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Abstract

Knowledge representation languages invariably reflect a
trade-off between expressivity and tractability. Evidence
suggests that the compromise chosen by description log-
ics is a particularly successful one. However, description
logic (as for all variants of first-order logic) is severely lim-
ited in its ability to express uncertainty. In this paper, we
present P-CLASSIC, a probabilistic version of the description
logic CLASSIC. In addition to terminological knowledge, the
language utilizes Bayesian networks to express uncertainty
about the basic properties of an individual, the number of
fillers for its roles, and the properties of these fillers. We
provide a semantics for P-CLASSIC and an effective infer-
ence procedure for probabilistic subsumption: computing
the probability that a random individual in class

�
is also in

class � . The effectiveness of the algorithm relies on inde-
pendence assumptions and on our ability to execute lifted in-
ference: reasoning about similar individuals as a group rather
than as separate ground terms. We show that the complexity
of the inference algorithm is the best that can be hoped for
in a language that combines description logic with Bayesian
networks. In particular, if we restrict to Bayesian networks
that support polynomial time inference, the complexity of
our inference procedure is also polynomial time.

1 Introduction
First-order logic has been the basis for most knowledge rep-
resentation formalisms. Its basic units—individuals, their
properties, and the relations between them—naturally cap-
ture the way in which people encode their knowledge. Un-
fortunately, it is severely limited in its ability to represent
our uncertainty about the world: a fact can only be known to
be true, known to be false, or neither. By contrast, most of
our knowledge about the real world is not absolutely true,
but only true with some degree of certainty. This limita-
tion renders first-order logic inapplicable to a large range of
real-world problems.

The fundamental step in addressing this problem was
taken by Bacchus (1990) and Halpern (1990). They defined
and analyzed ways in which probabilities can be added to
first-order logic, and clarified the semantics of the resulting
formalisms. Their work focused on probabilistic extensions
of full first-order logic. As a consequence, these logics were
shown to be highly undecidable (much more so even than

first-order logic). Furthermore, they do not support a natural
and compact specification of independence assumptions,
which are crucial to getting nontrivial conclusions from a
probabilistic knowledge base.

There has been a recent move towards integrating prob-
abilities into less expressive subsets of first-order logic.
By and large, knowledge representation formalisms based
on subsets of first-order logic fall into two categories:
rule-based languages, and object-centered formalisms (e.g.,
frame-based languages, description logics). So far, most
work on probabilistic extensions has focused on augment-
ing rule-based languages (Goldman and Charniak 1990;
Breese 1992; Poole 1993; Ngo et al. 1995). In this pa-
per, we take a first step towards integrating probabilities
with object-centered languages, by developing a probabilis-
tic description logic. Our language provides the ability to
describe classes of individuals, and to reason about the re-
lationships between classes.

Description logics are subsets of first-order logic with
equality that have been designed to model rich class hier-
archies. Informally, in a description logic we begin with a
set of primitive concepts (i.e., unary predicates) and roles
(binary relations). For a given individual � , the individ-
uals related to � by some role � are called the � -fillers
of � . Description logic allows us to describe classes of
individuals (complex concepts) based on their properties:
the primitive concepts to which they belong, the number of

� -fillers of an individual, and the properties of the fillers.
Description logics support subsumption queries—whether
one complex concept is always a subset of another, and
membership queries—whether a particular individual is an
instance of a given concept.

Several systems have been built based on description log-
ics (e.g., CLASSIC (Brachman et al. 1991), LOOM (MacGre-
gor 1988), and BACK (Petalson 1991)), and they have been
used in several applications (e.g., (Wright et al. 1993)). In
addition, several information integration systems (e.g., the
Information Manifold (Levy et al. 1996) and SIMS (Arens
et al. 1996)) use description logics to represent the in-
formation sources by specifying the class of individuals
contained in the information source. For example, an indi-
vidual might be one article in a bibliographic database. To
retrieve the complete answer to a query, the system accesses



each information source whose description overlaps with
the description of the query.

One of the main limitations of description logics is that
they can express very little about the overlap between two
concepts. Given two concepts, we can infer that one sub-
sumes the other, that they are disjoint, or that they may
have a non-empty overlap. However, the degree of the
overlap cannot be described or inferred. The need for such
knowledge is clearly demonstrated in the information inte-
gration domain. Accessing every information source which
potentially overlaps with our query may be prohibitively
expensive. If we want the system to find a large fraction of
the answers as soon as possible, it is very important to infer
the degree of overlap between classes of individuals.

