Blind (Uninformed) Search
(Where we systematically explore alternatives)

R&N: Chap. 3, Sect. 3.3–5

Simple Problem-Solving-Agent Algorithm

1. \(s_0 \leftarrow \text{sense/read initial state} \)
2. \(\text{GOAL?} \leftarrow \text{select/read goal test} \)
3. \(\text{Succ} \leftarrow \text{read successor function} \)
4. \(\text{solution} \leftarrow \text{search}(s_0, \text{GOAL?}, \text{Succ}) \)
5. perform(solution)

Search Tree

Note that some states may be visited multiple times

Search Nodes and States

If states are allowed to be revisited, the search tree may be infinite even when the state space is finite.

Data Structure of a Node

Depth of a node \(N \)

\[\text{depth of the root} = 0 \]

Depth of a node \(N \)

\[\text{length of path from root to } N \]

Bookkeeping

- Action
- Right
- Depth
- Path-Cost
- Expanded

- \[\text{depth of the root} = 0 \]
Node expansion

The expansion of a node \(N \) of the search tree consists of:
1) Evaluating the successor function on \(\text{STATE}(N) \)
2) Generating a child of \(N \) for each state returned by the function

\[\text{node generation} \neq \text{node expansion} \]

Fringe of Search Tree

The fringe is the set of all search nodes that haven't been expanded yet

- The fringe is the set of all search nodes that haven't been expanded yet
- The fringe is implemented as a priority queue \(\text{FRINGE} \)
 - INSERT(node,FRINGE)
 - REMOVE(FRINGE)
- The ordering of the nodes in \(\text{FRINGE} \) defines the search strategy

Search Strategy

- Is it identical to the set of leaves?

Search Algorithm #1

SEARCH#1
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRINGE)
3. Repeat:
 a. If empty(FRINGE) then return failure
 b. \(N \leftarrow \text{REMOVE}(\text{FRINGE}) \)
 c. \(s \leftarrow \text{STATE}(N) \)
 d. For every state \(s' \) in SUCCESSORS(s)
 i. Create a new node \(N' \) as a child of \(N \)
 ii. If GOAL?(s') then return path or goal state
 iii. INSERT(N,FRINGE)

Performance Measures

- Completeness
 A search algorithm is complete if it finds a solution whenever one exists
 [What about the case when no solution exists?]
- Optimality
 A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists
- Complexity
 It measures the time and amount of memory required by the algorithm
Blind vs. Heuristic Strategies

- **Blind (or un-informed) strategies** do not exploit state descriptions to order FRINGE. They only exploit the positions of the nodes in the search tree.

- **Heuristic (or informed) strategies** exploit state descriptions to order FRINGE (the most “promising” nodes are placed at the beginning of FRINGE).

Example

For a blind strategy, \(N_1 \) and \(N_2 \) are just two nodes (at some position in the search tree).

For a heuristic strategy counting the number of misplaced tiles, \(N_2 \) is more promising than \(N_1 \).

Remark

- Some search problems, such as the \((n^2-1)\)-puzzle, are NP-hard.
- One can’t expect to solve all instances of such problems in less than exponential time (in \(n \)).
- One may still strive to solve each instance as efficiently as possible.
 → This is the purpose of the search strategy.

Blind Strategies

- **Breadth-first**
 - Bidirectional

- **Depth-first**
 - Depth-limited
 - Iterative deepening

- **Uniform-Cost** (variant of breadth-first)
 \[\text{Arc cost} = c(\text{action}) \geq \varepsilon > 0 \]

Breadth-First Strategy

New nodes are inserted at the end of FRINGE.
Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (2, 3)

FRINGE = (3, 4, 5)

FRINGE = (4, 5, 6, 7)

Important Parameters

1) Maximum number of successors of any state
 → branching factor b of the search tree

2) Minimal length (≠ cost) of a path between the initial and a goal state
 → depth d of the shallowest goal node in the search tree

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete? Not complete?
 - Optimal? Not optimal?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated: ???
Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:
 $$1 + b + b^2 + \ldots + b^d = ???$$

