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Abstract

Markov networks are widely used in a wide variety of applicas, in problems
ranging from computer vision, to natural language, to cotational biology. In
most current applications, even those that rely heavilyearrled models, the
structure of the Markov network is constructed by hand, duiia¢ lack of effec-
tive algorithms for learning Markov network structure fratata. In this paper, we
provide a computationally effective method for learningrkiay network structure
from data. Our method is based on the usé pfegularization on the weights of
the log-linear model, which has the effect of biasing the el@dwards solutions
where many of the parameters are zero. This formulation easthe Markov
network learning problem into a convex optimization prablen a continuous
space, which can be solved using efficient gradient methadey issue in this
setting is the (unavoidable) use of approximate inferemddch can lead to er-
rors in the gradient computation when the network structsigense. Thus, we
explore the use of different feature introduction schenres@mpare their per-
formance. We provide results for our method on synthetiadatd on two real
world data sets: modeling the joint distribution of pixelwes in the MNIST data,
and modeling the joint distribution of genetic sequenceatians in the human
HapMap data. We show that ol -based method achieves considerably higher
generalization performance than the more standarbased method (a Gaussian
parameter prior) or pure maximume-likelihood learning. Vi&ashow that we can
learn MRF network structure at a computational cost thabismuch greater than
learning parameters alone, demonstrating the existenaef@dsible method for
this important problem.

1 Introduction

Undirected graphical models, such as Markov networks oflilegar models, have been used in an
ever-growing variety of applications, including computgsion, natural language, computational
biology, and more. However, as this modeling framework edlis increasingly more complex and
less well-understood domains, the problem of selectinmfamong the exponentially large space
of possible network structures becomes of great importahreguding all of the possibly relevant
interactions in the model generally leads to overfittingl aan also lead to difficulties in running
inference over the network. Moreover, learning a “goodusture can be an important task in its
own right, as it can provide insight about the underlyingsture in the domain.

Unfortunately, the problem of learning Markov networks @ns a challenge. The key diffi-
culty is that the maximum likelihood (ML) parameters of tagstworks have no analytic closed
form; finding these parameters requires an iterative proe(such as conjugate gradient [15] or
BFGS [5]), where each iteration runs inference over theesurmodel. This type of procedure is
computationally expensive even for models where inferés¢ectable. The problem of structure
learning is considerably harder. The dominant type of sofuto this problem uses greedy local



heuristic search, which incrementally modifies the modehtiging and possibly deleting features.
One approach [6, 14] adds features so as to greedily imprevenbdel likelihood; once a feature
is added, it is never removed. As the feature addition stdeigistic and greedy, this can lead
to the inclusion of unnecessary features, and thereby tdyowemplex structures and overfitting.
An alternative approach [1, 7] explicitly searches overdpace of low-treewidth models, but the
utility of such models in practice is unclear; indeed, hatledigned models for real-world problems
generally do not have low tree-width. Moreover, in all of ireedy heuristic search methods, the
learned network is (at best) a local optimum of a penaliZeglitiood score.

In this paper, we propose a different approach for learniregstructure of a log-linear graphi-
cal model (or a Markov network). Rather than viewing it as enbiatorial search problem, we
embed the structure selection step within the problem cdupater estimation: features that have
weight zero (in log-space) are degenerate, and do not independencies between the variables
they involve. To appropriately bias the model towards spanse use a technique that has become
increasingly popular in the context of supervised learnimgroblems that involve a large number of
features, many of which may be irrelevant. It has been loraywm[22] that using’; -regularization
over the model parameters — optimizing a joint objectivet thades off fit to data with the sum
of the absolute values of the parameters — tends to lead t8espaodels, where many weights
have value 0. More recently, Dudik et al. (2004) showed tleaisity estimation in log-linear mod-
els usingL;-regularized likelihood has sample complexity that growsydogarithmically in the
number of features of the log-linear model; Ng. (2004) shavesmilar result forL,-regularized
logistic regression. These results show that this apprzaeseful for selecting the relevant features
from a large number of irrelevant ones. Other recent workppees effective algorithms fdk;-
regularized generalized linear models (e.g., [19, 10, 9]pport vector machines (e.g., [25]), and
feature selection in log-linear models encoding naturagleage grammars [20].

