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Abstract

Two of the most important threads of work in knowledge
representation today are frame-based representation systems
(FRS's) and Bayesian networks (BNs). FRS's provide an ex-
cellent representation for the organizational structure of large
complex domains, but their applicability islimited because of
their inability to deal with uncertainty and noise. BNSs pro-
vide an intuitive and coherent probabilistic representation of
our uncertainty, but are very limited in their ability to handle
complex structured domains. In this paper, we provide a lan-
guagethat cleanly integrates these approaches, preserving the
advantagesof both. Our approach allows usto provide natural
and compact definitions of probability models for a class, in
away that is local to the class frame. These models can be
instantiated for any set of interconnected instances, resulting
in a coherent probability distribution over theinstance proper-
ties. Our language al so alows usto represent important types
of uncertainty that cannot be accomodated within the frame-
work of traditional BNs: uncertainty over the set of entities
present in our model, and uncertainty about the relationships
between these entities. We provide an inference algorithm for
our languageviaareductionto inferencein standard Bayesian
networks. We describe an implemented system that allows
most of the main frame systemsin existencetoday to annotate
their knowledge bases with probabilistic information, and to
use that information in answering probabilistic queries.

1 Introduction

Frame representation systems (FRS's) are currently the pri-
mary technology used for large scale knowledge representa-
tionin Al [8, 3, 7]. Their modular organization according
to cognitively meaningful entitiesand their ability to capture
patterns common to many individuals provide a convenient
language for representing complex structured domain mod-
els. One of the most significant gapsin the expressive power
of this type of framework is its inability to represent and
reason with uncertain and noisy information. Uncertainty is
unavoidablein thereal world: our information is often inac-
curate and always incomplete, and only a few of the “rules’
that we use for reasoning are truein all possible cases.

In the “propositional” setting, this problem has largely
been resolved over the past decade by the development of
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probabilistic reasoning systems, and particularly Bayesian
networks[10]. A Bayesian network (BN) isarepresentation
of afull joint distribution over a set of random variables; it
can be used to answer queries about any of itsvariablesgiven
any evidence. A BN alows a complex distribution to be
represented compactly by using the locality of influence in
our model of the world. But, like all propositional systems,
the applicability of BNs is largely limited to situations that
can be encoded, in advance, using a fixed set of attributes.
Thus, they are inadequate for large-scale complex KR tasks.

Buildingon our recent work [6, 5], we proposearepresen-
tation language that integrates frame-representation systems
and Bayesian networks, thereby providing the first bridge
between these two very different threads of work in KR. The
key component in our representation is the annotation of a
frame with a probability model. This probability modd is,
broadly spesking, a BN representing a distribution over the
possible values of the dotsin the frame. That is, each sim-
ple dot in the frame is annotated with a local probability
model, representing the dependence of its value on the val-
ues of related dots. For example, in a frame representing a
PhD student, the value of the dot years-to-graduation may
depend on the dlot year and the slot chain advisor.picky.

As we can see even from this simple example, by build-
ing on standard FRS functionality, our approach provides
significantly more expressive power than traditional BNs.
For example, by alowing the probability model of a dot to
depend on a dot chain, we alow the properties of one in-
stance in the model to depend on properties of other related
instances. We can aso use the standard class hierarchy of
the FRS to alow the probability model of a class to be used
by multiple instances of that class, and to allow inheritance
of probability models from classes to subclasses, using the
same mechanism inwhich sot valuesare currently inherited.
Finally, by making domain individualsfirst-class citizensin
our framework we can a so express anew and important type
of uncertainty caled structural uncertainty. We can have a
probabilistic model expressing our uncertainty about the set
of entities in our moddl, e.g., the number of PhD students
in a department. We can aso represent uncertainty about
rel ations between entities, e.g., which of several conferences
apaper appeared in.

We provide a probabilistic inference algorithm for our
language based on an approach known as knowl edge-based



model construction. The algorithm takes a knowledge base
in our language, including a set of instances, and generates
a standard BN which can then be queried effectively for our
beliefs about the value of any dots.

Our probability modd is expressed using standard frame
representation techniques such as facets and value restric-
tions. Thisproperty isimportant, sinceit allowsour approach
to be used with virtualy any frame system, and thereby to
annotate existing KBs with probabilistic information. In
particular, we have implemented a system based on our ap-
proach, capable of interacting with most existing FRS's via
OKBC [2], an emerging standard for FRS interoperability.

Our work is a signficant improvement over previous ap-
proaches to combining first-order logic and Bayesian net-
works. Most of theattemptsinthisdirection (e.g.,[12, 11, 9])
use probabilistic Horn clauses as the basic representation.
The choice of Horn clauses as an underlying language al-
ready dictates some of the properties of the representation,
eg., itsinability to encapsulate an object and its properties
within a cognitively meaningful frame. Moreover, the use
of structural uncertainty in this framework typically causes
combinatorial blowup of the resulting model's, leading most
approaches to outlaw it entirely. Our framework also over-
comes some major limitationsof our earlier proposals[6, 5],
by allowing both structural uncertainty (absent in the first)
and probabilistic dependencies between instances (absent in
the second). It also provides the crucia ability, absent in
both, to create complex models containing many instances
that are connected to each other in avariety of ways.

