathered over a five year period, about companies
(which were restricted to banks in the dataset we used), corporate officers
in the companies, and the role that the person plays in the company. For
our tests, we had the following classes and table sizes: Company (20,000),
Person (40,000), and Role (120,000). Company has yearly statistics, such as
the number of employees, the total assets, the change in total assets between
years, the return on earnings ratio, and the change in return on assets. Role
describes information about a person’s role in the company including their
salary, their top position (president, CEQ, chairman of the board, etc.), the
number of roles they play in the company and whether they retired or were

2 This dataset was developed by Alphatech Corporation based on Primark banking
data, under the support of DARPA’s Evidence Extraction and Link Discovery
(EELD) project.
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Fig. 1.8. The PRM structure for the Company domain.

fired. Prev-Role indicates a slot whose range type is the same class, relating
a person’s role in the company in the current year to his role in the company
in the previous year.

The structure of the learned PRM is shown in Figure 1.8. We see that
we learn some reasonable persistence arcs such as the facts that this year’s
salary depends on last year’s salary and this year’s top role depends on last
year’s top role. There is also the expected dependence between Person.Age
and Role.Retired. A more interesting dependence is between the number of
employees in the company, which is a rough measure of company size, and the
salary. For example, an employee that receives a salary of $200K in one year
is much more likely to receive a raise to $300K the following year in a large
bank (over 1000 employees) than in a small one. Again, we see interesting
correlations between objects in different relations.

1.7 Discussion and related work

There are clearly many other approaches to learning from data. We can cate-
gorize them along three main axes: probabilistic versus deterministic; model
learning versus classification; and attribute-based versus relational.

Most approaches to machine learning fall into the category of attribute-
based classification, with Naive Bayes falling into the probabilistic category,
concept learning into the deterministic category, and approaches such as de-
cision trees and neural networks somewhere in between.
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Bayesian networks fall into the category of attribute-based model-learning:
the result of the learning is a model of the dependencies within the set of at-
tributes, rather than an attempt to predict one particular attribute using
the others. However, as we discussed in Section 1.2, Bayesian networks are
attribute-based in nature, which substantially limits their ability to repre-
sent complex domains involving multiple entities. One might ask, however,
whether they can be nevertheless be applied as a discovery tool for relational
data. A standard and fairly obvious solution is to flatten the data, creating
a single table that contains all the attributes, and then apply Bayesian net-
work learning. While this approach can be useful, it suffers from three major
problems.

One key issue relates to the statistical correctness of this approach. Con-
sider our TB dataset, and imagine flattening the data to a table that contains
a patient and a contact. In this case, a patient who has two contacts would
appear in the table twice (once with each contact), whereas one who has ten
contacts would appear in the table ten times. This has the effect of skew-
ing the data substantially, leading to parameter estimates (and correlations)
that are highly non-representative of the true distribution. In more technical
terms, Bayesian network learning makes the assumption that the data cases
are independent (IID), whereas this assumption is clearly violated when our
data set is obtained by flattening a relational database.

A second limitation is that we have to determine in advance which are the
relevant attributes to put in the table. Consider, for example, the genetics
domain, but where we have only phenotype observations (observable features
of the person). We might think to join the table to itself, creating a table
that contains the person and his parents. However, this would restrict us to
discovering correlations that cross generations. For example, male baldness
is inherited from a man’s maternal grandfather rather than his father; this
type of correlation would be lost if we flattened the data in the obvious way.

Finally, even if a Bayesian network model is learned for such a database,
it cannot be used to reach conclusions based on relational dependencies. For
example, in the TB domain, we might imagine inferring that a patient has
a particularly infectious strain by noticing that he transmitted the strain
to many of his contacts; we can then infer that a new contact is likely to
have the same strain, and therefore that she is also likely to infect many
of her contacts. This type of reasoning is only possible using the relational
structure that allows us to use information obtained about one patient to
reach conclusions about the strain and from that reach conclusions about
another patient entirely.

Other than PRMs (and the related approaches of [1.20, 1.23]), the
only relational learning approaches are variants of inductive logic program-
ming (ILP). Most ILP approaches are deterministic classification approaches,
which do not attempt to model a probability distribution, but rather only
to predict (classify) a particular predicate. However, there are two recent de-
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velopments within the ILP community that are related to PRMs: stochastic
logic programs (SLPs)[1.18, 1.6] and Bayesian logic programs (BLPs)[1.13].
The semantics for these two approaches are quite different, with the BLP se-
mantics being the closest to PRMs. An SLP defines a sampling distribution
over logic programming proofs; as a consequence, it induces a probability dis-
tribution over the possible ground facts for a given predicate. On the other
hand, a BLP consists of a set of rules, along with conditional probabilities
and a combination rule; following the approach of knowledge-based model
construction [1.25], the BLP essentially specifies a propositional Bayesian
network. This approach is very similar to the probabilistic logic programs
of [1.20, 1.23].

Learning algorithms for these approaches are being developed. Methods
for learning SLPs are described in [1.19]. A maximum likelihood approach
is taken for parameter estimation for an SLP which is based on maximizing
the posterior probability of the program. The task of learning the structure
of an SLP is quite different from learning a PRM structure and is based
on more traditional ILP approaches. On the other hand, while BLPs are
more closely related to PRMs, and methods for learning BLPs have been
suggested in [1.13], learning algorithms have not yet been developed. Methods
for learning PRMs may be found to be applicable to learning BLPs.

