My home page
Biography
Research
Publications
My group
Courses
Professional activities
FAQ
Personal
Papers

Daphne Koller Publications
Research Areas (all)Publication TypeYears (all)
BNBayesian Networks   BMBiology and Medicine
DMDecision Making   LTWLanguage and Web
LGMLearning Graphical Models   MNMarkov Networks
RPMRicher Probabilistic Models   SLSupervised Learning
TPMTemporal Probabilistic Models  
JJournal Article
CConference Paper
BBook
ChBook Chapter
TTechnical Report
PhDPhD Disseration
1985 - 1989
1990 - 1994
1995 - 1999
2000 - 2004
2005 - 2009
2010 - 2014

TypeReferenceDownload
topics: BNBMDMLTWLGMMNRPMSLTPM

2004
C   A.J. Battle, E. Segal, and D. Koller (2004). "Probabilistic Discovery of Overlapping Cell Processes and Their Regulation." Eight Annual International Conference on Research in Computational Molecular Biology (RECOMB). bib/abs pdf ps.gz
topics:    BM       LGM            

C   B. Taskar, V. Chatalbashev, and D. Koller (2004). "Learning Associative Markov Networks." Proceedings of the Twenty-First International Conference on Machine Learning (ICML). bib/abs pdf ps.gz
topics:             LGM MN         

C   B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning (2004). "Max-Margin Parsing." Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Winner of the Best Paper Award. bib/abs pdf ps.gz
topics:          LTW LGM       SL   

C   B. Taskar, C. Guestrin, and D. Koller (2004). "Max-Margin Markov Networks." Advances in Neural Information Processing Systems (NIPS 2003). Winner of the Best Student Paper Award. bib/abs pdf ps.gz
topics:          LTW LGM MN    SL   

2003
J   N. Friedman and D. Koller (2003). "Being Bayesian about Bayesian Network Structure:A Bayesian Approach to Structure Discovery in Bayesian Networks.." Machine Learning, 50(1--2), 95-125. Full version of UAI 2000 paper. [older version, 2000]bib/abs pdf ps.gz
topics: BN          LGM            

C   E. Segal, D. Pe'er, A. Regev, D. Koller, and N. Friedman (2003). "Learning Module Networks." Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI) (pp. 525-534). [newer version, 2005]bib/abs pdf
topics:    BM       LGM    RPM      

C   U. Nodelman, C.R. Shelton, and D. Koller (2003). "Learning Continuous Time Bayesian Networks." Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI) (pp. 451-458). Winner of the Best Paper Award. bib/abs pdf ps.gz
topics:             LGM          TPM

C   B. Taskar, M.-F. Wong, and D. Koller (2003). "Learning on the Test Data: Leveraging `Unseen' Features." Proc. Twentieth International Conference on Machine Learning (ICML). bib/abs pdf ps.gz
topics:          LTW LGM       SL   

2002
J   L. Getoor, N. Friedman, D. Koller, and B. Taskar (2002). "Learning probabilistic models of Relational Structure." Journal of Machine Learning Research, 3, 679-707. [older version, 2001]bib pdf
topics:          LTW LGM    RPM      

C   E. Segal, D. Koller, and D. Ormoneit (2002). "Probabilistic Abstraction Hierarchies." Advances in Neural Information Processing Systems (NIPS 2001) (pp. 913-920). bib/abs pdf ps.gz
topics:             LGM            

C   B. Taskar, P. Abbeel, and D. Koller (2002). "Discriminative Probabilistic Models for Relational Data." Proc. Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI). bib/abs pdf ps.gz
topics:          LTW LGM    RPM SL   

2001
C   S. Tong and D. Koller (2001). "Active Learning for Structure in Bayesian Networks." Seventeenth International Joint Conference on Artificial Intelligence (IJCAI) (pp. 863-869). bib/abs pdf ps.gz
topics:             LGM            

C   L. Getoor, N. Friedman, D. Koller, and B. Taskar (2001). "Learning probabilistic models of Relational Structure." Proceedings of the Eighteenth International Conference on Machine Learning (pp. 170-177). [newer version, 2002]bib/abs pdf ps.gz
topics:          LTW LGM    RPM      

C   L. Getoor, B. Taskar, and D. Koller (2001). "Using Probabilistic Models for Selectivity Estimation." Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 461-472). bib/abs pdf ps.gz
topics:             LGM    RPM      

C   B. Taskar, E. Segal, and D. Koller (2001). "Probabilistic Supervised Learning and Clustering in Relational Data." Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI) (pp. 870-876). bib/abs pdf ps.gz
topics:          LTW LGM    RPM SL   

C   S. Tong and D. Koller (2001). "Active Learning for Parameter Estimation in Bayesian Networks." Conference on Advances in Neural Infomation Processing Systems (NIPS 2000). bib/abs pdf ps.gz
topics:             LGM            

Ch   L. Getoor, N. Friedman, D. Koller, and A. Pfeffer (2001). "Learning Probabilistic Relational Models." In S. D\vzeroski and N. Lavrac, editors, Relational Data Mining (pp. 307-335). bib pdf ps.gz
topics:             LGM    RPM      

2000
C   G. Elidan, N. Lotner, N. Friedman, and D. Koller (2000). "Discovering hidden variables: A structure-based approach." Advances in Neural Information Processing Systems (NIPS 2000). bib/abs pdf ps.gz
topics: BN          LGM            

C   U. Chajewska and D. Koller (2000). "Utilities as Random Variables: Density Estimation and Structure Discovery." Proc. UAI--00 (pp. 63-71). bib/abs pdf ps.gz
topics:       DM    LGM            

C   N. Friedman and D. Koller (2000). "Being Bayesian about Bayesian Network Structure:A Bayesian Approach to Structure Discovery in Bayesian Networks.." Proceedings of the 16th Annual Conference on Uncertainty in AI (UAI) (pp. 201-210). [newer version, 2003]bib/abs pdf ps.gz
topics: BN          LGM            

Click to go to robotics Click to go to theory Click to go to CS Stanford Click to go to Stanford's Webpage
home | biography | research | papers | my group
courses | professional activities | FAQ | personal