
In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),
 Stockholm, Sweden, August 1999

Efficient Reinforcement Learning in Factored MDPs

Michael Kearns
AT&T Labs

mkearns@research.att.com

Daphne Koller
Stanford University

koller@cs.stanford.edu

Abstract

We present a provably efficient and near-optimal al-
gorithm for reinforcement learning in Markov deci-
sion processes (MDPs) whose transition model can
be factored as a dynamic Bayesian network (DBN).
Our algorithm generalizes the recent E

�
algorithm

of Kearns and Singh, and assumes that we are given
both an algorithm for approximate planning, and
the graphical structure (but not the parameters) of
the DBN. Unlike the original E

�
algorithm, our new

algorithm exploits the DBN structure to achieve a
running time that scales polynomially in the num-
ber of parameters of the DBN, which may be expo-
nentially smaller than the number of global states.

1 Introduction
Kearns and Singh (1998) recently presented a new algo-
rithm for reinforcement learning in Markov decision pro-
cesses (MDPs). Their E

�
algorithm (for Explicit Explore or

Exploit) achieves near-optimal performance in a running time
and a number of actions which are polynomial in the num-
ber of states and a parameter

�
, which is the horizon time

in the case of discounted return, and the mixing time of the
optimal policy in the case of infinite-horizon average return.
The E

�
algorithm makes no assumptions on the structure of

the unknown MDP, and the resulting polynomial dependence
on the number of states makes E

�
impractical in the case of

very large MDPs. In particular, it cannot be easily applied
to MDPs in which the transition probabilities are represented
in the factored form of a dynamic Bayesian network (DBN).
MDPs with very large state spaces, and such DBN-MDPs in
particular, are becoming increasingly important as reinforce-
ment learning methods are applied to problems of growing
difficulty [Boutilier et al., 1999].

In this paper, we extend the E
�

algorithm to the case of
DBN-MDPs. The original E

�
algorithm relies on the abil-

ity to find optimal strategies in a given MDP — that is, to
perform planning. This ability is readily provided by al-
gorithms such as value iteration in the case of small state
spaces. While the general planning problem is intractable
in large MDPs, significant progress has been made recently
on approximate solution algorithms for both DBN-MDPs in

particular [Boutilier et al., 1999], and for large state spaces
in general [Kearns et al., 1999; Koller and Parr, 1999]. Our
new DBN-E

�
algorithm therefore assumes the existence of a

procedure for finding approximately optimal policies in any
given DBN-MDP. Our algorithm also assumes that the quali-
tative structure of the transition model is known, i.e., the un-
derlying graphical structure of the DBN. This assumption is
often reasonable, as the qualitative properties of a domain are
often understood.

Using the planning procedure as a subroutine, DBN-E
�

ex-
plores the state space, learning the parameters it considers
relevant. It achieves near-optimal performance in a running
time and a number of actions that are polynomial in

�
and the

number of parameters in the DBN-MDP, which in general is
exponentially smaller than the number of global states. We
further examine conditions under which the mixing time

�
of

a policy in a DBN-MDP is polynomial in the number of pa-
rameters of the DBN-MDP. The “anytime” nature of DBN-E

�
allows it to compete with such policies in total running time
that is bounded by a polynomial in the number of parameters.

2 Preliminaries
We begin by introducing some of the basic concepts of MDPs
and factored MDPs. A Markov Decision Process (MDP) is
defined as a tuple �������	��
����� where: � is a set of states; �
is a set of actions;
 is a reward function
��������������
���� �"! ,
such that
���#$� represents the reward obtained by the agent in
state #&% ; is a transition model '�(�*)+�,��.-0/ , such that+�1#"2�3�#(��45� represents the probability of landing in state #62 if
the agent takes action 4 in state # .

Most simply, MDPs are described explicitly, by writing
down a set of transition matrices and reward vectors — one
for each action 4 . However, this approach is impractical
for describing complex processes. Here, the set of states
is typically described via a set of random variables 7 89$:

% �$;$;<;��
:	=?>

, where each
:�@

takes on values in some finite
domain A�BDC1� : @ � . In general, for a set of variables EGFH7 , an
instantiation I assigns a value JLKMANBDC�� : � for every

: KOE ;
we use A�BPC��QER� to denote the set of possible instantiations to

S
A reward function is sometimes associated with (state,action)

pairs rather than with states. Our assumption that the reward depends
only on the state is made purely to simplify the presentation; it has
no effect on our results.

E . A state in this MDP is an assignment �,K ANBDC��Q7M� ; the
total number of states is therefore exponentially large in the
number of variables. Thus, it is impractical to represent the
transition model explicitly using transition matrices.

The framework of dynamic Bayesian networks (DBNs) al-
lows us to describe a certain important class of such MDPs in
a compact way. Processes whose state is described via a set of
variables typically exhibit a weak form of decoupling — not
all of the variables at time

�
directly influence the transition

of a variable
: @

from time
�

to time
�����

. For example, in a
simple robotics domain, the location of the robot at time

�����
may depend on its position, velocity, and orientation at time�
, but not on what it is carrying, or on the amount of paper

in the printer. DBNs are designed to represent such processes
compactly.

Let 4 KG� be an action. We first want to specify the
transition model +��� 2O3	� ��45� . Let

: @
denote the variable:�@

at the current time and
: 2@ denote the variable at the

next time step. The transition model for action 4 will con-
sist of two parts — an underlying transition graph associ-
ated with 4 , and parameters associated with that graph. The
transition graph is a 2-layer directed acyclic graph whose
nodes are

9$:
% �$;<;$;��

:�= � : 2% �<;$;<;��
: 2= >

. All edges in this
graph are directed from nodes in

9$:
% �<;$;$; �

: = >
to nodes in9<: 2% �<;$;<;��

: 2= >
; note that we are assuming that there are no

edges between variables within a time slice. We denote the
parents of

: 2@ in the graph by
 B��5� : 2@ � . Intuitively, the tran-
sition graph for 4 specifies the qualitative nature of prob-
abilistic dependencies in a single time step — namely, the
new setting of

: @
depends only on the current setting of the

variables in
�B � � : 2@ � . To make this dependence quantita-
tive, each node

: 2@ is associated with a conditional probabil-
ity table (CPT) � � : 2@ 3�
�B � � : 2@ ��� . The transition probability+��?2 3�� ��4 � is then defined to be � @ � ��J 2@ 3�� @ � , where � @

is
the setting in � of the variables in
�B��5� : 2@ � .