In this paper, we describe a language, P-CLASSIC, which
is a probabilistic extension of the description logic CLAS-
SIC. P-CLASSIC allows the specification of a probability
distribution over the properties of individuals. As the ba-
sic representational tool, we use Bayesian networks (Pearl
1988). Bayesian networks allow a compact and natural rep-
resentation of complex probability distributions by using
independence assumptions. In this case, we use a Bayesian
network whose random variables are the basic properties of
individuals (the primitive concepts), the numbers of their
fillers, and the properties of their fillers.

In general, of course, the domain consists of many dif-
ferent types of individuals. It is rarely the case that the
same distribution will be appropriate for each of them. For
example, the distribution over the properties of an individ-
ual is usually quite different from the distribution over the
properties of its fillers. Therefore, the probabilistic com-
ponent of a P-CLASSIC knowledge base includes a number
of different p-classes (probabilistic classes), each of which
is a Bayesian network over basic properties, the number
of � -fillers (for the different roles � ), and the p-classes
from which the role fillers are chosen. In addition to the
probabilistic component, a P-CLASSIC knowledge base also
contains a standard terminological component, describing
complex concepts in terms of primitive ones. In this paper
we do not consider knowledge bases with ground facts (i.e.,
Aboxes).

The semantics for P-CLASSIC is a simple extension to the
standard semantics of CLASSIC. Following (Halpern 1990),
we interpret a p-class as a probability distribution over the
elements in the domain. Intuitively, this corresponds to
the probability of “choosing” (encountering) this element
in this p-class. By assuming that the p-class distribution is
as described in the corresponding Bayesian network, and
that fillers are chosen independently of each other (from
the appropriate p-class), we can show that our p-classes
uniquely determine the probability of any complex concept.

A P-CLASSIC knowledge base allows us to answer any
probabilistic subsumption query: for two complex concepts�����

, what is the probability that
�

holds within the set of
individuals in

�
. By contrast, standard subsumption can

only tell us whether this number is 1 (
�

is subsumed by
�

),
0 (
�

is disjoint from
�

), or somewhere in between.
Of course, the fact that our representation uniquely deter-

mines this number does not necessarily imply that we can
effectively compute it in practice. We show that the par-
ticular description logic and independence assumptions that
we have made also enable us to develop an effective infer-
ence algorithm for P-CLASSIC. The algorithm follows the
same general lines as the inference algorithm for standard
CLASSIC, by representing concepts as a graph. However, in
P-CLASSIC we replace the logical inference for comparing
pieces of the graph by inference with Bayesian networks for
computing the probability of parts of the graph. Further-
more, in contrast to other algorithms for reasoning in other
first-order probabilistic formalisms, our algorithm imple-
ments a form of lifted inference—reasoning at the level of
variables rather than at the level of ground terms. This
is possible because our independence assumptions enable
the algorithm to reuse computation for individuals that are
essentially identical (e.g., different � -fillers of the same
individual). We show that, in some sense, the complex-
ity of this algorithm is the best that can be hoped for in
a language that combines the expressive power of CLAS-
SIC and Bayesian networks. In particular, if we restrict to
polynomial time Bayesian networks (e.g., polytrees (Pearl
1988)) the complexity of our inference algorithm remains
polynomial.

Several works (Shastri 1989; Jaeger 1994; Heinsohn
1991) have considered probabilistic extensions of descrip-
tion logics. There, the focus was on completing partial sta-
tistical information using default probabilistic procedures
such as entropy maximization or cross-entropy minimiza-
tion, or on deriving the minimal conclusions available from
a small, incomplete set of probabilistic statements. By con-
trast, our approach follows the more recent tradition, es-
tablished by Bayesian networks, of having the probabilistic
knowledge base completely specify a probability distribu-
tion. The full specification approach has been shown to
be both conceptually and computationally simpler. As we
have discussed, similar computational benefits are obtained
in our framework, which supports an inference algorithm
which is significantly more efficient than those for the pre-
vious works on probabilistic terminological languages.

2 The P-CLASSIC Language
We first briefly review the variant of the CLASSIC descrip-
tion logic that underlies P-CLASSIC, and then describe the
probabilistic component of P-CLASSIC. Finally, we describe
how these components come together to form a P-CLASSIC
knowledge base.

2.1 The Description Logic
The basic vocabulary of a description logic consists of prim-
itive concepts (unary predicates) � and roles (binary rela-
tions) � . The language uses a set of constructors to build
descriptions, defining new classes of individuals called com-
plex concepts.

The non-probabilistic component of the P-CLASSIC lan-
guage is a variant of the CLASSIC description logic. Like
CLASSIC, we also allow a set of attributes � in addition
to standard roles. Attributes are binary relations which are



functional: each individual has exactly one filler for that at-
tribute. In P-CLASSIC we add the restriction that the filler for
an attribute be one of a finite prespecified set of individuals.