Big O Notation

$$g(n) = O(f(n))$$ if there exist two positive constants a and N such that:

for all $n > N$: $g(n) \leq a \cdot f(n)$

Time and Memory Requirements

<table>
<thead>
<tr>
<th>d</th>
<th># Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>111</td>
<td>0.01 sec</td>
<td>11 Kbytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>1 sec</td>
<td>1 Mbyte</td>
</tr>
<tr>
<td>6</td>
<td>$\sim 10^6$</td>
<td>1 sec</td>
<td>100 Mb</td>
</tr>
<tr>
<td>8</td>
<td>$\sim 10^8$</td>
<td>100 sec</td>
<td>10 Gbytes</td>
</tr>
<tr>
<td>10</td>
<td>$\sim 10^{10}$</td>
<td>2.8 hours</td>
<td>1 Tbyte</td>
</tr>
<tr>
<td>12</td>
<td>$\sim 10^{12}$</td>
<td>11.6 days</td>
<td>100 Tbytes</td>
</tr>
<tr>
<td>14</td>
<td>$\sim 10^{14}$</td>
<td>3.2 years</td>
<td>10,000 Tbytes</td>
</tr>
</tbody>
</table>

Assumptions: $b = 10$; 1,000,000 nodes/sec; 100 bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td>13</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is $O(b^{d/2}) << O(b^d)$ if both trees have the same branching factor b

Question: What happens if the branching factor is different in each direction?

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Depth-First Strategy

New nodes are inserted at the front of FRINGE
Depth-First Strategy

New nodes are inserted at the front of FRINGE
Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete?
 - Optimal?

Depth-first search is:
- Complete only for finite search tree
- Not optimal
- Number of nodes generated (worst case):
 $1 + b + b^2 + \ldots + b^m = O(b^m)$
- Time complexity is $O(b^m)$
- Space complexity is $O(b^m)$ [or $O(m)$]
[Reminder: Breadth-first requires $O(b^d)$ time and space]

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)
- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

Main idea: Totally horrifying!

IDS
For $k = 0, 1, 2, \ldots$ do:
- Perform depth-first search with depth cutoff k
 (i.e., only generate nodes with depth $\leq k$)
Iterative Deepening

Performance

• Iterative deepening search is:
 - Complete
 - Optimal if step cost = 1
• Time complexity is:
 \((d+1)(1) + db + (d-1)b^2 + ... + (1) b^d = O(b^d)\)
• Space complexity is: \(O(b^d)\) or \(O(d)\)

Calculation

\[db + (d-1)b^2 + ... + (1) b^d = b^d + 2b^{d-1} + 3b^{d-2} + ... + db = (1 + 2b^{-1} + 3b^{-2} + ... + db^{-d}) \times b^d \leq \left(\sum_{i=1}^{\infty} ib^{i-1} \right) \times b^d = b^d \left(\frac{b}{b-1} \right)^2 \]

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

d = 5 and b = 2

<table>
<thead>
<tr>
<th>BF</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>63</td>
<td>120</td>
</tr>
</tbody>
</table>

Comparison of Strategies

• Breadth-first is complete and optimal, but has high space complexity
• Depth-first is space efficient, but is neither complete, nor optimal
• Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first

Quiz: Would IDS + bi-directional search be a good combination?
Avoiding Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

Implemented as hash-table or as explicit data structure with flags

Avoiding Revisited States

- Depth-first search:
 Solution 1:
 - Store all states associated with nodes in current path in VISITED
 - If the state of a new node is in VISITED, then discard the node
 → Only avoids loops

Solution 2:
 - Store all generated states in VISITED
 - If the state of a new node is in VISITED, then discard the node
 → Same space complexity as breadth-first!

Uniform-Cost Search

- Each arc has some cost $c \geq c > 0$
- The cost of the path to each node N is $g(N) = \Sigma$ costs of arcs
- The goal is to generate a solution path of minimal cost
- The nodes N in the queue FRINGE are sorted in increasing $g(N)$
- Need to modify search algorithm
Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,FRINGE)
2. Repeat:
 a. If empty(FRINGE) then return failure
 b. N \leftarrow\text{REMOVE}(FRINGE)
 c. s \leftarrow \text{STATE}(N)
 d. If GOAL?(s) then return path or goal state
 e. For every state s’ in SUCCESSORS(s)
 i. Create a node N’ as a successor of N
 ii. INSERT(N’,FRINGE)

Avoiding Revisited States in Uniform-Cost Search

- For any state \(S \), when the first node \(N \) such that \(\text{STATE}(N) = S \) is expanded, the path to \(N \) is the best path from the initial state to \(S \)
- So:
 - When a node is expanded, store its state into \(\text{CLOSED} \)
 - When a new node \(N \) is generated:
 - If \(\text{STATE}(N) \) is in \(\text{CLOSED} \), discard \(N \)
 - If there exists a node \(N’ \) in the fringe such that \(\text{STATE}(N’) = \text{STATE}(N) \), discard the node — \(N’ \) or \(N \) — with the highest-cost path