We also need to provide a compact representation of the
reward function. As in the transition model, explicitly spec-
ifying a reward for each of the exponentially many states is
impractical. Again, we use the idea of factoring the repre-
sentation of the reward function into a set of localized re-
ward functions, each of which only depends on a small set of
variables. In our robot example, our reward might be com-
posed of several subrewards: for example, one associated
with location (for getting too close to a wall), one associated
with the printer status (for letting paper run out), and so on.
More precisely, let � be a set of functions
 % �<;$;<;���
�� ; each
function
 @

is associated with a cluster of variables � @ F9<:
% �<;$;<;��

: = >
, such that
 @

is a function from ANBDC���� @ � to �
 .
Abusing notation, we will use
 @ ��� � to denote the value that
 @

takes for the part of the state vector corresponding to � @
.

The reward function associated with the DBN-MDP at a state� is then defined to be
���� � 8�� �@��
%
 @ ��� �NK*������
 ��� � ! .

The following definitions for finite-length paths in MDPs
will be of repeated technical use in the analysis. Let � be
a Markov decision process, and let � be a policy in � . A�

-path in � is a sequence � of
� ���

states (that is,
�

transi-
tions) of � : �08�� % �$;<;$; � �"! � �"!�# % . The probability that � is
traversed in � upon starting in state � % and executing policy� is denoted %$& � � ! 8(' !� � % +���)��# % 3��)���*�����)�5� � .

There are three standard notions of the expected return en-
joyed by a policy in an MDP: the asymptotic discounted re-
turn, the asymptotic average return, and the finite-time aver-
age return. Like the original E

�
algorithm, our new general-

ization will apply to all three cases, and to convey the main
ideas it suffices for the most part to concentrate on the finite-
time average return. This is because our finite-time average
return result can be applied to the asymptotic returns through
either the horizon time

�,+ � �%-/. � for the discounted case,
or the mixing time of the optimal policy in the average case.
(We examine the properties of mixing times in a DBN-MDP
in Section 5.)

Let � be a Markov decision process, let � be a policy in� , and let � be a
�

-path in � . The average return along �
in � is

0 & �1� ��8�� �,+ � �"�1
	�� % � ��2�2,2*�
���� !�# % ���";
The

�
-step (expected) average return from state � is0 $& �� � � �*83�54N6$& � �5! 0 & �1� � where the sum is over all�

-paths � in � that start at � . Furthermore, we define the
optimal

�
-step average return from � in � by

067& ��� � � ��88 B�9 $
9 0 $& �� � � � > .

An important problem in MDPs is planning: finding the
policy � 7

that achieves optimal return in a given MDP. In our
case, we are interested in achieving the optimal

�
-step av-

erage return. The complexity of all exact MDP planning al-
gorithms depends polynomially on the number of states; this
property renders all of these algorithms impractical for DBN-
MDPs, where the number of states grows exponentially in
the size of the representation. However, there has been re-
cent progress on algorithms for approximately solving MDPs
with large state spaces [Kearns et al., 1999], particularly on
ones represented in a factored way as an MDP [Boutilier et
al., 1999; Koller and Parr, 1999]. The focus of our work is
on the reinforcement learning task, so we simply assume that
we have access to a “black box” that performs approximate
planning for a DBN-MDP.

Definition 2.1:A : -approximation
�

-step planning algo-
rithm for a DBN-MDP is one that, given a DBN-MDP� , produces a (compactly represented) policy � such that0 $& �� � � �<; � �=- : � 0>7& �� � � � .
We will charge our learning algorithm a single step of com-
putation for each call to the assumed approximate planning
algorithm. One way of thinking about our result is as a re-
duction of the problem of efficient learning in DBN-MDPs to
the problem of efficient planning in DBN-MDPs.

Our goal is to perform model-based reinforcement learn-
ing. Thus, we wish to learn an approximate model from ex-
perience, and then exploit it (or explore it) by planning given
the approximate model. In this paper, we focus on the prob-
lem of learning the model parameters (the CPTs), assuming
that the model structure (the transition graphs) is given to us.
It is therefore useful to consider the set of parameters that
we wish to estimate. As we assumed that the rewards are
deterministic, we can focus on the probabilistic parameters.
(Our results easily extend to the case of stochastic rewards.)
We define a transition component of the DBN-MDP to be a

distribution �5� : 2@ 3"� � for some action 4 and some partic-
ular instantiation � to the parents
�B �5� : 2@ � in the transition
model. Note that the number of transition components is at
most � � � @ 3 A�BPC��
 B � � : 2@ � �$3 , but may be much lower when a
variable’s behavior is identical for several actions.

3 Overview of the Original E
�

Since our algorithm for learning in DBN-MDPs will be a di-
rect generalization of the E

�
algorithm of Kearns and Singh

— hereafter abbreviated KS — we begin with an overview of
that algorithm and its analysis. It is important to bear in mind
that the original algorithm is designed only for the case where
the total number of states

�
is small, and the algorithm runs

in time polynomial in
�

.
E
�

is what is commonly referred to as an indirect or model-
based algorithm: rather than maintaining only a current pol-
icy or value function, the algorithm maintains a model for
the transition probabilities and the rewards for some subset
of the states of the unknown MDP � . Although the algo-
rithm maintains a partial model of � , it may choose to never
build a complete model of � , if doing so is not necessary to
achieve high return.