Complex descriptions in our language are built using the
following grammar, where ��� � denotes a primitive con-
cept, ��� � a role, ��� � denotes an attribute, and

�
and�

represent concept descriptions:
��� �	�	
�� (primitive concept)�� ��� (conjunction)� 
�� (negation on primitive concepts)����� � � (universal quantification)����� ��� � ����� ��� � (number restrictions)���! " #%$'& �

(filler specification)

Readers familiar with CLASSIC will see that our language
does not contain CLASSIC’s same-as constructor, but does
support negation on primitive concepts that is not allowed in
CLASSIC. CLASSIC also allows the fills constructor to be ap-
plied to nonfunctionalroles. It should be noted that allowing
negation on primitive concepts does not change the expres-
sive power of CLASSIC; it therefore follows from (Borgida
and Patel-Schneider 1994) that subsumption in the language
described above can be done in polynomial time.

A description logic knowledge base ∆ includes a termi-
nology ∆ ( (the Tbox) and a set of ground atomic facts ∆ )
(the Abox). In this paper, we do not consider Aboxes. In
CLASSIC, a terminology contains two kinds of statements:
concept introductions, describing the primitive concepts in
the terminology, and concept definitions, specifying the de-
fined concepts. In P-CLASSIC a terminology includes only
the concept definitions (as we describe shortly), while con-
cept introductionsare given as part of the probabilistic com-
ponent of a knowledge base. A concept definition is a sen-
tence of the form

�
: * �

, where
�

is a name of a defined
concept and

�
is a description. Each defined concept is

defined by a single concept definition, and we assume that
names of defined concepts do not appear in the descriptions.1

In our analysis, we use the canonical form of a descrip-
tion. A canonical form of a description is +-,/.10 1 ,324252 ,/.60/7 ,
where + is a conjunction of primitive concepts and their
negations and of filler specifications (with no concept or
attribute appearing more than once), and . 0 is of the form8:9<; 0 �>=�, 8:?<@ 0 �>=-, 8BA �C2 � = , where

�
is also in

canonical form. Any description in our language can be
converted to canonical form in linear time. The depth of a
description is defined as follows. The depth of + is 0. The
depth of a concept +D,E.F0 1 ,G25242H,E.60/7 is 1+Max(depth( + ),
depth( .60 1 ), 25242 , depth( .F0/7 )).

2.2 The Probabilistic Component of P-CLASSIC

The main motivation for P-CLASSIC is to be able to express
the degree of overlap between concepts. A probabilistic
class (p-class) I specifies a probabilitydistributionover the
properties of individuals, allowing us to define the extent of

1This is not a restriction when the terminology has no cycles
(as in CLASSIC) because the definitions in the terminology can be
unfolded. However, as usual, unfolding a terminology may cause
its size to grow exponentially.

the overlap between them. From these numbers, and appro-
priate probabilistic independence assumptions, we are able
to deduce the answers to arbitrary probabilistic subsump-
tion queries: queries of the form “What is the probability
that an object belongs to concept

�
given that it belongs to

concept
�

?”. We write such queries as Pr
8 �KJ � = .

The probabilistic component of P-CLASSIC consists of a
set L of p-classes. Intuitively, a p-class represents our prob-
abilistic information relating to a certain class of individuals.
Each p-class IM�NL is represented using a Bayesian net-
work (Pearl 1988) OQP . A Bayesian network is a DAG in
which the nodes represent random variables. Each variable
takes on a value in some predefined range. Each node in
the network is associated with a conditional probability ta-
ble (CPT), which defines the probability of each possible
value of the node, given each combination of values for the
node’s parents in the DAG. The network structure encodes
the independence assumption that only the parent values are
relevant when making this choice. A Bayesian network de-
fines a joint probability distribution over all combinations
of values of the variables in the network. The probability of
a particular assignment of values is the product over all the
nodes in the network of the conditional probability of the
value of that node given the values of its parents.

T

F

Herbivore

A,C A,-C -A,C -A,-C

*

*

0

1

0

1

0.7

0.3

T

F

A -A

0.7

0.3

1

0

Mammal

0.5

0.5F

T

Animal

A,-M -A,M -A,-MA,M

T

F

0.4

0.6

0.2

0.8

Carnivore

*

*

0

1

T

F

A -A

Vegetable

1

1

0

0

Figure 1: Part of the Bayesian network for the
NATURAL THING p-class.