Surprisingly, the use of.;-regularization has not been proposed for the purpose ottsire
learning in general Markov networks. In this paper, we expliis approach, and discuss issues
that are important to its effective application to largelgems. A key point is that, for a giveh; -
based model score and given candidate featuré sete have a fixed convex optimization problem
that admits a unique optimal solution. Due to the propedfabe L, score, in this solution, many
features will have weight, generally leading to a sparse network structure. Howévisrgenerally
impractical to simply initialize the model to include all ggible features: exact inference in such
a model is almost invariably intractable, and approximaference methods such as loopy belief
propagation [18] are likely to give highly inaccurate esites of the gradient, leading to poorly
learned models. Thus, we propose an algorithm schema thdually introduces features into
the model, and lets thg, -regularization scheme eliminate them via the optimizapoocess. We
explore the use of different approaches for feature intetida, one based on ttgain-based method
of Della Pietra, Della Pietra and Lafferty [6] and one on ghnafting method of Perkins, Lacker and
Theiler [19]. We provide a sound termination condition fhetalgorithm based on the criterion
proposed by Perkins et al. [19]; given correct estimates@fgradient, this algorithm is guaranteed
to terminate only at the unique global optimum, for any readxe feature introduction method.

We test our method on synthetic data generated from knowng$viRE on two real-world tasks:
modeling the joint distribution of pixel values in the MNISTata [12], and modeling the joint
distribution of genetic sequence variations sigle-nucleotide polymorphisms (SNPs) — in the
human HapMap data [3]. Our results show tliatregularization out-performs other approaches,
and provides an effective method for learning MRF strucawen in large, complex domains.

2 Preliminaries

We focus our presentation on the framework of log-linear sisdwhich forms a convenient basis
for a discussion of learning. Lét = { X1, ..., X,,} be a set of discrete-valued random variables. A
log-linear model is a compact representation of a probability distributisarassignments t&’. The
log-linear model is defined in terms of a set of feature funddif,. (X 1), each of which is a function
that defines a numerical value for each assignmgnto some subseX; c X. Given a set of
feature functiong” = { f;. }, the parameters of the log-linear model are weights {0, : f, € F'}.
The overall distribution is then defined aBj(x) = % exp(Y_ ¢, e Ok fr(zk)), wherezy, is the
assignment toX ;, within x, andZ(0) is the partition function that ensures that the distribution is
normalized (so that all entries sum to 1). Note that this dt@dim of features encompasses both
“standard” features that relate unobserved network vegle.g., the part of speech of a word
in a sentence) to observed elements in the data (e.g., thetitgeif), and structural features that



encode the interaction between hidden variables in the mAdeg-linear model induces ®larkov
network over X', where there is an edge between every pair of varialiles(; that appear together
in some featuref;, (X ) (X;, X; € X}). The clique potentials are constructed from the log-linea
features in the obvious way. Conversely, every Markov netwean be encoded as a log-linear
model by defining a feature which is an indicator functiondaery assignment of variables to a
cligue X .. The mapping to Markov networks is useful, as most inferegerithms, such as belief
propagation [18, 16], operate on the graph structure of thekil network.

The standard learning problem for MRFs is formulated aoofed. We are given a set of IID
training instance® = {z[1],...,x[M]}, each consisting of a full assignment to the variables in
X. Our goal is to output a log-linear mods#t over X', which consists of a set of featurésand a
parameter vectad that specifies a weight for eagh € F'.

The log-likelihood functioriog P(D | M) has the following form:

UM :D) =" 0ifu(D) — Mlog Z(6) = 0" £(D) — M log Z(6), 1)
fr€F

where /(D) = an‘le fr(zx[m]) is the sum of the feature values over the entire dataf$é&t)

is the vector where all of these aggregate features have &eanged in the same order as the
parameter vector, anﬂTf(D) is a vector dot-product operation. There is no closed-fashat®n

for the parameters that maximize Eq. (1), but the objecte®incave, and can therefore be optimized
using numerical optimization procedures such as conjugraitient [15] or BFGS [5]. The gradient

of the log-likelihood is: M - D
HELD) — (D) - MEan ol @

This expression has a particularly intuitive form: the gesud attempts to make the feature countsin
the empirical data equal to their expected counts relatitld learned model. Note that, to compute
the expected feature counts, we must perform inferenctvel® the current model. This inference
step must be performed at every step of the gradient pracesss

3 L,-Regularized Structure Learning

We formulate our structure learning problem as follows. \WWeume that there is a (possibly very
large) set of featureg’, from which we wish to select a subsiEtC F for inclusion in the model.
This problem is generally solved using a heuristic searar dve combinatorial space of possible
feature subsets. Our approach addresses it as a search@pessible parameter vectérs R7T,