The algorithm starts off by doing balanced wandering: the
algorithm, upon arriving in a state, takes the action it has tried
the fewest times from that state (breaking ties randomly). At
each state it visits, the algorithm maintains the obvious statis-
tics: the reward received at that state, and for each action,
the empirical distribution of next states reached (that is, the
estimated transition probabilities).

A crucial notion is that of a known state — a state that
the algorithm has visited “so many” times that the transition
probabilities for that state are “very close” to their true val-
ues in � . This definition is carefully balanced so that “so
many” times is still polynomially bounded, yet “very close”
suffices to meet the simulation requirements below. An im-
portant observation is that we cannot do balanced wandering
indefinitely before at least one state becomes known: by the
Pigeonhole Principle, we will soon start to accumulate accu-
rate statistics at some state.

The most important construction of the analysis is the
known-state MDP. If � is the set of currently known states,
the known-state MDP is simply an MDP ��� that is naturally
induced on � by the full MDP � . Briefly, all transitions in� between states in � are preserved in � � , while all other
transitions in � are “redirected” in � � to lead to a single
new, absorbing state that intuitively represents all of the un-
known and unvisited states. Although E

�
does not have direct

access to � � , by virtue of the definition of the known states,
it does have a good approximation

�� � .
The KS analysis hinges on two central technical lemmas.

The first is called the Simulation Lemma, and it establishes
that

�� � has good simulation accuracy: that is, the expected�
-step return of any policy in

�� � is close to its expected
�

-
step return in � � . Thus, at any time,

�� � is a useful partial
model of � , for that part of � that the algorithm “knows”
very well.

The second central technical lemma is the “Explore or Ex-
ploit” Lemma. It states that either the optimal (

�
-step) policy

in � achieves its high return by staying (with high proba-
bility) in the set � of currently known states, or the optimal
policy has significant probability of leaving � within

�
steps.

Most importantly, the algorithm can detect which of these two
is the case; in the first case, it can simulate the behavior of the
optimal policy by finding a high-return exploitation policy in
the partial model

�� � , and in the second case, it can replicate
the behavior of the optimal policy by finding an exploration
policy that quickly reaches the additional absorbing state of
the partial model

���� . Thus, by performing two off-line plan-
ning computations on

�� � , the algorithm is guaranteed to find
either a way to get near-optimal return for the next

�
steps,

or a way to improve the statistics at an unknown or unvisited
state within the next

�
steps. KS show that this algorithm

ensures near-optimal return in time polynomial in
�

.

4 The DBN-E
�

Algorithm
Our goal is to derive a generalization of E

�
for DBN-MDPs,

and to prove for it a result analogous to that of KS — but
with a polynomial dependence not on the number of states

�
,

but on the number of CPT parameters 	 in the DBN model.
Our analysis closely mirrors the original, but requires a sig-
nificant generalization of the Simulation Lemma that exploits
the structure of a DBN-MDP, a modified construction of

����
that can be represented as a DBN-MDP, and a number of al-
terations of the details.

Like the original E
�

algorithm, DBN-E
�

will build a model
of the unknown DBN-MDP on the basis of its experience, but
now the model will be represented in a compact, factorized
form. More precisely, suppose that our algorithm is in state� , executes action 4 , and arrives in state � 2 . This experience
will be used to update all the appropriate CPT entries of our
model — namely, all the estimates

� �5�1J�2@ 3�� @ � are updated in
the obvious way, where as usual � @

is the setting of
�B �5� : 2@ �
in � . We will also maintain counts
 �5�1J�2@ � � @ � of the number
of times

� �5��J 2@ 3�� @ � has been updated.
Recall that a crucial element of the original E

�
analysis was

the notion of a known state. In the original analysis, it was ob-
served that if

�
is the total number of states, then after � � � �

experiences some state must become known by the Pigeon-
hole Principle. We cannot hope to use the same logic here,
as we are now in a DBN-MDP with an exponentially large
number of states. Rather, we must “pigeonhole” not on the
number of states, but on the number of parameters required
to specify the DBN-MDP. Towards this goal, we will say that
the CPT entry

� � ��J 2@ 3=� @ � is known if it has been visited
“enough” times to ensure that, with high probability

3 �(��J 2@ 3�� @ � - � �5��J 2@ 3�� @ �$3���N;
We now would like to establish that if, for an appropriate
choice of � , all CPT entries are known, then our approximate
DBN-MDP can be used to accurately estimate the expected
return of any policy in the true DBN-MDP. This is the de-
sired generalization of the original Simulation Lemma. As in
the original analysis, we will eventually apply it to a gener-
alization of the induced MDP � � , in which we deliberately
restrict attention to only the known CPT entries.

4.1 The DBN-MDP Simulation Lemma
Let � and

�� be two DBN-MDPs over the same state space
with the same transition graphs for every action 4 , and with
the same reward functions. Then we say that

�� is an � -
approximation of � if for every action 4 and node

: 2@ in
the transition graphs, for every setting � of
�B �5� : 2@ � , and for
every possible value J 2@ of

: 2@ ,
3 �(��J 2@ 3�� � - � �(��J 2@ 3�� �$3 � �

where � � 2 3 2 � and
� � � 2 3 2 � are the CPTs of � and

�� ,
respectively.