2 Basicrepresentation

We begin with some basic terminology for frame systems.
The terminology varies widely from system to system. In
this paper we adopt the language and basi c knowledge model
of the OKBC protocol [2].

Thebasic unit of discourseinaframe systemisaframe. A
frame hasaset of dots, each of which may have slot valuesor
fillers. Formally, adot representsabinary relationon frames;
if thefiller of Slot A inframe X isframeY’, then therelation
A(X,Y) holds. In genera slots may be single-valued or
multi-valued. In this section we assume that slotsare single-
valued. This assumption will be relaxed in Section 4. A
dot-chain is a sequence of zero or more dots separated by
periods. A dot-chain represents a binary relation: the dot-
chain A.c where A isadlot and ¢ isasdlot-chain denotes the
rlation {(X,Z) | A(X,Y)Ao(Y,Z)}. Adotinaframe
may have associated facets. A facet is aternary relation: if
the facet value of facet F' on dot A inframe X isY, then
therelation F/(X, A,Y) holds. A standard facet isvalue-type,
which specifiesavaluerestrictiononthevauesof aslot. The
value-type of aglot will be called itstype.

The two main types of frames are class frames, represent-
ing sets of entities, and instance frames. The class frames
are organized in an is-a hierarchy, where one class may be
a subclass of another (its superclass). The dots of a class
frame may be own dots, which describe a property of the
class itsdlf, and template slots, which are dots inherited by
all instances and subclasses of the class. The facets asso-
ciated with template dots are template facets, and are also

inherited. An instance or subclass may override the values
of inherited slots or facets.

Probabilistic information isincorporated into aframe KB
by annotating classframeswithlocal probabilisticmodels. A
class frame that has been so annotated iscalled ap-class. A
p-classhasaset of template dots, each withavalue-typefacet.
Depending onthetype, adotiseither ssmpleor complex. The
typeof acomplex dotisanother p-class. Thetypeof asimple
dotisanexplicitly enumerated list of possible values for the
dot. For example, the phd-student p-class may have asimple
dot year, whosetypeis{1st, 2nd, 3rd, 4th—6th, tenured}, and
acomplex dot advisor whose typeis the p-class professor. A
p-class may a so have other dotsthat do not participatein the
probability model, whose type is neither of the above. For
exampl e, phd-student may also have the d ot name, which does
not have an associated probability moddl. Thisfeatureallows
existing KBsto be annotated with probabilistic information,
without requiring a compl ete redesign of the ontol ogy.

A simple dot is very much like a node in a Bayes net.
It has a range of vaues, a set of parents, and a CPT. A p-
class specifies a probability model for its simple slots using
two specia-purpose facets. parents and distribution. Facets
are a natural place to put a probability model, since such a
model can be viewed as a generdization of a value restric-
tion: not only doesit specify arange of possible vaues, but
also a distribution over that range. The parents facet liststhe
dots on which the value of this dot depends. Each parent
is specified by a dot-chain referring to some other simple
dot. More precisaly, let X beap-classand A asmple dot.
The parents facet of A isalist of dot chains o, ..., 0],
such that X.o; refers to asimple dot. For example, in the
phd-student p-class, year may have the parent [age], whilethe
parents of years-to-graduation may be [year, advisor.picky].
Thedistribution facet specifies the conditional probability dis-
tribution over values of the slot given values of its parents.
The conditional distribution is specified using a conditional
probability table (CPT) as in Bayesian networks. For each
combination of values of its parents, the CPT provides a
probability distribution over values of the dot. For the pur-
poses of this paper, we assume that the CPTs are represented
as fully specified functions of parent values. More compact
representations such as noisy-or can easily be accomodated
within our framework.

The probability model of a complex dot is smply de-
scribed by itsp-class Y. However, each complex dot A also
has an additional facet called imports, whose valueisalist of
dotsinY. Thisligt, called theimport list of A, isthelist of
dotsof Y that arevisiblewithin X. Werequirethat if A.B.o
(for apossibly empty dot chain o) isa dot chain appearing
within X, then B must be in theimport list of A.

Once a probability model has been specified for a p-class,
the p-class can be used just like any other class frame. One
can create instances of the class, which will inherit al of
its template dots and facets. In particular, the probability
distribution over values of slots of theinstance will be as de-
scribed in the p-class. Similarly, the inheritance mechanism
of aframe system can be used to make one p-class asubclass
of another. A subclass can extend the definition of the super-
classaswell as overwrite parts of it. In particular, a subclass



can redefine the probability model of one or more of thedlots.
For exampl e, we can define associate-professor to be asubclass
of professor, and overwrite the distribution over salary to one
that is appropriate to the more specific class. Another im-
portant aspect of subtyping is that an instance of a subclass
is also an instance of the superclass, so that it can fill a dot
whose type is the superclass. For example, in a particular
instance of phd-student, the value of the advisor slot may be
specified to be an instance whose class is associate-professor.

Values can be assigned to an own dot of an instance frame
either directly or by assignment to a template dot a the
class level. Both types of assignments are interpreted in the
same way. An assignment to a simple dot is interpreted
as observing the value of the dot, thereby conditioning the
probability distribution for the instance. This conditioning
process may result in achangein our beliefsfor other related
dots. Consider, for exampl e, asubcl assgraduating-phd-student
of phd-student which assigns 1 tothesl ot year s-to-graduation.
Then the conditioning processwill result in anew probability
mode for any instance I of this subclass; in particular, our
beliefs about 7.year and I.advisor.picky will both change, as
will our beliefs about other related slots.