Specifically, rather than optimizing the log-likelihoodeétf, we introduce & aplacian parame-
ter prior for each featurd; takes the formP(0;) = Bk/2 - exp(—Sk|0k|). We defineP(0) =
[1; P(fx). We now optimize the posterior probability(D, ) = P(D | 8)P(0) rather than the
likelihood. Taking the logarithm and eliminating constterins, we obtain the following objective:

max(07 £(D) ~ Mlog Z(8) — 3 il 3
k

In most cases, the same prior is used for all features, so weha= g for all k. This objective
is convex, and can be optimized efficiently using method$ saagconjugate gradient or BFGS,
although care needs to be taken with the discontinuity ofitvévative atd. Thus, in principle, we
can simply optimize this objective to obtain its globallytiopal parameter assignment.

The objective of Eq. (3) should be contrasted with the onaiokt for the more standard param-
eter prior used for log-linear models: the mean-zero Gamsgiior P(6,) o< exp(—63/20?). The
gaussian prior induces a regularization term that is quadiraé,,, which penalizes large features
much more than smaller ones. Conversély;regularization still penalizes small terms strongly,
thereby forcing parameters @ Overall, it is known that, empirically, optimizing an, -regularized
objective leads to a sparse representation with a relatia sumber of non-zero parameters.

Aside from this intuitive argument, recent theoreticalules also provide a formal justification
for the use oflL; -regularization over other approaches: The analysis ofilbeidal. (2004) and Ng.
(2004) suggests that this form of regularization is effextt identifying relevant features even with
a relatively small number of samples. Building directly dwe tresults of Dudik et al. (2004) , we
can show the following result:

Corollary 3.1: Let X = {X;,..., X, } bea set of variables each of domain size d, and P x (X)
be a distribution. Let F be the set of indicator features over all subsets of variables X C X of



cardinality at most ¢, and 6, ¢, B > 0. Let be the parameterization over F that optimizes

0% = Eeop [0(E:0%)].
p=arg max  Eep [ (3 B)}
For a data set D, let 8, be the assignment that optimizes Eq. (3), for regularization parameter

Br = B = \/cIn(2nd/8)/(2m) for all k. Then with probability at least 1 — 4, for a data set D of
[1D instances from P* of size

1 2nd
2

Ecp- [e(g : éD)} > Eeop[0(€: 0%)] —c.

In words, using thd.;-regularized log-likelihood objective, we can learn a Marketwork with
a maximal clique size, whose expected log-likelihood relative to the true unged distribution is
at moste worse than the log-likelihood of the optimal Markov netwamkhis class whosé-norm
is at mostB. The number of samples required grows logarithmically ia tumber of nodes in
the network, and polynomially il3. The dependence aB is quite natural, indicating that more
samples are required to learn networks containing morerigfrinteractions. Note, however, that
if we bound the magnitude of each potential in the Markov mekythenB = O((nd)), so that a
polynomial number of data instances suffices.

we have that:

4 Incremental Feature Introduction

The above discussion implicitly assumed that we can find kbiead optimum of Eq. (3) by simple
convex optimization. However, we cannot simply includesathe features in the model in advance,
and use only parameter optimization to prune away the ragleones. Recall that computing the
gradient requires performing inference in the resultingdelo If we have too many features, the
model may be too densely connected to allow effective imfege Indeed, even approximate infer-
ence, such as belief propagation, may fail to converge ametbre give rise to unstable estimates
of the gradient and thereby to suboptimal solutions. Thus,approach also contains a feature
introduction component, which gradually selects feattoesdd into the model, allowing the opti-
mization process to search for the optimal values for th@iameters. More precisely, our algorithm
maintains a set ddctive features F C F. An inactive featuref;, has its parametel; set to0; the
parameters of active features are free to be changed whimninipg the objective Eq. (3).

In addition to various simple baseline methods, we explae fieature introduction methods,
both of which are greedy and myopic, in that they compute sbengistic estimate of the likely
benefit to be gained from introducing a single feature intoahtive set.

The grafting procedure of Perkins et al. [19], which was developed fotuieaselection in stan-
dard classification tasks, the features are selected bast#tgradient: We first optimize the ob-
jective relative to the current active weighfts so that, at convergence, the gradient relative to these
features is zero. Then, for each inactive featfireve compute the partial derivative of the objective
Eq. (3) relative t& ¢, and select the one whose gradient is largest.