Lemma 4.1: Let � be any DBN-MDP over � state variables
with 	 CPT entries in the transition model, and let

�� be an
� -approximation of � , where � 8 �+����� + � ��� 	<
 ��� ��� � � � .
Then for any policy � , and for any state � , 3 0 $& ��� � � � -0 $ �& ��� � � �<3 ���$;
Proof: (Sketch) Let us fix a policy � and state � . Recall that
for any next state � 2 and any action 4 , the transition probabil-
ity factorizes via the CPTs as +��� 2 3 � ��45��8/� @ � ��J 2@ 3�� @ � .
where � @

is the setting of
 B��5� : 2@ � in � . Let us say that+�� 2 3 � ��4 � contains a
�

-small factor if any of its CPT fac-
tors � ��J 2@ 3 � @ � is smaller than

�
. Note that a transition

probability may actually be quite small itself (exponentially
small in �) without necessarily containing a

�
-small factor.

Our first goal is to show that trajectories in � and
��

that cross transitions containing a
�

-small CPT factor can be
“thrown away” without much error. Consider a random tra-
jectory of

�
steps in � from state � following policy � . It

can be shown that the probability that such a trajectory will
cross at least one transition +�� 2	3 � ��4 � that contains a

�
-

small factor is at most
� 	 � . Essentially, the probability that

at any step, any particular
�

-small transition (CPT factor) will
be taken by any particular variable

: @
is at most

�
. A sim-

ple union argument over the CPT entries and the
�

time steps
gives the desired bound. Therefore, the total contribution to
the difference 3 0 $& ��� � � � - 0 $ �& �� � � �$3 by these trajectories
can be shown to be at most

�	�
 �N� � 	�� � � � � . We will thus
ignore such trajectories for now.

The key advantage of eliminating
�

-small factors is that
we can convert additive approximation guarantees into mul-
tiplicative ones. Let � be any path of length

�
. If all the

relevant CPT factors are greater than
�

, and we let -'8 � + � ,
it can be shown that

� �=- -+� !
=
 $& � �5! � � $& � �5! � � �	� -+� !

=
 $& � �5! ;

In other words, ignoring
�

-small CPT factors, the distribu-
tions on paths induced by � in � and

�� are quite similar.
From this it follows that, for the upper bound,

�
0 $ �& ��� � � � � � �	� -+� !

= 0 $& ��� � � � � � �
 ��� � 	P� � ��
 � � ;
For the choices

� 8� � , � 8 �+� ��� + � ��� 	<
 ��� � � � � � the
lemma is obtained.
�
The lower bound argument is entirely symmetric.

Returning to the main development, we can now give a
precise definition of a known CPT entry. It is a simple ap-
plication of Chernoff bounds to show that provided the count

 �(��J 2@ � � @ � exceeds �+� ��+ � � C������ �,+�� � � , � �5��J 2@ 3 � @ � has addi-
tive error at most � with probability at least

��-��
. We thus

say that this CPT entry is known if its count exceeds the given
bound for the choice � 8 �+� ��� + � �	� ���
 ��� �5� � � � specified by
the DBN-MDP Simulation Lemma. The DBN-MDP Simula-
tion Lemma shows that if all CPT entries are known, then
our approximate model

�� can be used to find a near-optimal
policy in the true DBN-MDP � .

Note that we can identify which CPT entries are known
via the counts
 � �1J�2@ � � @ � . Thus, if we are at a state � for
which at least one of the associated CPT entries

� �5��J 2@ 3 � @ �
is unknown, by taking action 4 we then obtain an experience
that will increase the corresponding count
 � �1J�2@ � � @ � . Thus,
in analogy with the original E

�
, as long as we are encoun-

tering unknown CPT entries, we can continue taking actions
that increase the quality of our model — but now rather than
increasing counts on a per-state basis, the DBN-MDP Simu-
lation Lemma shows why it suffices to increase the counts on
a per-CPT entry basis, which is crucial for obtaining the run-
ning time we desire. We can thus show that if we encounter
unknown CPT entries for a number of steps that is polyno-
mial in the total number 	 of CPT entries and

�,+ � , there can
no longer be any unknown CPT entries, and we know the true
DBN-MDP well enough to solve for a near-optimal policy.

However, similar to the original algorithm, the real diffi-
culty arises when we are in a state with no unknown CPT
entries, yet there do remain unknown CPT entries elsewhere.
Then we have no guarantee that we can improve our model
at the next step. In the original algorithm, this was solved by
defining the known-state MDP ��� , and proving the afore-
mentioned “Explore or Exploit” Lemma. Duplicating this
step for DBN-MDPs will require another new idea.

4.2 The DBN-MDP “Explore or Exploit” Lemma
In our context, when we construct a known-state MDP, we
must satisfy the additional requirement that the known-state
MDP preserve the DBN structure of the original problem, so
that if we have a planning algorithm for DBN-MDPs that ex-
ploits the structure, we can then apply it to the known-state
MDP

�
. Therefore, we cannot just introduce a new “sink state”

to represent that part of � that is unknown to us; we must
also show how this “sink state” can be represented as a set-
ting of the state variables of a DBN-MDP.

We present a new construction, which extends the idea of
“known states” to the idea of “known transitions”. We say
that a transition component 	�5� : 2@ 3=� � is known if all of
its CPT entries are known. The basic idea is that, while it is
impossible to check locally whether a state is known, it is easy
to check locally whether a transition component is known.

Let � be the set of known transition components. We de-
fine the known-transition DBN-MDP ��� as follows. The
�
Certain approaches to approximate planning in large MDPs do

not require any structural assumptions [Kearns et al., 1999], but we
anticipate that the most effective DBN-MDP planning algorithms
eventually will.

model behaves identically to � as long as only known transi-
tions are taken. As soon as an unknown transition is taken for
some variable

: 2@ , the variable
: 2@ takes on a new wandering

value � , which we introduce into the model. The transition
model is defined so that, once a variable takes on the value
� , its value never changes. The reward function is defined so
that, once at least one variable takes on the wandering value,
the total reward is nonpositive. These two properties give us
the same overall behavior that KS got by making a sink state
for the set of unknown states.