An assignment to acomplex d ot specifies that the val ue of
that dot is another particular instance. Thus, complex net-
worksof inter-related frames can be created, such as students
who share an advisor, and students of different advisorsin
the same department. Such an assignment at the class level
resultsin dl of the class instances having the same frame as
their value for that dot.

One of the features of a probabilistic frame system isthat
related frames can influence each other. We have already
seen one mechanism for such interactions. since a parent
of a dot is a dot-chain, the value of a smple slot may be
influenced probabilistically by the value of a dlot in another
frame. This mechanism, however, only alows a frame to
be influenced by related frames, but not to influence them in
turn. We resolve thisdifficulty by utilizing a basic feature of
most FRS s—inverse slots.

Let X and Y be two class frames, A a dot of X with
typeY, and B adot of Y withtype X. Then A and B are
inverse dotsif, for every instance 7 of X, if I.A = J then
J.B = I, and viceversa. Thus, we view an assignment of a
specific instance frame .J to adlot 7.A as encompassing the
corresponding assignment of 7 to J.B. For that reason, we
do not allow assignments of values to slotssuch as A at the
class level; otherwise, for any given frame J of class Y, the
value of J.B would be the set consisting of every frame of
class X, amodd which istoo unwieldy to deal with.

Inverse slots allow either of the frames to refer to slotsin
theother, thereby all owing probabilistic dependenciesin both
directions. Allowing such intertwined dependencies without
restriction could lead to horribly complex interactions be-
tween two frames. In particular, it could lead to a cyclic
chain of influences that has no coherent probability mode.
Therefore, one of thetwo inverse dots—say X.A—isdesig-
nated to be the primary direction while the other—Y. B—is
secondary. Similarly, X is called the primary frame, while
Y isthe secondary frame. A primary inverse slot such as A
in X has aparents facet just likeasimpledot, i.e, itisalist

of dot-chainsin X . Intuitively, the parents of A arethe only
dotsof X that are exported to Y via B. More precisaly, the
parent list of A in X must be identical to the import list of
BinY. Thus, theflow of influence between the two frames
isneatly regulated: The parentsof A in X can influence any
of thedlotsinY'; some of those can, in turn, influence other
slotsin X that are “downstream” from A.

For example, suppose we decide that the thesis slot of
phd-student should be an inverse dot, with its inverse being
the author dot of phd-thesis The dot thesis is designated
to be primary, and is given the parent field in phd-student.
Then field is visible within the phd-thesis class, so that for
example, jargon-content may depend on author.field. Other
dots of phd-student may depend on dlots of thesis; thus, for
example, job-prospects may depend on thesis.quality, which
would therefore have to be on the import list of thesis.

Inverse dlots serve a dua purpose in our language. As
we said, they allow bidirectional dependencies between two
instances. But they also alow our probabilistic modelsto be
multicentered. If, asabove, X.A and Y. B are inverses, and
we define an instance from class X, it immediately implies
the existence of a corresponding instance from class Y. Al-
ternatively, we could start modeling with an object of class
Y, and guarantee that the corresponding X will exist. Thus,
we can define amodel centered around whatever entitiesare
of interest to usin our context.

3 Semantics

In this section we present a semantics for probabilisticframe
knowledge bases. For a given KB with a set of class and
instance frames, our semantics defines a probability distribu-
tion over the dot values of theinstance frames (and of some
other related instance frames). In order to define a coherent
probability distribution, our frame KB must satisfy several
conditions. Thebasi cthemeof theconditionsisfamiliar from
therealm of Bayesian networks: our dependency model must
be acyclic. However, since there may be complicated chains
of dependencies both within a frame and between frames,
and on both the class and instance level s, we need to devel op
some toolsto reason about dependencies.

Definition 3.1: A dependency isapair X.A — Y.B, where
X and Y are frames (not necessarily distinct), A isa dot of
X and Bisadotof Y. Wesay that X.A — Y.B holdsif

e Aisasmpledotof X,Y = X and B.o isaparent of A;

e Alisacomplex dot of X, B isin theimport list of A,
and Y is either an instance frame assigned to X . A or the
p-class frame which isthe value type of X.A. I

Intuitively, a dependency X.A «— Y.B asserts that for
every instance frame I consistent with X there exists an
instance frame J consistent with Y such that 7. A depends
on J.B. (If X isitsaf an instance frame I, then only 7
is consistent with X; if X is a class, then any instance of
that class is consistent with X.) Note however, that our
definition of dependencies only considers the first dot in a
chain onwhichad ot depends; thus, it makesonly afirst-level
partition of dependency. It isa conservative overestimate of
the true dependency moddl, sinceif X.A — Y.B, itisnot
necessarily the case that X.A depends on every slot-chain



Y.B.o. Whileit isfairly straightforward to refine our notion
of dependency, we have found our definition to be adequate
for most purposes.

