My home page
Biography
Research
Publications
My group
Courses
Professional activities
FAQ
Personal
Papers

Daphne Koller Publications

Discriminative Probabilistic Models for Relational Data (2002)

by B. Taskar, P. Abbeel, and D. Koller


Abstract: In many supervised learning tasks, the entities to be labeled are related to each other in complex ways and their labels are not independent. For example, in hypertext classification, the labels of linked pages are highly correlated. A standard approach is to classify each entity independently, ignoring the correlations between them. Recently, Probabilistic Relational Models, a relational version of Bayesian networks, were used to define a joint probabilistic model for a collection of related entities. In this paper, we present an alternative framework that builds on (conditional) Markov networks and addresses two limitations of the previous approach. First, undirected models do not impose the acyclicity constraint that hinders representation of many important relational dependencies in directed models. Second, undirected models are well suited for discriminative training, where we optimize the conditional likelihood of the labels given the features, which generally improves classification accuracy. We show how to train these models effectively, and how to use approximate probabilistic inference over the learned model for collective classification of multiple related entities. We provide experimental results on a webpage classification task, showing that accuracy can be significantly improved by modeling relational dependencies.

Download Information

B. Taskar, P. Abbeel, and D. Koller (2002). "Discriminative Probabilistic Models for Relational Data." Proc. Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI). pdf ps.gz

Bibtex citation

@inproceedings{Taskar+al:UAI02,
  author =       "B. Taskar and P. Abbeel and D. Koller",
  booktitle =    "Proc. Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI)",
  title =        "Discriminative Probabilistic Models for Relational Data",
  address =      "Edmonton, Canada",
  year =         "2002",
}

full list
Click to go to robotics Click to go to theory Click to go to CS Stanford Click to go to Stanford's Webpage
home | biography | research | papers | my group
courses | professional activities | FAQ | personal