Definition 4.2:Let � be a DBN-MDP and let � be any sub-
set of the transition components in the model. The induced
DBN-MDP on � , denoted � � , is defined as follows:
� � � has the same set of state variables as � ; however,

in � � , each variable
: @

has, in addition to its original
set of values A�BPC & � : @ � , a new value � .

� � � has the same transition graphs as � . For each 4 ,�
, and � K A�BDC & �
�B �5� : 2@ ��� , we have that &��� � : 2@ 3
� �N8' &� � : 2@ 3 � � if the corresponding transition com-
ponent is in � ; in all other cases, &��� ���'3�� ��8 �

, and
 &��� ��J @ 3�� � 8 � for all J @ KOA�BPC & � : @ � .

� � � has the same set � as � . For each
� 8 � �<;$;$; ���

and � K A�BDC & ��� @ � , we have that
 & �@ �	�(��8
 &@ �	��� .
For other vectors � , we have that
 &��@ �	�(� 8 -
 ��� � .

With this definition, we can prove the analogue to the “Ex-
plore or Exploit” Lemma (details omitted).

Lemma 4.3:Let � be any DBN-MDP, let � be any subset of
the transition components of � , and let ��� be the induced
MDP on � . For any � K � , any

�
, and any

��
��
 � ,
either there exists a policy � in � � such that

0 $&�� �� � � � ;0>7& ��� � � � -��
, or there exists a policy � in ��� such that

the probability that a walk of
�

steps following � will take at
least one transition not in � exceeds

� + � ��� ��� � �
 ��� � � .
This lemma essentially asserts that either there exists a pol-
icy that already achieves near-optimal (global) return by stay-
ing only in the local model � � , or there exists a policy that
quickly exits the local model.

4.3 Putting It All Together
We now have all the pieces to finish the description and analy-
sis of the DBN-E

�
algorithm. The algorithm initially executes

balanced wandering for some period of time. After some
number of steps, by the Pigeonhole Principle one or more
transition components become known. When the algorithm
reaches a known state � — one where all the transition com-
ponents are known — it can no longer perform balanced wan-
dering. At that point, the algorithm performs approximate
off-line policy computations for two different DBN-MDPs.
The first corresponds to attempted exploitation, and the sec-
ond to attempted exploration.

Let � be the set of known transitions at this step. In the
attempted exploitation computation, the DBN-E

�
algorithm

would like to find the optimal policy on the induced DBN-
MDP � � . Clearly, this DBN-MDP is not known to the al-
gorithm. Thus, we use its approximation

�� � , where the true

transition probabilities are replaced with their current approx-
imation in the model. The definition of � � uses only the
CPT entries of known transition components. The Simula-
tion Lemma now tells us that, for an appropriate choice of �
— a choice that will result in a definition of known transition
that requires the corresponding count to be only polynomial
in

��+ � , � , � , and
�

— the return of any policy � in
�� � is

within � of its return in � � . We will specify a choice for �
later (which in turn sets the choice of � and the definition of
known state).

Let us now consider the two cases in the “Explore or Ex-
ploit” Lemma. In the exploitation case, there exists a policy� in � � such that

0 $& � ��� � � � ; 0>7& �� � � � -��
. (Again,

we will discuss the choice of
�

below.) From the Simulation
Lemma, we have that

0 $ �&�� ��� � � �	; 0>7& ��� � � � - � � � ��� . Our
approximate planning algorithm returns a policy � 2 whose
value in

�� � is guaranteed to be a multiplicative factor of at
most

� - : away from the optimal policy in
�� � . Thus, we are

guaranteed that
0 $ ��&�� �� � � �=; � � - : �"� 0>7& ��� � � � - � � � ����� .

Therefore, in the exploitation case, our approximate planner
is guaranteed to return a policy whose value is close to the
optimal value.

In the exploration case, there exists a policy � in � � (and
therefore in

�� �) that is guaranteed to take an unknown tran-
sition within

�
steps with some minimum probability. Our

goal now is to use our approximate planner to find such a pol-
icy. In order to do that, we need use a slightly different con-
struction � 2� (

�� 2�). The transition structure of � 2� is iden-
tical to that of � � . However, the rewards are now different.
Here, for each

� 8 � �$;$;<;���� and ��KMANBDC & � � @ � , we have that

 & ��@ ����� 8 � ; for other vectors � , we have that
 &��@ �	�(� 8 �
.

Now let � 2 be the policy returned by our approximate planner
on the DBN-MDP

�� 2� . It can be shown that the probability
that a

�
-step walk following �?2 will take at least one unknown

transition is at least � �=- : � � � + � �	� �(� � �
	��� ��� - ��� + � � .
To summarize: our approximate planner either finds

an exploitation policy � in
�� � that enjoys actual return0 $& �� � � � ;.� � - : �"� 0 7& �� � � � - � � � ��� � from our cur-

rent state � , or it finds an exploitation policy in
�� 2� that has

probability at least � 8�� � - : � � � + � �	� ��� � �
	��� ��� - ��� + � �
of improving our statistics at an unknown transition in the
next

�
steps. Appropriate choices for � and

�
yield our main

theorem, which we are now finally ready to describe.
Recall that for expository purposes we have concentrated

on the case of
�

-step average return. However, as for the orig-
inal E

�
, our main result can be stated in terms of the asymp-

totic discounted and average return cases. We omit the details
of this translation, but it is a simple matter of arguing that it
suffices to set

�
to be either � ��+ � � ->. ���5C�� � � �,+ ��� (discounted)

or the mixing time of the optimal policy (average).

Theorem 4.4: (Main Theorem) Let � be a DBN-MDP with
	 total entries in the CPTs.
� (Undiscounted case) Let

�
be the mixing time of the pol-

icy achieving the optimal average asymptotic return
067

in � . There exists an algorithm DBN-E
�

that, given ac-
cess to a : -approximation planning algorithm for DBN-

MDPs, and given inputs �$� � � 	P� � and
0 7

, takes a num-
ber of actions and computation time bounded by a poly-
nomial in

��+ � � - : � � ��+ � , ��+ � , 	 , � , and
 ��� � , and with
probability at least

�%-��
, achieves total actual return

exceeding
0 7 - � .