Figure 1 shows part of the Bayesian network for a p-
class. This network contains a node for each of the primitive
concepts ANIMAL, VEGETABLE, MAMMAL, CARNIVORE and
HERBIVORE. The value of each node is either true or false,
depending on whether an object belongs to the concept or
not. The network defines a joint probability distributionover
the set of truth assignments to these concepts. For exam-
ple, consider the truth assignment

8
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�R
MAMMAL

�
CARNIVORE

�%R
HERBIVORE = . Its probability is

computed by the product
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In general, O P will contain a node for each primitive con-
cept ��� � . For any description

�
which is a conjunction

of primitive concepts and their negations, the probabilityO P 8 � = is defined by the network. This allows simple sub-
sumption queries of the form Pr

8 � J � = to be answered
when both

�
and

�
are conjunctions of primitive concepts

and their negations.
The network for a p-class also determines the probability

distribution over attribute values. For each attribute � �
� , OQP contains a node FILLS(Q). The CPT for a node
lists some finite set of objects � 1

� 25242 � ��� , and for each ��� ,
the probability that (fills � ��� ) holds given each possible
combination of values for the node’s parents. Note that the
node for an attribute also enumerates the set of values that
the attribute may take, and therefore can be used instead of
CLASSIC’s one-of constructor for attributes.

To fully describe an individual, we also need to describe
the number of its various fillers and their properties. For
each role � � � , the network specifies the number of

� -fillers by including a NUMBER(R) node, which takes on
values between 0 and some upper bound

� 0 . The node’s
value denotes the number of � -fillers that the object has.
To describe the properties of the fillers, we simply assign a
p-class for each role, which specifies the distribution from
which the fillers are chosen. Thus, for each role � , the
network contains a PC(R) node, whose value ranges over
the set L of p-classes. This node is always deterministic,
i.e., for any combination of values of its parents, exactly one
p-class is assigned probability 1, and all other p-classes are
assigned probability 0. For simplicity of presentation, we
place some restrictions on the topology of the network. We
assume that a NUMBER(R) node may only be a parent of the
corresponding PC(R) node. The PC(R) node may not be a
parent of any other node.

The probabilistic component of a P-CLASSIC knowledge
base recursively describes a distribution over the properties
of an object. One of the p-classes, denoted I	� , is the
root p-class, denoting the distribution over all objects. The
properties of an object are chosen according to the Bayeisan
network O P�
 . As we traverse the Bayesian network from its
roots down, each node tells us the probabilitywith which its
value should be chosen. The root nodes are chosen with the
appropriate unconditionalprobability, while the distribution
used for other nodes is determined by prior choices for the
values of their parents. In particular, the network dictates
how the number of fillers for each role is chosen given the
basic properties and attribute values. By specifying the p-
class for the fillers, the network specifies how the properties
of the fillers are chosen recursively using a similar process.

As stated earlier, CLASSIC allows us to state concept in-
troductions in its terminology. In P-CLASSIC, concept in-
troductions can be represented directly in the probabilistic
component of the knowledge base (in fact, concept intro-
ductions are a special case of probabilistic assertions). A
concept introduction is a sentence of the form �� �

,
where � is a name of a primitive concept and

�
is a concept

description. For simplicity of exposition, we assume that

�
does not mention any of the roles. (In Section 5.2 we

describe how to remove this restriction.) As in CLASSIC,
we consider concept introductions that are acyclic, i.e., if�

1
� 25242 � ��� is a list of concept introductions, then the de-

scription in ��� can only mention the concepts introduced
in � 1

� 24252 � ����� 1, or the concept THING (which denotes the
set of all individuals). A concept introduction ��� �

is
encoded in the knowledge base by specifying in each p-
class that the probability of

R � , � is 0. Since the concept
introductions are acyclic, we can encode this information
by making the concepts appearing in

�
parents of � , and

setting the appropriate entries in the CPT for � to 0.
Figure 2 shows the probabilistic component of the

knowledge-base for a domain of natural objects. There are
three p-classes, each being a network containing the nodes
ANIMAL, VEGETABLE, MAMMAL, CARNIVORE, HERBIVORE,
FILLS(SIZE), NUMBER(EATS) and PC(EATS).