Definition 3.2: A dependency chain is a list X1.4; «
X2.A2 «— .- such that, for each 7, X;. A; — Xiy1.4:41.
A dependency cycle is a dependency chain that begins and
ends with the same dot. il

Dependency cycles reflect potentia problems with our
model. (Although, as indicated by our discussion above,
some correct models may appear to be problematic sim-
ply because of our overestimate for probabilistic dependen-
cies.) A dependency cycle containing 7.A, where I is an
instance frame, corresponds to a possible chain of depen-
dencies through which 7. A depends on itself. Such acyclic
dependency, if it exists, prevents us from defining a coherent
probability model. A dependency cycle containing X. A for
some class X means that for every instance 7; of X there
is some instance I, of X such that 7;.A depends on 7. A.
In some cases, 71 and I, are necessarily the same instance;
such cases are called truly cyclic. In others, however, they
are distinct instances of the class X. These cases can aso
be problematic, asthey may represent an infinite dependency
chain beginningwith 7. A: I;. A dependson 7. A which de-
pends on some 73. A, etc. Such models aso do not typically
have well-defined probabilistic semantics.

We conclude from this discussion that we want to disallow
al dependency cycles! Some types of dependency cycles
are easy to prevent using purely local considerations. Specif-
ically, we can build, for each class X, a dependency graph
for X. Thisgraph containsal the dots of X, with an edge
from B to A if the dependency X. A — X.B holds. Clearly,
if we want to avoid dependency cycles, this graph should be
acyclic. Indeed, our carein designing the dependency model
for inverse dotsimpliesthat if we make all class dependency
graphs acyclic, we avoid any truly cyclic dependency chains
at theclass level. Formally, if we define a class-level depen-
dency chain to be onein which al the X;’sare p-classes, we
obtain the foll owing theorem:

Theorem 3.3 If wehave a knowledgebaseinwhich all class
dependency graphs are acyclic, thenthere are notruly cyclic
class-level dependency chains.

However, aswediscussed, even dependency chainsthat are
not truly cyclic can result in incoherent models. In addition,
we have not eliminated instance-level dependency chainsthat
are truly cyclic. Unfortunately, the general problem is not
S0 easy to prevent using purely local constraints. However,
we can detect whether or not the KB contai ns a dependency
cycle by building a more global directed graph G, called the
dependency graph of the KB. The nodes of G are al X.A
where X isap-classor named individua frameand A isasot
of X. Thereisan edgefromY.B to X.A if the dependency
X.A — Y.B holds. Clearly, the KB contains a dependency
cycleiff G iscyclic.

For a KB that contains no dependency cycles, our goa
now isto define a probability distribution over instantiations

!Note that we are not disallowing infinite reference chains
(chains of related instances), unlessthey imply infinite dependency
chains.

toframes, i.e., assignmentsof valuestothed otsof theframes.
Severa issues combine to make such adefinition difficult.

The most obviousideaisto follow the approach taken in
the semantics of Bayesian networks: we determine a set of
random variables, and define a distribution over their joint
value space. Unfortunately, our framework is too rich to
make this approach appropriate. As we mentioned, the set
of instance frames that we can potentialy refer to may be
infinite. While one might be able to circumvent this partic-
ular problem, a more serious one manifests when we enrich
our language with structural uncertainty in Sections 4 and 5.
Then, the set of instance frames can aso vary probabilisti-
caly, inaway that both depends on and influences the values
of other random variables in the modd.

We therefore define our semantics via a data generating
process, that randomly samples values for the variousframes
in the model. The random sampling process implicitly de-
fines a distribution over the different possible value assign-
ments: the probability of avalueassignment isthe probability
withwhichitisgenerated by the process. Notethat, although
a random sampling process can also be used as a stochastic
algorithm for approximate inference, we are not proposing
this approach; our sampling process is purely a thought ex-
periment for defining the distribution. In Section 6, we show
how a more standard process of exact inference can be used
to effectively answer queries relative to this distribution.

The sampling process builds value assignments to sots
of frames incrementally, as the different components are re-
quired. By alowing such partia assignments, we bypass
the problem of going off on infinite sampling chains. The
assumption of finite dependency chains guarantees that the
sampling chains required to sample the value of any simple
dot will dwaysterminate.

Definition 3.4 A partia value ¥ for an instance frame isan
gnment of values (of the appropriatetype) to some subset
of its smple dots, an assignment of instance frames (from
the appropriate p-class) to some subset of its complex dots,
and a partial valuefor each of these assigned instances. i

One final subtlety arises in the sampling construction.
Someinstance frames may have specific val ues pre-assigned
to some of the their dots. Such an assignment can be done
viaan explicit statement for anamed instance frame, or viaa
process of inheritancefrom atemplate d ot of aclasstowhich
the instance belongs. As we explained in Section 2, the se-
mantics of such assignmentsis to condition the distribution.
To obtain the right semantics, we make the obvious modifi-
cationto our datagenerating process. If, duringthe sampling
process, avaue is generated for a dot which isinconsistent
with the observed value, we simply discard the entire partial
value generated up to that point. It is easy to see [4] that
the relative probability with which a partial value is gener-
ated in this data generating process is exactly the same asits
probability conditioned on the observed dot values.