� (Discounted case) Let � 7
denote the value function for

the policy with the optimal expected discounted return
in � . There exists an algorithm DBN-E

�
that, given

access to a : -approximation planning algorithm for
DBN-MDPs, and given inputs � , � , 	 and � 7

, takes a
number of actions and computation time bounded by a
polynomial in

��+ � �6- : �"� �,+ �$� �,+�� � 	 , the horizon time� 8 ��+ � � - . � , and
	��� � , and with probability at least�=-��
, will halt in a state � , and output a policy

�� , such
that � �$& ��� �=;�� 7 ��� � - � .

Some remarks:
� The loss in policy quality induced by the approximate

planning subroutine translates into degradation in the
running time of our algorithm.

� As with the original E
�
, we can eliminate knowledge of

the optimal returns in both cases via search techniques.
� Although we have stated our asymptotic undiscounted

average return result in terms of the mixing time of the
optimal policy, we can instead give an “anytime” algo-
rithm that “competes” against policies with longer and
longer mixing times the longer it is run. (We omit de-
tails, but the analysis is analogous to the original E

�
analysis.) This extension is especially important in light
of the results of the following section, where we exam-
ine properties of mixing times in DBN-MDPs.

5 Mixing Time Bounds for DBN-MDPs
As in the original E

�
paper, our average case result depends

on the amount of time
�

that it takes the target policy to mix.
This dependence is unavoidable. If some of the probabilities
are very small, so that the optimal policy cannot easily reach
the high-reward parts of the space, it is unrealistic to expect
the reinforcement learning algorithm to do any better.

In the context of a DBN-MDP, however, this dependence
is more troubling. The size of the state space is exponentially
large, and virtually all of the probabilities for transitioning
from one state to the next will be exponentially small (be-
cause a transition probability is the product of � numbers that
are � �

). Indeed, one can construct very reasonable DBN-
MDPs that have an exponentially long mixing time. For ex-
ample, a DBN representing the Markov chain of an Ising
model [Jerrum and Sinclair, 1993] has small parent sets (at
most four parents per node), and CPT entries that are reason-
ably large. Nevertheless, the mixing time of such a DBN can
be exponentially large in � .

Given that even “reasonable” DBNs such as this can have
exponential mixing times, one might think that this is the typ-
ical situation — that is, that most DBN-MDPs have an ex-
ponentially long mixing time, reintroducing the exponential
dependence on � that we have been trying so hard to avoid.
We now show that this is not always the case. We provide a

tool for analyzing the mixing time of a policy in a DBN-MDP,
which can give us much better bounds on the mixing time. In
particular, we demonstrate a class of DBN-MDPs and associ-
ated policies for which we can guarantee rapid mixing.

Note that any fixed policy in a DBN-MDP defines a
Markov chain whose transition model is represented as a
DBN. We therefore begin by considering the mixing time of
a pure DBN, with no actions. We then extend that analysis to
the mixing rate for a fixed policy in a DBN-MDP.

Definition 5.1:Let � be a transition model for a Markov
chain, and let

9$:�������>
	� � % represent the state of the chain. Let� 8 9 J % �$;$;<;���J��
>
. Let :� be the stationary probability ofJ in this Markov chain. We say that the Markov chain �

is � -mixed at time � if 8 B 9 @ � 3 +� :������ 8 J 3 :�� % � 8J @ � - :��3��� .
Our bounds on mixing times make use of the coupling

method [Lindvall, 1992]. The idea of the coupling method
is as follows: we run two copies of the Markov chain in par-
allel, from different starting points. Our goal is to make the
states of the two processes coalesce. Intuitively, the first time
the states of the two copies are the same, the initial states have
been “forgotten”, which corresponds to the processes having
mixed.

More precisely, consider a transition matrix � over some
state space � . Let � 7

be a transition matrix over the state
space �) � , such that if

9 ��� ����� ��� ����� � > 	� � % is the Markov
chain for � 7

, then the separated Markov chains
9 � ������>�	� � %

and
9 � ����� >�	� � % both evolve according to � . Let

�
be the ran-

dom variable that represents the coupling time — the smallest
� for which � ����� 8�� ����� . The following lemma establishes
the correspondence between mixing and coupling times.

Lemma 5.2: For any � , let � be such that for any
� ��� 8� �<;$;<;���# , +� �
 �.3�� � % � 8�J @ ��� � % � 8 J � � � . Then � is

� -mixed at time � .

Thus, to show that a Markov chain is � -mixed by some
time � , we need only construct a coupled chain and show
that the probability that this chain has not coupled by time �
decreases very rapidly in � .

The coupling method allows us to construct the joint chain
over ��� ����� ��� ����� � in any way that we want, as long as each
of the two chains in isolation has the same dynamics as the
original Markov chain � . In particular, we can correlate the
transitions of the two processes, so as to make their states
coincide faster than they would if each was picked indepen-
dently of the other. That is, we choose � ��� # % � and � ��� # % �
to be equal to each other whenever possible, subject to the
constraints on the transition probabilities. More precisely, let
� ����� 8 J @ and � ����� 8 J� . For any value J K � , we can
make the event � ��� # % � 8�J @ ��� ��� # % � 8�J� have a proba-
bility that is the smaller of +� : 2M8�J � 3 : 8 J @ � and+� : 2 8 J �,3 : 8 J � . Compare this to the probability
of this event if the two processes were independent, which
is the product of these two numbers rather than their mini-
mum. Overall, by correlating the two processes as much as
possible, and considering the worst case over the current state

of the process, we can guarantee that, at every step, the two
processes couple with probability at least

8����@
�

�
�

8���� ��+� : 2 8 J � 3 : 8 J @ � �� � : 2 8 J � 3 : 8,J�D�1!
This quantity represents the amount of probability mass that
any two transition distributions are guaranteed to have in
common. It is called the Dobrushin coefficient, and is the
contraction rate for � % -norm [Dobrushin, 1956] in Markov
chains.