In the NATURAL THING p-class, Pr
8
ANIMAL =�* 0 2 5,

while Pr
8
VEGETABLE

J
ANIMAL =-* 0, and Pr

8
VEGETABLE

JR
ANIMAL =�* 1. These assertions encode the termino-

logical knowledge that everything is either an animal or a
vegetable, and the two concepts are disjoint.2 In the CPT
for MAMMAL, we see that only animals can be mammals,
and Pr

8
MAMMAL

J
ANIMAL = * 0 2 3. Only animals can

be carnivores, and mammals are more likely than other
animals to be carnivorous; the entries in the column forR

ANIMAL,MAMMAL are irrelevant since that combination
is impossible. The FILLS(SIZE) node indicates that the value
of the size attribute must be big, medium, or small, and
the conditional probability of each value. Since vegetables
don’t eat, NUMBER(EATS) is always 0 if VEGETABLE is true,
while for non-vegetables (i.e., animals) it is a number be-
tween 1 and 6 with the given distribution. Finally, PC(EATS)
depends on CARNIVORE and HERBIVORE: for carnivores it
is CARNIVORE FOOD, for herbivores it is HERBIVORE FOOD,
while for things which are neither it is NATURAL THING.
Since nothing is both a carnivore and a herbivore, that col-
umn is irrelevant.

The CARNIVORE FOOD p-class is the same as
NATURAL THING conditioned on ANIMAL being true.
Thus VEGETABLE is false, and the other nodes only
contain columns that are consistent with these facts.
HERBIVORE FOOD is the same as NATURAL THING condi-
tioned on VEGETABLE being true. In this case the p-class
is deterministic except for the value of FILLS(SIZE), since
ANIMAL, MAMMAL, CARNIVORE and HERBIVORE are all
false, and NUMBER(EATS) is 0. PC(EATS) is irrelevant since
there are no eats-fillers.

3 Semantics of P-CLASSIC

The semantics of P-CLASSIC is an extension of the semantics
of CLASSIC. The basic element is an interpretation. An
interpretation � contains a non-empty domain ��� . It assigns

2Strictly speaking, the probabilistic version of this statement
is slightly weaker than the terminological version, because it is
possible that the set of things that are both animal and vegetable is
non-empty but of measure zero.
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Figure 2: P-classes for the nature domain.

an element � � � � � to every individual � , a unary relation� � to every concept name � � � , a binary relation � �
over � � � � � to every role �K� � , and a total function� � : ��� � to every attribute ��� � . The interpretations
of the descriptions are defined recursively on their structure
as follows (

�����
	
denotes the cardinality of a set

�
):8 � , � = �Q* � ��� � � , 8 R � = � * � ���� � ,8BA

� 2 � = � * ��� � � � J A�� :
8 � � � = � � ��� � � � � 	 ,8:9 @

�>= � * ��� � � � J ��� � J 8 � � � =�� � � 	 9 @ 	 ,8:? @
�>= � * ��� � � � J ��� � J 8 � � � =�� � � 	 ? @ 	8 �  " # � � = � * ��� � � � J � � 8 � =/* �

	
.

An interpretation � is a model of a terminology ∆ ( if� � * � � for every concept definition
�

: * �
in ∆ ( . A

concept
�

is said to be subsumed by a concept
�

w.r.t. a
terminology ∆ ( if

� � � � � for every model � of ∆ ( .
In order to extend this semantics to P-CLASSIC, we have

to provide an interpretation for the p-classes. Following
(Halpern 1990), we interpret a p-class as an objective (sta-
tistical) probability.3 That is, each p-class will be associated
with a distributionover the domain � � . Intuitively, a p-classI describes a random event: the selection of an individual
from the domain. The probability with which an individ-
ual is chosen depends on its properties (as determined by
the other components of the interpretation). First, a truth
assignment to the primitive concepts and an assignment of
values to attributes is chosen, according to the probability

3It is also possible to ascribe semantics to this language using
subjective probabilities, i.e., distribution over possible interpre-
tations. For our purposes, the statistical interpretation is quite
natural, and significantly simpler to explain.

distribution defined in the network OEP . Given this assign-
ment, the number of fillers for each role is chosen, according
to the conditional probability tables of the NUMBER nodes.
Finally, the properties of the fillers are chosen, using another
random event, as described by the p-class determined by the
PC node for the appropriate role. Our semantics require that
the probability of choosing an element be consistent with
this type of random experiment for choosing its properties.

Definition 3.1: Let � be some interpretation over our vo-
cabulary. A probability distribution � over ��� is consistent
with a p-class I if the following condition holds. For every
conjunctive description

�
such that:

(a) for every primitive class � � � ,
�

contains either �
or
R � as a conjunct,

(b) for every attribute ��� � ,
�

contains a conjunct (fills� � ) for some � , and
(c) for every role ��� � ,

�
contains a conjunct

8 *�� �>=
for some integer � ,4

we have that:

1. � 8 � � =E*KO>P 8 � = , i.e., the probability of the set of in-
dividuals in the interpretation of

�
is the same as the

probability assigned to
�

by the Bayesian network for I .
2. For every role � , consider the experiment consisting of

selecting an object � according to � , conditioning on the
event � � � � , and picking one of � ’s � -fillers at random.
This experiment generates a new distribution ��� . This
new distribution ��� must be consistent with I�� , where I��
is the deterministic value of ODP 8 PC(R)

J � = .
4We use

� V�� ��� as a shorthand for
��� � ���% ��� � ��� .