1.8 Extensions

1.8.1 Structural Uncertainty

So far, we have assumed that the skeleton is external to the probabilistic
model; in other words, the skeleton is assumed to be part of the input to the
PRM. This limitation has two main implications. Most obviously, it implies
that the model can only be used in settings where the relational structure
is known. Thus, for example, we cannot use it to conclude that a patient is
more likely to have a particular strain of TB, based on his demographics and
his contacts. A more subtle point is that this restriction can diminish the
quality of our model even in cases where the relational structure is given,
because it ignores interesting correlations between attributes of entities and
the relations between them. For example, in a movie domain a “serious” actor
is unlikely to appear in many horror movies; hence, we can infer information
about an actor’s (unknown) attributes based on the Role relation between
actors and movies.

The PRM framework can be extended to accommodate uncertainty about
the structural relationships between objects as well as about their proper-
ties [1.22]. We have extended our learning algorithms to deal with such struc-
tural uncertainty. We now provide a brief sketch of this extension, which is
described in more detail in [1.10].



32 Getoor, Friedman, Koller and Pfeffer

Suppose we have a simple domain in which we have Movie-Theaters and
Movies. Each theater shows some number of movies; this is represented by the
class Shows, with reference slots that point to both the theater and the movie.
We might know the number of screens that a theater has, but would like to
represent a probabilistic model over which movie each theater chooses to
show. One way of representing this model is by defining a distribution over
the reference slot Shows.Movie: which movie, among the movies currently
available, is a theater likely to show. We call this approach to structural
uncertainty Reference Uncertainty.

Naively, we might think of representing this distribution as a very large
multinomial distribution, with a probability for every movie in our domain.
This approach is infeasible for two reasons. First, the representation is much
too large. Second, our training set will contain one set of movies, but we want
to learn a model that can also be applied to other domains, with a different set
of movies. In one approach, we can partition the movies into categories, using
some set of attributes, either of the movies or of related objects. For example,
we might partition on the type of movie (action, horror, comedy), and/or
on the origin of the studio which is the source of the movie (Hollywood,
independent U.S., or foreign). We then represent the probability that a movie
theater shows a movie from a particular category in the partition. As usual,
this distribution might depend on some set of parents, e.g., the type of theater
(megaplex or art theater). Thus, we might state that an art theater is more
likely to play a foreign movie, while a megaplex may be more likely to play
a Hollywood movie.

Another approach to structural uncertainty we call Existence Uncertainty.
Existence uncertainty is a general approach to modeling the probability that
a relationship exists between any two entities. To do so, we require that the
relationship between the entities is represented by a class; for example, the
Registration class in our school domain represents the relationship between a
student and a course. We can now represent a probabilistic model that a stu-
dent will register for a class by introducing a probabilistic model that a given
pair (student, class) will appear in the Registration table. More precisely, we
specify the probability that such a pair exists in the table given attributes of
the student and of the course. For example, it is more likely that a university
senior would register for an advanced class, whereas a freshman is more likely
to register for an introductory class.

1.8.2 Class Hierarchies

We have also investigated the idea of learning PRMs with class hierarchies.
Class hierarchies change the language in two important ways. In the non-
hierarchical case, all objects in a class must share the same CPDs. Hier-
archical models allow us to specialize the CPDs of attributes in different
parts of the hierarchy. In our school example, we might choose to parti-
tion the Course class according to their intended year, creating the two sub-
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classes Undergraduate-Course and Graduate-Course. We might then specialize
the CPD for Difficulty in each of the subclasses. More interestingly, a hier-
archical model allows us to create dependencies that might seem cyclic in
the non-hierarchical case. For example, we can now have a student’s grades
in a graduate course depend on her grades in the undergraduate courses she
has taken. Note that this dependency is apparently cyclic at the level of the
Course class, since an attribute of one course depends on the same attribute
in another course. However, the division of courses into two subclasses re-
solves this apparent cycle. A preliminary discussion of these issues can be
found in [1.9)].

1.9 Conclusions

PRMs provide a new approach to relational data mining that is grounded in
a sound statistical framework. Algorithms for learning PRMs build on the
recent developments in learning Bayesian networks, and extend learning to
this rich class of relational models. Because these models do not focus on a
single classification task, they are particularly well suited to exploratory data
analysis.

There are several directions for future work. Perhaps the most obvious one
is the treatment of missing data and hidden variables. We can extend stan-
dard techniques (such as Expectation Maximization for missing data) to this
task. (See [1.14] for some preliminary work on related models.) However, the
complexity of inference on large databases with many missing values make the
cost of a naive application of such algorithms prohibitive. Clearly, this domain
calls both for new inference algorithms and for new learning algorithms that
avoid repeated calls to inference over these very large problems. Even more
interesting is the issue of automated discovery of hidden variables. There are
some preliminary answers to this question in the context of Bayesian net-
works [1.7], in the context of ILP [1.17], and very recently in the context of
simple binary relations [1.12]. Combining these ideas and extending them to
this more complex framework is a significant and interesting challenge. Ul-
timately, we would want these techniques to help us automatically discover
interesting entities and relationships that hold in the world.
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