Now, consider a DBN over the state variables 7 89<:
% �<;$;<;��

: = >
. As above, we create two copies of the pro-

cess, letting � % �$;$;<;�� �
=

denote the variables in the first com-
ponent of the coupled Markov chain, and � % �<;$;$;����

=
denote

those in the second component. Our goal is to construct a
Markov chain over E*�	� such that both E and � separately
have the same dynamics as 7 in the original DBN.

Our construction of the joint Markov chain is very simi-
lar to the one used above, except that will now choose the
transition of each variable pair � @ and � @

so as to maximize
the probability that they couple (assume the same value). As
above, we can guarantee that � @ and � @

couple at any time
�

with probability at least

� @ 8 8����
 �
 �������� ��� � ��� �� � �
�� � �� � ������ ��� � � 8���� ��+�1J @ 3�� �"��+�1J @ 3�� 2 � !	� ��

This coefficient was defined by [Boyen and Koller, 1998] in
their analysis of the contraction rate of DBNs. Note that

� @
depends only on the numbers in a single CPT of the DBN.
Assuming that the transition probabilities in each CPT are not
too extreme, the probability that any single variable couples
will be reasonably high.

Unfortunately, this bound is not enough to show that all
of the variable pairs couple within a short time. The prob-
lem is that it is not enough for two variables �

�����@
and �

�����@
to couple, as process dynamics may force us to decouple
them at subsequent time slices. To understand this issue,
consider a simple process with two variables

:
% �

: � , and
a transition graph with the edges

:
% � : 2% ,

: � � : 2� ,:
% � : 2� . Assume that at time

�
, the variable pair �

������ � � ������
has coupled with value J � , but �

��� �
% � � �����% has not, so that

�
��� �
% 8 J % and �

�����
% 8 J 2 % . At the next time slice, we

must select �
��� # % �� � � ��� # % �� from two different distributions

— +� : 2� 3 J % ��J � � and � : 2� 3 J�2 % ��J � � , respectively. Thus,
our sampling process may be forced to give them different
values, decoupling them again.

As this example clearly illustrates, it is not enough for a
variable pair to couple momentarily. In order to eventually
couple the two processes as a whole, we need to make each
variable pair a stable pair — i.e., we need to guarantee that
our sampling process can keep them coupled from then on. In
our example, the pair � % � � % is stable as soon as it first cou-
ples. And once � % � � % is stable, then � � � � � will also be stable
as soon as it couples. However, if � � ��� � couples while � % � � %
is not yet stable, then the sampling process cannot guarantee
stability.

In general, a variable pair can only be stable if their parents
are also stable. So what happens if we add the edge

: � �: 2% to our transition model? In this case, neither � % ��� % nor
� � ��� � can stabilize in isolation. They can only stabilize if
they couple simultaneously.

This discussion leads to the following definition.

Definition 5.3:Consider a DBN over the state variables:
% �$;$;<;��

: =
. The dependency graph for the DBN is a di-

rected cyclic graph whose nodes are
:

% �<;$;<;��
: =

and where
there is a directed edge from

: @
to

: if there is an edge in
the transition graph of the DBN from

:+@
to

: 2 .

Hence, there is a directed path from
: @

to
: in iff

: �����@
influences

: ��� � �
 for some

� 2
(�
. We assume that the transi-

tion graph of the DBN always has arcs
: @ � : 2@ , so that the

every node in has a self-loop.
Let ! % �<;$;<;��"!$# be the maximal strongly connected compo-

nents in , sorted so that if
�&% � , there are no directed edges

from ! to ! @
. Our analysis will be based on stabilizing the! @

’s in succession. (We note that we provide only a rough
bound; a more refined analysis is possible.) Let

� 8 8���� @ � @
and ' 8 8 B�9 3 ! 3 . Assume that ! % �$;<;$;��(! @*)

% have all stabi-
lized by time

�
. In order for ! @

to stabilize, all of the variables
need to couple at exactly the same time. This event happens
at time

�
with probability ; �,+

. As soon as ! @
stabilizes,

we can move on to stabilizing ! @ # % . When all the ! @
’s have

stabilized, we are done.

Theorem 5.4:For any �6; � , the Markov chain correspond-
ing to a DBN as described above is � -mixed at time � pro-
vided

� ;.-0/� + C�� ��� �,+ ��� ;
Thus, the mixing time of a DBN grows exponentially with the
size of the largest component in the dependency graph, which
may be significantly smaller than the total number of vari-
ables in a DBN. Indeed, in two real-life DBNs — BAT [Forbes
et al., 1995] with ten state variables, and WATER [Jensen et
al., 1989] with eight — the maximal cluster size is 3–4.

It remains only to extend this analysis to DBN-MDPs,
where we have a policy � . Our stochastic coupling scheme
must now deal with the fact that the actions taken at time

�
in the two copies of the process may be different. The diffi-
culty is that different actions at time

�
correspond to different

transition models. If a variable
: @

has a different transition
model in different transition graphs 	� , it will use a different
transition distribution if the action is not the same. Hence

: @
cannot stabilize until we are guaranteed that the same action
is taken in both copies. That is, the action must also stabilize.
The action is only guaranteed to have stabilized when all of
the variables on which the choice of action can possibly de-
pend have stabilized. Otherwise, we might encounter a pair
of states in which we are forced to use different actions in the
two copies.