3. Given
�

, the different fillers are all independent of each
other. In other words, the experiment just described gen-
erates the same distribution when we also condition on
properties of other fillers, and recursively on the proper-
ties of fillers of other fillers, and so on. This independence
assumption applies both to other fillers of the same role,
and to fillers of other roles.

We can now define an interpretation ��� for a P-CLASSIC
knowledge base to consist of an interpretation � for the
description logic component and a set of probability dis-
tributions � �P over � � , one for every p-class I , such that
� �P is consistent with I . For any description

�
, we say

��� J * Pr
8 � ='*�� if � �P 
 8 � ='*�� , where I � is the root

p-class.
One somewhat counterintuitive consequence of the inde-

pendence assumption is that if any role has non-zero prob-
ability of having more than one filler, then any model for
the knowledge base must be infinite. In a finite domain, the
distribution for � -fillers must assign a non-zero probability
to some element. If that element is chosen as the first � -
filler, then by the requirement that different role-fillers be
distinct, it must have zero probability of being the second

� -filler, thereby violating the independence condition.
In an infinite domain, on the other hand, ���� is a prob-

ability measure over the domain. While each individual
element has probability zero of being selected, the measure
assigns a non-zero probability to properties of elements. In
fact, we can construct a domain of this type, by defining do-
main elements to correspond to the set of description-logic
properties that they satisfy. This construction is the basis
for the following theorem. Proofs of theorems are omitted
due to space limitations.

Theorem 3.2: A P-CLASSIC knowledge base is always sat-
isfiable in some interpretation.

This result follows because the acyclicity and locality of
the CPTs prevent us from specifying an inconsistent set of
probabilistic constraints (including with respect to termino-
logical information). Note that a satisfiable interpretation
may assign the empty set to some concepts.

The conditions in Definition 3.1 are sufficient to guar-
antee that the probability of any description is uniquely
determined by a P-CLASSIC knowledge base. As we will
see, this result is a consequence of the fact that a Bayesian
network uniquely specifies a probability distribution, and of
our independence assumptions. The following theorem is
proved by induction on the depth of the canonical form of a
description.

Theorem 3.3: For any P-CLASSIC knowledge base ∆, and
any description

�
, there is a unique � ��� 0 � 1� such that

∆
J * 8 Pr

8 � =/*	� = .
4 Inference Algorithm

It is possible to devise a simple algorithm for computing the
probability of a concept of the form +>,>.%0 1 , 25242 ,>.60/7 , by

first computing the probability of + , and then, recursively,
computing the probabilities of .10 1 25242 � .60/7 . However, the
cost of such a procedure would be exponential in the depth
of the concept and in the number of primitive concepts and
attributes. To obtain a tractable algorithm, we make two
observations. First, probabilities can be computed bottom
up, beginning with subexpressions of depth 0. Probabilities
of deeper expressions are computed using the stored prob-
abilities of the subexpressions. The second observation is
that the probability that .%0 holds is completely determined
by the number and p-class of the � -fillers. In Bayesian
network terms, this probability is d-separated (Pearl 1988)
from the rest of the network by NUMBER(R) and PC(R).
Thus, we can add a node to the network representing the
event . 0 , with the parents NUMBER(R) and PC(R). For
each pair of values

8 � � I�� = for the parents, we can compute
the conditional probability of .10 given � and I�� , and add
it to the conditional probability table for the new node. We
then assert as evidence that all the . 0 hold, as well as + , and
compute the probability of

�
by computing the probability

of the evidence in the Bayesian network.
We rely on the Bayesian network inference algorithm to

compute this probability in the most efficient manner pos-
sible. In particular, if the original network is a polytree,5

thus supporting linear time inference, the new network will
continue to support linear time inference after the transfor-
mation. The complete algorithm is shown in Figure 3.

Theorem 4.1: Algorithm ComputeProbability is sound
and complete. In other words, for any description

�
and

P-CLASSIC knowledge base ∆, it returns the number � such
that ∆

J * 8 Pr
8 � =/*	� = .