A more conservative estimate is obtained from ¢lam-based method of Della Pietra et al. [6].
This method was designed for the log-likelihood objectiMéaegins by optimizing the parameters
relative to the current active sét Then, for each inactive featuyf it computes the log-likelihood
gain of adding that feature, assuming that we could optintizeature weight arbitrarily, but that
the weights of all other features are held constant. It tmémduces the feature with the greatest
gain. Della Pietra et al. show that the gain is a concave tigethat can be computed efficiently
using a one-dimensional line search. For the restricted obbinary-valued features, they provide
a closed-form solution for the gain.

Ourtask is to compute not the optimal gain in log-likelihobdt rather the optimal gain of Eq. (3).
It is not difficult to see that the gain in this objective, wiidiffers from the log-likelihood in only
a linear term, is also a concave function that can be optihiing line search. Moreover, for the
case of binary-valued features, we can also provide a clfsed solution for the gain, which we
omit for lack of space. In our experiments, we use a slighiffiecent form of feature, which takes
values in+1. For this feature, the change in the objective functionfibraducing a featur¢ is:

Arr = 0y fr.(D) — B0k || — M log[exp(0x) Po(fr) + exp(—0x) Po(—f1)],



whereM is the number of training instances. If we take the derieatif’the above function and set
it to zero, we also get a closed form solution:

(M + fx(D) — BM Sign(ek))Pe(ﬁfk)) _

(M — fix(D) + BM sign(0x))Po(fx)

Both methods are heuristic, in that they consider only themital gain of adding a single feature
in isolation, assuming all other weights are held consthidwever, the grafting method is more
optimistic, in that it estimates the value of adding a sirfglgure via the slope of adding it, whereas
the gain-based approach also considers, intuitively, feoveiie can go in that direction before the
gain “peaks out”. The gain based heuristic is, in fact, a ldveaind on the actual gain obtained from
adding this feature, while allowing the other features smaldapt. Overall, the gain-based heuristic
provides a better estimate of the value of adding the featlibeit at slightly greater computational
cost (exceptin the limited cases where a closed-form soiwtan be found).

As observed by Perkirgt al.. [19], the use of thd.;-regularized objective also provides us with
a sound stopping criterion for any incremental featurasotwn algorithm. If we have that, for
every inactivef;, ¢ F, the gradient of the Iog—IikeIihooﬂW| < S, then the gradient of the
objective in any direction is non-positive, and the objextis at a stationary point. Importantly,
as the overall objective is a concave function, it has a umgjobal maximum. Hence, once the
termination condition is achieved, we are guaranteed tleaarg at the local maximumegardless
of the feature introduction method used. In other words, although the method contains a heuristic
component for introducing features, there is no impact efrturistic on the final outcome, but only
on the complexity.

5 The Use of Approximate Inference

All of the steps in the above algorithm rely on the use of iafere for computing key quantities: The
gradient is needed for the parameter optimization, for ttadtipg method, and for the termination
condition, and the expression for the gradient requiresctiraputation of marginal probabilities
relative to our current model. Similarly, the computatidnttee gain also requires inference. As
we discussed above, in most of the networks that are usefdetador real applications, exact
inference is intractable. Therefore, we must resort to appnate inference, which results in errors
in the gradient. While many approximate inference methal&tbeen proposed, one of the most
commonly used is the general clasdadpy belief propagation (BP) algorithms [18, 16, 24]. The
use of an approximate inference algorithm such as BP ragsesa important points.

One important question issue relates to the computatidreajtadient or the gain for features that
are currently inactive. The belief propagation algorithwhen executed on a particular network with
a set of active featurds, creates a cluster for every subset of variatXgsthat appear as the scope of
afeaturef, (X ). The output of the BP inference process is a set of margioalgirilities over all of
the clusters; thus, it returns the necessary informationdmputing the expected sufficient statistics
in the gradient of the objective (see Eq. (2)). However, featéiresf,(X ) that are currently
inactive, there is no corresponding cluster in the inducedkdv network, and hence, in most cases,
the necessary marginal probabilities ov€f, will not be computed by BP. We can approximate this
marginal probability by extracting a subtree of the calibcaloopy graph that contains all of the
variables inX ;. At convergence of the BP algorithm, every subtree of theyagraph is calibrated,
in that all of the belief potentials must agree [23]. Thus,caa view the subtree as a calibrated
cligue tree, and use standard dynamic programming methgetgtoe tree (see, e.g.. [4]) to extract
an approximate joint distribution ovex .