As we discussed, our sampling procedure builds up a par-
tial value ¥ piece by piece, as the pieces are needed. Our
main procedure, shown in Figure 1, is Sample(Z, A), which
samplesthevalueof asinglesimpledot A of asingleinstance
frame I. In order to sample A from the correct distribution,
it must backward chain and sample other dots on which the



Sample(7, A)
If A hasavaluein® thenreturn
Foreach parent o of A
If o isadot Bin T then
Sample(, B)
Else /* o isof theformo’.C */
Let J := ComplexValue(I,c’)

ComplexValue(7, o)
If o is empty then
Return 7
I* o isof theform B.o’ */
If I.B isassignedavalue J in 9 then
LetK =J
Elseif I.B ispre-assignedavaueJ then

Sample(J, C) Extend? with1.B = J
Choose(7, A) Let K :=J
Else
Choose(7, A) Let Y bevalue-type(B)

Chooseavaluewv for A
accordingto P(A | Pa(A))
Extend ¥ with7.A = v
If A hasapre-assignedvaluev’ then
If v’ # v thenfail

Create anew instance K of p-classY
Extend? withI.B = K
If B hasaninverse B’ in K then
Extendd with K. B’ = T
Return ComplexValue(K , o)

Figure 1: Data generating sampling model

value of A depends. ComplexValue(Z, o) determines the
value of the complex dot-chain 7.0, if necessary creating
new instance frames to represent the values of complex dots.
When the procedure returns, the partial value 9 (a global
variable in the procedure) containsavaluefor 7. A.

Lemma3.5: |If the dependency graph is acyclic, then
Sample(7, A), executed from a partial value 9 defines a
probability distribution over extensions of «J with a value as-
signedto 7. A. Furthermore, thedistributiondoes not depend
on the order in which the parents of A are examined.

Proof: The basic steps in the proof are as follows. To prove
the first part of the theorem, it suffices to show that the sam-
pling algorithmterminates. This proof proceedsusingasim-
pleinductiveargument over thelength of dependency chains.
To prove that the distributionisindependent of the order, we
observe that asimple dot isalways generated from the same
conditional distribution, regardlessof whenitissampled, and
that the failure conditionsare also applied universaly. il

We can now define a SampleKB procedure that uses
Sample(Z, A) to sample values for the dots of al named
instances in the KB. If any call to Sample fails, the entire
sampling process needs to be restarted. Once a value has
been assigned to all simpledotsof named instances, we have
accounted for al evidencein themodel, and thereforefurther
sampling of other dots cannot possibly fail. Therefore the
distribution we have obtai ned over the slotswe have sampled
isthefina one.

Theorem 3.6 If the dependency graph is acyclic then Sam-
pleKB defines a probability distribution over partial values
9 which have values assigned to all simple dlots 7. A for all
named instances /.

4 Multivalued dotsand number uncertainty

To this point, we have assumed that every dot is single-
valued. However, dots that take on multiple values are a
fundamenta concept in frame systems. The ai-professor p-
class may have a multi-valued papers sot of type ai-paper.
To simplify our discussion, we require multi-valued dots to
be complex, and al values of the slot must be of the same
p-class, as specified in the dot’sva ue-type.

To dlow other dotsin aframe X to depend on the prop-
erties of amulti-valued slot A, we must present away for a

dot to depend on a set of dots. As the elements in the set
cannot be referred to individually, we must refer instead to
the properties of the set.

Definition 4.1: A quantifier sot for a multi-valued slot A
has the form V(A.o e), A(A.o e), < n(Ao : e)
or > n(A.oc : e), where o isadot chain of A and e is
an element of the value type of A.o. The value-type of a
quantifier ot isthe set {true, false}. I

Given a set of vauesfor A, the value of a quantifer ot on
A.B has precisely the meaning that one would expect; for
example, if for at least 10 values I of the paperssot I.impact
has the value high, then the value of > 10(papers.impact :
high) istrue. Note that the CPT of a quantifier dlot iswell-
defined for any number of values of its multi-valued dot.
On the other hand, no other dot can depend directly on the
multi-valued dot, thereby avoiding the problem of defining
general CPTswithavariablenumber of parents. A quantifier
dot, onthe other hand, istreated in the same way asasimple
dot, so it may be used as a parent of another dot. Thus,
for example, the will-get-tenure ot of the assistant-professor
class may depend on the above quantifier slot.

So far, we have not specified the number of values that
a given multi-valued dot can take. In many cases, e.g., the
number of papers, this number is not fixed. Therefore, we
would like to be able to model situationsin which different
numbers of papers are possible, and to represent our beliefs
in these various possibilities. In other words, we would like
to alow structural uncertainty—uncertainty over the set of
entities in the world and the relationships between them.
Uncertainty over the number of values of amulti-valued slot
isatypeof structural uncertainty called number uncertainty.

We can extend our language to represent number uncer-
tainty by associating with each multivaluedslot A of X anew
number slot num( A), which ranges over some set of natural
numbers {0, 1, ..., n} (we assume that the number of values
of every slotisbounded). Theslot num(A) istreated just like
any other smpledot; it has parents and distribution facets that
describe its probability model. Thus, the number of values
of A in X can depend on values of other dots of X and
of related frames, and it can aso be the parent of another
slot. For example, ai-professor will have a num(papers) slot,
whose value ranges from 0 to 50; hum(papers) may depend
on productivity and in turn influence tired.