The following theorem shows that the complexity of the
algorithm is linear in the length of

�
and polynomial in

the number of p-classes. It is important to note that the
complexity of reasoning in P-CLASSIC is no worse than that
of its components, i.e., CLASSIC and Bayes nets alone.

Theorem 4.2 : The running time of algorithm Com-
puteProbability is linear in the length of

�
and quadratic

in the number of p-classes in 
�� . If all the Bayesian net-
works for the p-classes are polytrees, then the running time
of ComputeProbability is also polynomial in the size of the
knowledge base.

As an example, consider computing the probability of������  , 8�9 1 eats =%, A eats. ������  using the networks
in Figure 2. The depth of this expression is 1, and it
contains the depth 0 subexpression ������  . The first
stage of the computation calculates Prob

8
mammal = for

each of the p-classes NATURAL THING, CARNIVORE FOOD
and HERBIVORE FOOD; these probabilities are found to
be 0.15, 0.3 and 0 respectively. Next we calculate
Prob P�
 8 ������  , 8�9 1 eats =/, A eats. ������  = . In this

5A polytree is a Bayesian network whose underlying undirected
graph is acyclic, i.e., there is only one path of influence between
any pair of nodes. Polytrees support linear time probabilistic
inference (Pearl 1988).



ALGORITHM ComputeProbability(
��� 
 � )

//
�

is a description in canonical form.
//
���

is a P-CLASSIC knowledge base.
// Returns � such that

��� � V � Pr
� �3� V � � .

// AddNode(BN, N, Π, CPT) adds node N with parents Π and
// conditional probability table CPT to Bayesian network BN.
// AddEvidence(BN, N = v) asserts that N has value V in BN.
// Evaluate(BN) computes the probability of the evidence in BN.
for � = 0 to

� ����� � 8 � =
for each p-class I and subexpression

� �
of depth � in

�
do:

// when 	 V�
����� � � �3�
, only do this for the root p-class ���

//
��� V�� ����

1

G� � � ���� 7 ,
//
����� V �����! �  �1 ���#"$ �  �6 � � �  � �  �

BN := OQP
for % := 1 to m // skip if m = 0

for � := 0 to
��&

// '  is the bound on the
for each p-class I�� // number of

�  
-fillers

if � 9)( & and � ?+* &
CPT[ � � I�� � true] := Prob P-, 8 � & =/.

else CPT[ � � I�� � true] := 0
CPT[ � � I�� � false] = 1 - CPT[ � � I�� � true]

Π :=
�
NUMBER( �

&
)
�
PC( �

&
)
	

AddNode(BN, .%0 � , Π, CPT)
AddEvidence(BN, .F0 � * true)

AddEvidence(BN, + )
// i.e., AddEvidence for each conjunct in �
Prob P 8 � ��= = Evaluate(BN)

return Prob P�
 8 � =
Figure 3: Algorithm ComputeProbability

description, + is mammal, and there is one . compo-
nent corresponding to the eats role. I � is the p-class
NATURAL THING. A node is added to ODP�
 for . eats,
with the parents NUMBER(EATS) and PC(EATS). Figure 4
shows the conditional probability that . eats is true for
each value of its parents. Because the description re-
quires that

8:9
1 eats = , the entries in the first column are

all 0. When there is exactly one filler of the p-class
NATURAL THING, the entry is 0.15, which is the previ-
ously computed value of Prob 0 ( 8 mammal = . The remain-
ing entries in the first row are 0 2 152, 0 2 153 and so on.
Similarly, the entries for CARNIVORE FOOD are 0.3, 0 2 32,
etc. The entries for HERBIVORE FOOD are all 0 because
Prob 132 8 mammal = * 0. The probability of our query is
then computed in the resulting network, by asserting mam-
mal and . eats to be true, resulting in an answer of approx-
imately 0.007.

5 Discussion and Extensions
The motivation in designing P-CLASSIC was to develop a
tractable first-order probabilistic logic. To that end, we have
shown that P-CLASSIC has a sound, complete and efficient
inference algorithm. In this section, we discuss several fea-
tures and limitations of the expressive power of P-CLASSIC.

0 1 2 3 4 5 6
NT 0 0.15 0.023 0.004 0.001 0.000 0.000
CF 0 0.3 0.09 0.027 0.008 0.002 0.001
HF 0 0 0 0 0 0 0

Figure 4: The probability of
8:9

1 eats =%, 8BA eats.mammal =
given values of NUMBER(EATS) and PC(EATS).

We mention several possible extensions both to the under-
lying description logic and to the probabilistic component.
We examine the extent to which these extensions can be ac-
commodated in our framework and how they would affect
the complexity of reasoning.