A second key issue is that the performance of BP algorithmsigdly degrades significantly as
the density of the network increases: they are less likelyotoverge, and the answers they return
are typically much less accurate. Moreover, non-converga the inference is more common
when the network parameters are allowed to take larger, mdreme values; see, for example, [21,
11, 13] for some theoretical results supporting this emaplrphenomenon. Thus, it is important
to keep the model amenable to approximate inference, andihecontinue to improve, for as
long as possible. This observation has two important careseces. First, while different feature
introduction achieve the same results when using exaatenée, their outcomes can vary greatly
when using approximate inference, due to differences isthesture of the networks arising during
the learning process. Thus, as we shall see, feature irttiothumethods that introduce the more
relevant features first work much better in practice. Seconarder to keep the inference feasible for
as long as possible, we utilize an annealing schedule foretigarization parametet, beginning

1
Hk:§log(



with large values of3, leading to greater sparsification of the structure, and tiradually reducing
0, allowing additional (weaker) features to be introducetlisimethod allows a greater part of the
learning to be executed with a more robust model.

6 Results

In our experiments, we focus on bingrgirwise Markov networks, where each feature function is an
indicator function for a certain assignment to either a p&itodes or a single node. We used conju-
gate gradient method for solving the optimization problem@). We use theonditional marginal
log-likelihood (CMLL) as our evaluation metric on the learned network. Tizgkate CMLL, we
first divide the variables into two groupXhiggen andXopservea Then, for any test instanc€[m],

we computeC M LL,, = > X, € Xrnasenlm] log P(Xp|Xobseved]). In practice, we divided the vari-
ables into four groups and calculated the average CMLL wlbsewing only one group and hiding
the rest. Note that the CMLL is defined only with respect tortiaginal probabilities (but not the
global partition functionZ(6)), which are empirically thought to be more accurate.

We considered three feature induction schemesG&i: based on estimated change of gain, (b)
Grad: using grafting and (ckimple: based on a simple pairwise similarity metric. Under the-Sim
ple scheme, the score of a pairwise feature betwegand X is the mutual information between
X; andX;. For each scheme, we varied the regularization methodN¢ak: no regularization, (b)
L1: L, regularization and (d)2: L, regularization

Experiments on Synthetically Generated Data. We generated synthetic data through Gibbs
sampling on a synthetic network. A network structure withnodes was generated by treating

each possible edge as a Bernoulli random variable and sagrpie edges. We chose the parameter
of Bernoulli distribution so that each node hadneighbors on average. In order to analyze the
dependence of the performance on the size and connecthatyetwork, we variedV and K .

\ —+—True-None —=— Gain-L1 = Grad-12 —+— Gain-None \
(a) -150 100 (b) -150 (C),-\ 350 »
-200 20 8 . -200 8 300
-250 /'ﬁ g 80 pEm -250 3 :
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o — e a e = £ 200
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=
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500 |4 K . -500 S 50
-550 0 -550 € 0
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50 Nodes, 4 Neighbors per node in average 50 Nodes, 100 training samples 4 Neighbors, 100 training samples

Figure 1: Results from the experiments on the synthetic (f&aa text for details.)

We compare our algorithm usingy; regularization (-L1) against no regularization (-Nonejian
L, regularization (-L2) in three different ways. Figure 1 suarimes our results on this data sets,
and includes information about the networks used for eapleéxent.

In Figure 1 (a), we measure performance using CMLL and recoction error as the number of
training examples increases. As expected, L1 producesigigest improvement when the number
of training instances is small, whereas L2 and None are mareepto overfitting. This effect is
much more pronounced when measuring the Hamming distameaumber of disagreeing edges
between the learned structure and the true structure. Taeefghows that L2 and None learn many
spurious edges. Not surprisingly, L1 shows sparser digioh on the weights, thereby it has smaller
number of edges with non-negligeable weights; the strestirom None and L2 tends to have many
edges with small values.

In Figure 1 (b), we plot performance as a function of the dgnsfi the synthetic network. As
the synethetic network gets denser, L1 increasingly oftp®is the other algorithms. This may be
because as the graph gets more dense, each node is indoectjated with more other nodes.
Therefore, the feature induction algorithm is more likedyintroduce an spurious edge, which L1
may later remove, whereas None and L2 do not.

In Figure 1 (c), we measure the wall-clock time as a functibtime size of the synthetic network.
The method labeled 'True’ simply learns the paramters gitierirue model. Figure 1 (d) shows that
the computational cost of learning the structure of the netwusing Gain-L1 not much more than

1We ignore certain combinations for efficiency. Calculating approximate gain with the, regularization
involves a line search in feature induction step.



that of learning the paran

eter alone. Moreover, L1 increglgi outperforms other regularization

methods as the number of nodes increases.