Aswith the case of single-valued dots, a specific value 7
may be asserted for a multi-valued dot A of both a p-class
and a named individual. We interpret such assignments as
asserting that one of A’svaluesis I. It does not prevent A
from having other values; in fact, multiple values may be
asserted for the dot. Such assignments do not eliminate our
number uncertainty for thisdot, but any case where the slot
has fewer than the number of asserted fillers is eliminated;
thus, we must condition num(A) to be at least the asserted
number. To assert that A has only the values mentioned, we
would need to explicitly assert avalue for num(A4).

It isinteresting to examine the interaction between multi-
valued dlots and inverses. Assume that the advisees slot has
an inverse advisor within the phd-student frame. If we now
have a student instance frame 7, then we automatically assert
at least one value—the value /—for the advisees slot in the



instance frame 7.advisor. Thus, even if we have no other
information whatsoever about thisinstance frame, it will not
be a generic member of the professor class. The very fact that
the professor is someone’s advisor modifies its distribution
by conditioningit on the fact that num(advisees) > 1. Note
that the inverse ot may also be multi-valued. Many-many
relations give rise to potentialy infinite reference chains.
For example, a paper may have severa authors, who have
all written severa papers, and so on. However, due to the
restrictions on the flow of influence between primary and
secondary inverses, an infinite reference chain of this sort
cannot lead to an infinite dependency chain.

Number uncertainty can beincorporated into our semantics
quite easily. We need to add number and quantifier dotsinto
the dependency graph. Number dots are treated just like
simpledots: thereisan edge into X.num(A) for each of the
parents of num(A) in X. If X.Q isa quantifier slot over
X. A, thereis an edge from X. A to X.Q. Findly, we must
make the vaue of X.A depend both on X.num(A) and the
propertiesit imports from each of itsfillers. If X.A imports
B, thenwehave X.A — Y.B, whereY isthetypeof A, and
X.A — I.B for every asserted value I of X.A.

The sampling process can easily be modified to account
for multi-valued slots. When a multi-valued slot A needsto
be sampled for the first time, we sample first a value n for
num(A). Let m be the number of asserted valuesfor A. If
n < m, the sample fails. Otherwise, n — m new instances
of the type of A are created, and the set of values of A is
set to be the m asserted fillersand the n — m new instances.
Theorem 3.6 continuesto hold.

5 Reference uncertainty

Aswe said, structural uncertainty allows usto represent dis-
tributionsover modelswith different structures. Number un-
certainty allows usto vary the set of instances in our model.
In this section, we describe reference uncertainty, which a-
lows us to vary the relations between the instances. For
example, we may want the conference slot of the Al-paper
class to be AAAI with probability 0.3, and another generic
Al conference with probability 0.7; note that AAAI is not
the value of a simple dot, but an instance frame itself. We
extend our language to accomodate reference uncertainty by
allowing some complex dlots to be indirect. Each indirect
slot A is associated with a reference slot ref (A), a smple
slot whose value dictates the value of theindirect slot.

Definition 5.1: If A isan indirect dot of type Y in p-class
X, thenref(A) isasmpledot in X whose valuetypeisan
enumerated set R, each of whose values p iseither: anamed
individua of type Y, adot-chain of X whosetypeisY’, or
theclass Y itsdlf.

In any instance I of X, thevalue of A isdefined interms
of the value of ref(A): if the value of ref(A) is a named
individua J, I.A = J; if thevalue of ref (A) isadlot-chain
o,thenI.A = I.o;if ref (A) isthep-class Y, then the value
of Aisanew instanceof Y. i

A reference dot is treated just like any other simple dot,
s0 it has parents and a CPT, and can influence other simple
dots. A vaue can be assigned to a reference slot from

within its value-type, and the value of the indirect slot will
be determined by it. Anindirect dot istreated like any other
single-valued complex dot; it has an import list, and other
dotscan depend onthedotsitimports. For technical reasons,
we do not allow direct assignments to indirect dots, nor do
we allow them to have inverses.

As with number uncertainty, reference uncertainty can be
incorporated quite easily into our semantics. We need to
add reference and indirect dots to the dependency graph.
A reference dot is treated like any other simple dot; thus,
its only dependencies are on its parents. An indirect ot A
clearly dependsonref (A4), sowehave A — ref(A4). Since A
isacomplex dot, it dso depends on the dotsthat it imports.
However, because of reference uncertainty, we do not know
the frame from which it importsthose slots. Let B be some
dot on theimport list of A. To be safe, we need to account
for every possiblevalue p of ref (A). Thus, foreach p € R,
if pisanamed individua I, wehave X.A — I.B;if pisa
dotchainC.o,wehave X.A — X.C;if pistheclassY, we
have X.A — Y.B, denoting the fact A may import B from
someinstance of Y.

The sampling process requires a small change to Assign-
Complex to deal with indirect slots. When AssignComplex
is caled with an indirect dot, we first sample the vaue of
the corresponding reference dot in the usual manner, and
then assign the value of the indirect dot in the manner deter-
mined by the value of the reference dot. With this change,
Theorem 3.6 continuesto hold.