We can analyze this behavior by extending the dependency
graph to include a new node corresponding to the choice of
action. We then see what assumptions allow us to bound
the set of incoming and outgoing edges. We can then use

the same analysis described above to bound the mixing time.
The outgoing edges correspond to the effect of an action. In
many processes, the action only directly affects the transition
model of a small number of state variables in the process. In
other words, for many variables

: @
, we have that
�B �5� : @ �

and �(� : @ 3�
�B �5� : @ ��� are the same for all 4 . In this case,
the new action node will only have outgoing edges to the re-
maining variables (those for which the transition model might
differ). We note that such localized influence models have a
long history both for influence diagram [Howard and Mathe-
son, 1984] and for DBN-MDPs [Boutilier et al., 1999].

Now, consider outgoing edges. In general, the optimal
policy might well be such that the action depends on every
variable. However, the mere representation of such a pol-
icy may be very complex, rendering its use impractical in a
DBN-MDP with many variables. Therefore, we often want to
restrict attention to a simpler class of policies, such as a small
finite state machine or a small decision tree. If our target pol-
icy is such that the choice of action only depends on a small
number of variables, then there will only be a small number of
incoming edges into the action node in the dependency graph.

Having integrated the action node into the dependency
graph, our analysis above holds unchanged. The only differ-
ence from a random variable is that we do not have to include
the action node when computing the size of the ! @

that con-
tains it, as we do not have to stochastically make it couple;
rather, it couples immediately once its parents have coupled.

Finally, we note that this analysis easily accommodates
DBN-MDPs where the decision about the action is also
decomposed into several independent decisions (e.g., as
in [Meuleau et al., 1998]). Different component decisions
can influence different subsets of variables, and the choice
of action in each one can depend on different subsets of vari-
ables. Each decision forms a separate node in the dependency
graph, and can stabilize independently of the other decisions.

The analysis above gives us techniques for estimating the
mixing rate of policies in DBN-MDPs. In particular, if we
want to focus on getting a good steady-state return from
DBN-E

�
in a reasonable amount of time, this analysis shows

us how to restrict attention to policies that are guaranteed to
mix rapidly given the structure of the given DBN-MDP.

6 Conclusions
Structured probabilistic models, and particularly Bayesian
networks, have revolutionized the field of reasoning under
uncertainty by allowing compact representations of complex
domains. Their success is built on the fact that this structure
can be exploited effectively by inference and learning algo-
rithms. This success leads one to hope that similar structure
can be exploited in the context of planning and reinforce-
ment learning under uncertainty. This paper, together with
the recent work on representing and reasoning with factored
MDPs [Boutilier et al., 1999], demonstrate that substantial
computational gains can indeed be obtained from these com-
pact, structured representations.

This paper leaves many interesting problems unaddressed.
Of these, the most intriguing one is to allow the algorithm
to learn the model structure as well as the parameters. The

recent body of work on learning Bayesian networks from
data [Heckerman, 1995] lays much of the foundation, but
the integration of these ideas with the problems of explo-
ration/exploitation is far from trivial.

Acknowledgements
We are grateful to the members of the DAGS group for use-
ful discussions, and particularly to Brian Milch for point-
ing out a problem in an earlier version of this paper. The
work of Daphne Koller was supported by the ARO under
the MURI program “Integrated Approach to Intelligent Sys-
tems,” by ONR contract N66001-97-C-8554 under DARPA’s
HPKB program, and by the generosity of the Powell Founda-
tion and the Sloan Foundation.

References
[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. De-

cision theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research, 1999.
To appear.

[Boyen and Koller, 1998] X. Boyen and D. Koller. Tractable in-
ference for complex stochastic processes. In Proc. UAI, pages
33–42, 1998.

[Dobrushin, 1956] R.L. Dobrushin. Central limit theorem for non-
stationary Markov chains. Theory of Probability and its Applica-
tions, pages 65–80, 1956.

[Forbes et al., 1995] J. Forbes, T. Huang, K. Kanazawa, and S.J.
Russell. The BATmobile: Towards a Bayesian automated taxi.
In Proc. IJCAI, 1995.

[Heckerman, 1995] D. Heckerman. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-95-06, Microsoft
Research, 1995.

[Howard and Matheson, 1984] R. A. Howard and J. E. Matheson.
Influence diagrams. In R. A. Howard and J. E. Matheson, editors,
Readings on the Principles and Applications of Decision Analy-
sis, pages 721–762. Strategic Decisions Group, Menlo Park, Cal-
ifornia, 1984.

[Jensen et al., 1989] F.V. Jensen, U. Kjærulff, K.G. Olesen, and
J. Pedersen. An expert system for control of waste water
treatment—a pilot project. Technical report, Judex Datasystemer
A/S, Aalborg, 1989. In Danish.

[Jerrum and Sinclair, 1993] M. Jerrum and A. Sinclair. Polynomial-
time approximation algorithms for the Ising model. SIAM Jour-
nal on Computing, 22:1087–1116, 1993.

[Kearns and Singh, 1998] M. Kearns and S.P. Singh. Near-optimal
performance for reinforcement learning in polynomial time. In
Proc. ICML, pages 260–268, 1998.

[Kearns et al., 1999] M. Kearns, Y. Mansour, and A. Ng. A sparse
sampling algorithm for near-optimal planning in large markov
decision processes. In these proceedings, 1999.

[Koller and Parr, 1999] D. Koller and R. Parr. Computing factored
value functions for policies in structured MDPs. In these pro-
ceedings, 1999.

[Lindvall, 1992] T. Lindvall. Lectureson the Coupling Method. Wi-
ley, 1992.

[Meuleau et al., 1998] N. Meuleau, M. Hauskrecht, K-E. Kim,
L. Peshkin, L.P. Kaelbling, T. Dean, and C. Boutilier. Solving
very large weakly coupled Markov decision processes. In Proc.
AAAI, pages 165–172, 1998.