Experiments on MNIST Digit Dataset.

We then applied our algorithm to handwritten digits.

The MNIST training set consists of 32 32 binary images of handwritten digits. In order to speed

up inference and learning
separately, using a trainin

, we resized the image toc185. We trained the model for each digit
g set consisting of 189-195 @naer digit. For each digit, we used 50

as training instances and the remainder as test instances.

Figure 2 compares CMLL of the different methods. To save spae show the digits on which
the relative difference in performance of L1 compared tortbet best competitor is the lowest (digit
5) and highest (digit 0), as well as the average performance.

Average

(b) 25

=30
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—=—Grad-L1
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Figure 2: Results from the experiments on MNIST dataset

As mentioned earlier the performance of the regularizedrélyn should be insensitive to the
feature induction method, assuming inference is exact. @¥ew in practice, because inference
is approximate, an induction algorithm that introducesrigus features will affect the quality of
inference, and therefore the performance of the algorithhss effect is substantiated by the poor
performance of the Simple-L1,2 methods that introducasfestbased on mutual information rather
than gradient (Grad-) or approximate gain (Gain-). Newdghs L1 still outperforms None and L2,
regardless of which feature induction algorithm with whitts paired. Figure 2 (b) illustrates that
as the induction algorithm introduces more features, Lidasingly outperforms the others.

Figure 2 (c) shows a visualization of the MRF learned when @liod) digits 4 and 7. Of course,
one would expect many short-range interactions, such assgciativity between neighboring pix-
els, and the algorithm does indeed capture these relafmstiThey are not shown in the graph
to simplify the analysis of the relationships.) Intereghn the algorithm picks up long-range in-
teractions, which presumably allow the algorithm to modiel variations in the size and shape of
hand-written digits.

Experiments on Human Genetic Variation Data. Human HapMap datarepresent the binary

genetic variation among individuals. Each of five data se&xlun our experiment contains binary
genotype values on 618-1052 genomic spots of 120 individul@ble 1 compares CMLLs among
three methods for these data sets. For all data sets, L1 dbettes performance than L2 and None.

Table 1: Results from the experiments on human HapMap datase

Data ENmMm010 ENmMO013 ENr321 ENr232 ENr123 ENr213
Number of Nodes 618 1042 768 614 1052 796
Gain-L1 -6.52 -9.76 -7.21 -6.12 -11.9 -8.22
Grad-L2 -7.56 -12.6 -8.53 -6.93 -13.2 -9.54
Gain-None -7.1 -14.3 -90.13 -7.13 -12.9 -10.1

7 Discussion and Future Work
We have presented a simple and effective method for leathigtructure of Markov networks. We
viewed the structure learning problem as lafrregularized parameter estimation task, allowing it
to be solved using convex optimization techniques. We skadvat the computational cost of our
method is not considerably greater than pure parametenatitin for a fixed structure, suggesting
that MRF structure learning is a feasible option for manylizggions.

There are some important directions in which our work canxtereled. Currently, our method
handles each feature in the log-linear model independenttiy no attempt to bias the learning
towards sparsityn the structure of the induced Markov network. We can extend our approach to

2Human hapmap data are availablénat p: / / www. hapmap. or g.



introduce such a bias by using a variantiof regularization that penalizes blocks of parameters
together, such as the blodk—norm of [2].

A key limiting factor in MRF learning, and in our approachtlie fact that it requires inference
over the model. Thus, the cost of MRF learning can becomeilpitdfe in complex domains in-
volving large numbers of variables and/or a dense intezadtructure. Our experiments show that
the results obtained from approximate algorithms, sucteéisfipropagation, even when imprecise,
are often good enough to lead to improvement in the objecti@wvever, as the learned network
structure becomes dense, the performance of the algorittes degrade. This is exacerbated by
the fact that the approximate gradient does not always muwv@arameters to 0, diminishing the
sparsifying effect of the.; regularization, and rendering the inference even lessiggedt would
be interesting to explore inference methods whose goalrigcily estimating the direction (even if
not the magnitude) of the gradient.

Finally, it would be interesting to explore the viability tife learned network structures in real-
world applications, both for density estimation and for Wwhedge discovery. For example, the
HapMap data provides opportunities for both: The learnédiokk can be used to predict important
SNPs from a smaller subset of measured SNPs. Moreoverytetise of the learned network may
reveal interesting insights about the viability of diffate&ombinations of SNPs.
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