5.1 The Underlying Description Logic
P-CLASSIC can be easily extended to handle disjunctive
concepts, existential quantification, negation on arbitrary
concepts (not only primitive ones) and qualified number
restrictions. Our semantics provide a well-defined proba-
bility for descriptions using these constructors. However,
the inference algorithm for computing probabilities for such
descriptions is significantly more complicated, and is no
longer polynomial in the length of the description. This
is not surprising, since the lower bounds (NP-hardness or
worse) of subsumption in the presence of these constructs
will apply to the probabilistic extension as well.

Another restriction, as mentioned above, is that the num-
ber of fillers for each role be bounded. This restriction exists
for two reasons. First, it allows us to completely specify the
distribution over the number of fillers for a role. Second,
the inference algorithm considers all possible values for the
number of fillers, so this restriction is required to guarantee
that the algorithm terminates. We can address the first issue
by expressing the probability that the number of fillers is

@
using a closed form function 4 8H@ = . The inference problem
is somewhat harder. In certain cases, the algorithm may
be able to compute a closed form expression for an infi-
nite series involving 4 8H@ = . Alternatively, arbitrarily close
approximations to the true probability can be obtained by
summing a sufficiently long finite prefix of this series.

The only constructor from CLASSIC that is not included
in P-CLASSIC is same-as, which enables to describe equal-
ity of attribute paths (e.g., to state that the path wife.father
reaches the same individual as the path mother). Such
equalities are harder to incorporate into our language be-
cause our semantics depends heavily on the assumption
that different fillers are completely independent. Equality
of individuals reached via different filler chains obviously
contradicts this independence assumption.

5.2 The probabilistic component
The tractability of our language rests heavily on the in-
dependence assumptions made in the probabilistic compo-
nent: (1) the properties of different fillers are independent,
and (2) the properties of an object and of one of its fillers
are independent given the filler’s p-class. For example, our



assumptions prevent us from stating that a non-carnivore
always eats at least one vegetable. Such an assertion would
imply that the eats-fillers are not independent, since if all
but one of the fillers are not vegetables, the last one must be.
Thus, although we can (albeit at a high computational cost)
compute the probabilityof any description with disjunctions
or existentials, we cannot assert terminological properties
involving these constructs without modifying the semantics.

One type of correlation between fillers can actually be
dealt with fairly easily within our framework. Assume
that our vocabulary contains the concept healthy-to-eat.
We may want to assert that the healthiness of the vari-
ous foods eaten by a person tends to be correlated. We
can accomplish this by introducing a new concept health-
conscious and two p-classes representing HEALTHY FOOD
and UNHEALTHY FOOD. The value of the node PC(EATS)
can now depend on the value of HEALTH-CONSCIOUS, in
that a value of HEALTHY FOOD is more likely when health-
conscious is true. This new concept is a hidden concept
(analogous to a hidden variable in Bayesian networks). It
plays the same role as a regular primitive concept in the def-
inition of the p-class, but it is not a primitive concept in the
language and therefore does not appear in the terminology
or in queries.

One promising alternative with greater expressive power
arises from our recent work on functional stochastic pro-
grams (Koller et al. 1997). The basic idea is that we view
each p-class as a “stochastic function”, and each individual
as a call to the function for that appropriate p-class. A call
to such a stochastic function chooses (randomly) the proper-
ties of the individual for which it is called. The properties of
the fillers for an individual are chosen by recursive calls to
the functions for the appropriate p-classes. Once we view a
filler as a function, we can pass the relevant properties of the
individual (e.g., on-a-diet) as a parameter to the function.
The parameters can directly influence the distribution of the
filler properties. In our example of Section 2, the p-classes
for CARNIVORE FOOD and HERBIVORE FOOD are equivalent
to those that would have been obtained had we passed the
value of animal to the filler as a parameter (with a value of
true and false respectively).

In addition to taking arguments, a stochastic function can
also “return values”. In our context, this feature would
allow properties of an object to depend on those of its
fillers. Thus, for example, we can have the probability
over the cholesterol-level attribute depend on the actual
fat content of the foods eaten by the person. We could
represent this type of dependency by introducing a node
into the Bayesian network corresponding to the complex
concept

A
eats.low-fat. The node representing cholesterol-

level can now be a child of this new node, encoding the
desired dependency. In general, we could have fillers recur-
sively “pass back” the truth value of deeply nested complex
concepts. This extension supports concept introductions� � �

where
�

is an arbitrary complex concept. Some-
what surprisingly, we can accomodate the functional view
of fillers fairly easily within our framework, and without a
significant increase in computational cost. We defer details

to the full version of this paper.
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