6 Inference

In the preceding sections, we presented a representation lan-
guage and semantics for probabilistic frame systems. To
complete the story, we now present a simple inference a-
gorithm for answering probabilistic queries in such a sys-
tem. Our agorithmcan handleany instance-based query, i.e.,
gueries about the values of dotsof instances. For simplicity,
we restrict attention to simple slots of named instances, as
other queries can easily be reduced to these. The agorithm,
caled ConstructBN, is based on knowledge-based model
congtruction [12], the process of taking a KB and deriving
aBN B representing the same probability model. Standard
BN inference can then be used to answer queries.

Nodes in the Bayes net B have the form 7.0.A where
isan instance frame (not necessarily named), o isapossibly
empty slot chain, and A isasimpledot. Thea gorithmworks
by backward chaining along dependency chains, constructing
the appropriate nodes in the BN if they do not already exist.
More specifically, the algorithm maintains an open list £ of
nodes to be processed. Initially, £ contains only the ssmple
dots of named instances. In each iteration, the agorithm
removes a node from £, and processes it. When a node is
removed from £, it is processed in one of three ways: asa
simpledot, asadot chain, or as aquantifier dot.

Simple dlots 7. A are processed as follows. For each par-
ent /.o, an edge is added from /.0 to I.A by a cal to
AddParent(/.A, I.0); if I.0 is not aready in B, this rou-
tineadds /.0 to B and £. (Note that the parent list of any
simple non-quantifier dot is fixed.) When all parents have
been added, the CPT is constructed from the distribution facet



of A.
A dot chain I.B.7 isprocessed as follows:

ProcessComplex(f.B.7)
If B isindirect then
Processindirect(/.B.1)
Else
If BisassignedavalueJin/then K = J
Else K = X[I.B],where X isthetypeof BinI
AddParent(.B.7, K.7)
Set CPT of 1.B.7 to copy thevalueof K.r

Essentialy, if B isassigned anamed individual J in 7, then
I.B = J. Otherwise, I.B = X[I.B], an instance of X that
does not appear anywhere else in the KB; roughly, X[I.B]
serves the role of a Skolem function. Either way, the value
of I.B isknown to be some other frame K, sothat 7. B.7 is
equa to K.7. We make K.r aparent of 7.B.r, and define
the CPT to enforce this equality. These intermediate nodes
along the dot chain are introduced to monitor the flow of
values through complex slots. They are needed because the
flow becomes complicated when the chain contains indirect
dots. Intermediate variables that are spurious can easily be
eliminated in a simple post-processing phase.

If B isindirect, then the value of /.B could be one of
several frames, depending on the vaue of the reference slot
I.ref (B). For any value p of I.ref(B), let K[p] denote the
framewhichisthevalueof 7.B. Thevaueof /.B.c isequa
to thevalue of K[p].c. In other words, 7.ref (B) selects the
value of 7.B.c from a set of possibilities. Therefore, the
node 7.B.o is a multiplexer node [1]; it has as parents the
node /.ref (B) and al nodes K [p]. B.o, and it uses the value
of I.ref (B) to select, as its value, the value of one of its
appropriate parents.

Processlindirect(/.B.7)

AddParent(I. B.7, I.ref(B))

For each value p of I.ref(B)
If pisanamedindividua J then K[p] = J
If pistheslot chaino then K[p] = .0
If pistheclassY then K[p] = Y[I.C]
AddParent(I.B.7, K[p].T)

Set CPT for I.B.7 to select thevalue of K[I.B].7

It remains to deal with the cases introduced by number
uncertainty. Since a multi-valued slot A can only be used
by quantifier dots, these are the only s ots which we need to
consider. Consider aquantifier dot 7.() over A.o. Thevaue
of 7.Q) isfully determined by 7.num(A) and the value of ¢
in each of the possible values of A. Let n be the maximum
number of such values, and suppose that A is assigned m
values J[1], ..., J[m]inI. Inadditionto these, there can be
up ton — m other instances that are valuesfor A; we build a
frame for each of them, J[m + 1], ..., J[n]. Thenode 7.Q)
depends on 7.num(A) and on the appropriate subset of the
variables J[7].o;i.e,if num(A)isk, thenonly J[1], ..., J[k]
will influence 7.QQ. The exact form of the dependence will
depend ontheform of the quantifier. For example, aV quanti-
fier dlot will be adeterministic conjunction of the appropriate
subset of its parents.

ProcessQuantifier (1.Q) /* aquantifier over A.o */
AddParent(7.Q, I.num(A))
Let » be the maximum value of 7.num(A)
Let J[1],..., J[m] bethe assigned valuesto . A
Fori=m+ 1lton
J[1] = X[:][I.A], where X isthetypeof 7.A

Conf[1].standard

.
Peper{1].acoeped

< "
S

Gump.productivity

\L AAAI standard

Gump.num(papers)

AAAI prestige

o onf[50].standard

Gumptired \ [50] Paper[50].ref (conf) .onf[so].prssig
Va

Gump.>=10(papers.impact:high ‘O

- aper[50].conf.standard> Paper[50] qua

Paper[50].conf.prestige

Gump.will-get-tenure 0
il e o> R ¥
Paper[50].impach

Figure?2: Part of the constructed BN for Prof. Gump’stenure
case. Models for only two of the fifty possible papers are
shown. Paper[i] is shorthand for paper[ Gump.paperg][:], and
Conf[4] isshort for conf[ paper] Gump.papers.conference][:]].

For:=1ton
AddParent(1.Q, J[1].0)
Set the CPT for 7.Q to dependon J[1].p, . .., J[num(A)].o

To illustrate the algorithm, Figure 2 shows part
of the BN constructed for a KB concerning the
tenure case of one Prof. F. Gump, an instance of
ai-assistant-professor. The node Gump.will-get-tenuredepends
on Gump.> 10(papersimpact: high). Thelatterisaquantifier
slot, so it has as parents Gump.num(papers) and the impact
dot of each of the 50 possible papers. Now, assume that
the class paper has impact depending on conference.prestige.
Thisdependenceisduplicated for each of the 50 possible pa-
pers. The dot conferenceisindirect, so that for each i (using
the shorthand of the figure) Paper[i].conf.prestige has the
parent Paper| 7] .ref (conf) and the prestige sl ot of the possible
values of that reference, which are AAAI and conf[z].

Looking over the overal structure of the agorithm, we
see that there is a correspondence between the structure of
the dependency graph G and that of the BN 5. We can de-
fine amapping ¢ from nodes of 5 to nodes of G as follows:
o(I.A.0)isI.Aif I isanamed individual, and X.A other-
wise for X the p-class of 7. Intuitively, the node X.A inG
isarepresentative for all the nodes 7. A where I isageneric
instance of X.

Lemma6.1: If thereis an edge from node y1 to node p; in
B, then thereisan path from ¢(u1) to ¢(p2) ingG.

In other words, G servesas atemplatefor the dependencies
in B. Many edges in B may map to the same path in G, but
any cycle or infinite dependency in 3 will necessarily map to
acyclein G (because G isfinite). This property isthe basis
for the following theorem.

Theorem 6.2: If the dependency graph is acyclic, Con-
structBN terminatesand the constructed Bayesnetisacyclic.

Thisconstruction also providesuswith an aternative spec-
ification for the distribution defined by a probabilistic frame
KB. Intuitively, the BN corresponds to the prior distribution
defined by the KB. In particular, the CPT of anum(A) slot
can ascribe a positiveprobability to num( A) = 0, despitethe
fact that one or more values have been asserted for A in the



KB. In order for B torepresent the distributiondefined by our
semantics, we must condition it on all of our observations.
Specifically, we assert the value for any simple ot whose
valuewas assigned inthe KB, and lower boundson the value
of hum(A) corresponding to the number of values asserted
for A (includingindirectly viainverses).

Theorem 6.3: Let S be the set of simple slots of named
individuals, and £ the evidence on simple slots and number
dots derived from the KB. Then Prg(S | £) isthe same as
the distribution over S defined by our semantics.

We have implemented our approach within a system that
contains the following functionality: A graphica network-
based editor/browser can be used to annotate a frame KB
with the facets encoding its probability model. The edi-
tor/browser interacts with the underlying FRS using OKBC,
thusallowingits usewith many of the existing frame systems
(eqg. [3, 8, 7]). Our inference component also connects to
the FRSviaOKBC; it extracts therelevant i nformation about
frames, instances, and their probabilistic models, constructs
the BN corresponding to the KB, and utilizes the BN to an-
swer probabilistic queries. The system has been integrated
successfully with the Ontolingua frame system [3] and was
used for representing simple models of vehicle movement
patterns in a military setting. Our experience with the sys-
tem showed that even very simple models with three or four
simple p-classes could be used to generate fairly complicated
BNs (with hundreds of nodes) involving several interacting
entities.

7 Discussion and conclusions

In this paper, we have described thefirst integration between
two of the most dominant threads of work in KR. Our lan-
guage provides a clean synthesis between the probabilistic
reasoning component and standard frame reasoning capabil-
ities. From the perspective of frame systems, our system
allows existing frame KBsto be annotated with probabilistic
models, greatly increasing the ability of frame systemsto ex-
press meaningful knowledge in rea-world applications. We
have a so provided an inference algorithm capabl e of answer-
ing probabilistic queries about instances, thereby providinga
significant increase to the inferentia ability of such systems.
From the perspective of probabilisticmodeling, our language
providesthetool sfor the construction of probabilisticmodels
for very large complex domains, significantly scaling up our
ability to do uncertain reasoning.

Our language has given us the exciting capability of cre-
ating highly expressive probabilistic models with structural
uncertainty. Clearly, we have only scratched the surface of
thisidea. For example, it is easy to add uncertainty over
the type of an object, e.g., to define a probability distribu-
tion with which a professor is an assistant, associate, and full
professor. It is aso easy to combine number and reference
uncertainty, allowing, for example, the advisor of a student
to be selected from the set of faculty members in the CS
department. These are two of many possible extensions that
can now be considered.

Another important issue which we have partialy resolved
is the inference problem for probabilistic frame-based mod-
els. We have shown how we can reduce the problemto that of

reasoning in astandard BN, but thisapproach does not make
full use of the structure encoded in our representation. In
particular, it fails to exploit encapsulation of frames within
other frames and the reuse of class models among severa
objects. These ideas are put to good usein [6, 5], anditisan
important research topic to apply them in our richer frame-
work. We believe that by exploiting these features in our
inference as well asin our representation, we will be able to
effectively represent and reason in large uncertain domains.
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